必修一数学第二章测试卷(含答案)

合集下载

必修一数学第二章测试卷答案

必修一数学第二章测试卷答案

必修一基本初等函数(I)测试题姓名:_______________班级:_______________考号:_______________1、已知函数,若函数有四个零点,则实数的取值范围为( ?)A.?????? B.?????? ?? ??? C.?????? ? D.2、若函数在(,)上既是奇函数又是增函数,则函数的图象是??????????????????????????????????????? (? ???)3、D已知定义在R上的奇函数f(x)满足f(2+x)=f(-x),当0≤x≤1时,f(x)=x2,则f(2015)= ( ??)A.-1?? ??? ???B.1 ??? ??? ??? ???C.0 ??? ??? ??? ??? ???D.201524、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是( ??)A.?????? B.??????? C.????? D.5、下图可能是下列哪个函数的图象(???? ). ?????????.. ?????????.6、?已知,,,则的大小关系是(??)A.?????? B .?????? C .?????? D .7、设,,,则的大小关系是A.???????B. ??????C.???????D.8、?下列函数中值域为(0,)的是(??? )A. ?????B. ?????C. ?????D.9、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是( ??)A.?????? B .??????? C .????? D .10、?已知函数,若,则的取值范围是( ???)A.??????? B .?????? C .???????? D .11、已知函数的最小值为(??? )??? A.6????????? ? ??? B.8????????????? ? C.9???????????? ?? D.1212、已知f (x )是定义在R 上的奇函数,当x<0时,f(x)=那么的值是(??? )?????? A .? B .-????? C .? D .-13、下列函数中,反函数是其自身的函数为??????????????????????????????????????????????????????????????????A.??????????????????????? B .C.???????????????????? D .14、对于函数,令集合,则集合M 为A .空集?????????????????????B .实数集??????????????????C .单元素集??????????????D .二元素集15、函数y=定义域是????????????????????A.?????? ????????????? B .?????? ????????????? C . ???????????????????? D .二、填空题16、函数为奇函数,则实数?????? .17、设函数,给出下列四个命题:①函数为偶函数;②若其中,则;③函数在上为单调增函数;④若,则。

人教版高中数学选择性必修第一册第二章测试题及答案解析

人教版高中数学选择性必修第一册第二章测试题及答案解析

人教版高中数学选择性必修第一册第二章测试题及答案解析一、测试题1. 解方程:$3(x+1)-2(x-2) = 4(x-1)+6$解:首先,将方程两边的括号展开,得到:$3x+3-2x+4 = 4x-4+6$然后,合并同类项,得到:$x+7=4x+2$接下来,移项,将未知数x的项移到等式的一边:$x-4x = 2-7$化简得:$-3x = -5$最后,将方程两边同时除以-3,得到最终结果:$x = \frac{-5}{-3} = \frac{5}{3}$2. 计算:$\sqrt{24} \cdot \sqrt{\frac{8}{3}}$解:首先,对根号内的数进行因式分解,得到:$\sqrt{2 \cdot 2 \cdot 2 \cdot 3} \cdot \sqrt{\frac{2 \cdot 2 \cdot 2}{1 \cdot 3}}$然后,利用根号乘法法则,将两个根号内的因子合并,得到:$2 \sqrt{6} \cdot \frac{2}{\sqrt{3}}$接下来,化简分数并移动根号,得到:$2\sqrt{6} \cdot\frac{2}{\sqrt{3}} = 2 \cdot 2 \cdot \frac{\sqrt{6}}{\sqrt{3}}$化简根号内的分数,得到最终结果:$4\sqrt{2}$3. 求函数$f(x)=2x^2-5$的图像在坐标系上关于x轴对称的点的坐标。

解:首先,关于x轴对称的点的特点是,其横坐标不变,纵坐标相反。

即,对于点P(x,y),其关于x轴对称的点为P'(x,-y)。

对于函数$f(x)=2x^2-5$来说,我们需要求出函数图像上的点,然后对其进行关于x轴的对称操作。

例如,当$x=1$时,$f(1) = 2(1)^2-5 = -3$,即点P(1,-3)。

在坐标系上,找到点P(1,-3),将其关于x轴对称,得到点P'(1,3)。

因此,函数$f(x)=2x^2-5$的图像在坐标系上关于x轴对称的点的坐标为P'(1,3)。

必修一数学第二章测试卷(含答案)

必修一数学第二章测试卷(含答案)

必修一基本初等函数(I)测试题姓名:_______________班级:_______________考号:_______________题号一、选择题二、填空题三、简答题四、综合题总分得分一、选择题1、已知函数,若函数有四个零点,则实数的取值范围为()A. B. C. D.2、若函数在(,)上既是奇函数又是增函数,则函数的图象是()3、D已知定义在R上的奇函数f(x)满足f(2+x)=f(-x),当0≤x≤1时,f(x)=x2,则f(2015)= ()A.-1 B.1 C.0 D.201524、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是()A.B.C.D.5、下图可能是下列哪个函数的图象( )评卷人得分. .. .6、已知,,,则的大小关系是()A .B .C .D .7、设,,,则的大小关系是A. B. C. D.8、下列函数中值域为(0,)的是()A. B. C. D.9、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是()A .B .C .D .10、已知函数,若,则的取值范围是()A. B. C. D.11、已知函数的最小值为()A.6 B.8 C.9D.1212、已知f(x)是定义在R上的奇函数,当x<0时,f(x)=那么的值是( )A. B.- C. D.-13、下列函数中,反函数是其自身的函数为A. B.C. D.14、对于函数,令集合,则集合M为A.空集 B.实数集 C.单元素集 D.二元素集15、函数y=定义域是A .B .C .D .二、填空题评卷人得分16、函数为奇函数,则实数 .17、设函数,给出下列四个命题:①函数为偶函数;②若其中,则;③函数在上为单调增函数;④若,则。

则正确命题的序号是..18、若,则定义域为 .19、若方程有两个不相等的实数根,则的取值范围是20、定义函数,若存在常数,对于任意,存在唯一的,使得,则称函数在上的“均值”为,已知,则函数在上的“均值”为.21、在R+上定义一种运算“*”:对于、R+,有*=,则方程*=的解是= 。

高一数学第二章测试题及答案解析

高一数学第二章测试题及答案解析

第二章单元测试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若直线a和b没有公共点,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l() A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂α B.a⊂α,b∥α C.a⊥α,b⊥α D.a⊂α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β10.已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为()A.-45 B. .35C.34D.-3511.已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=3,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的余弦值为() A.33 B.13C.0D.-1212.如图所示,点P在正方形ABCD所在平面外,P A⊥平面ABCD,P A=AB,则PB与AC所成的角是()A.90°B.60°C.45°D.30°二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________. 16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.18.(本小题满分12分)如图所示,在四棱锥P-ABCD中,P A⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面P AE;(2)若直线PB与平面P AE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P -AM -D 的大小.20.(本小题满分12分)(2010·辽宁文,19)如图,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形,B 1C ⊥A 1B .(1)证明:平面AB 1C ⊥平面A 1BC 1;(2)设D 是A 1C 1上的点,且A 1B ∥平面B 1CD ,求A 1D DC 1的值.21.(12分)如图,△ABC 中,AC =BC =22AB ,ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,若G ,F 分别是EC ,BD 的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.22.(12分)如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.详解答案1[答案] D2[答案] C[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l⊂α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案] D [解析] 选项A 中,a ,b 还可能相交或异面,所以A 是假命题;选项B 中,a ,b 还可能相交或异面,所以B 是假命题;选项C 中,α,β还可能相交,所以C 是假命题;选项D 中,由于a ⊥α,α⊥β,则a ∥β或a ⊂β,则β内存在直线l ∥a ,又b ⊥β,则b ⊥l ,所以a ⊥b .9[答案] C[解析] 如图所示:AB ∥l ∥m ;AC ⊥l ,m ∥l ⇒AC ⊥m ;AB ∥l ⇒AB ∥β.10[答案] 35 命题意图] 本试题考查了正方体中异面直线的所成角的求解的运用.[解析] 首先根据已知条件,连接DF ,然后则角DFD 1即为 异面直线所成的角,设边长为2,则可以求解得到5=DF =D 1F ,DD 1=2,结合余弦定理得到结论.11[答案] C[解析]取BC中点E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二面角A-BC-D的平面角又AE=ED=2,AD=2,∴∠AED=90°,故选C.12[答案] B[解析]将其还原成正方体ABCD-PQRS,显见PB∥SC,△ACS 为正三角形,∴∠ACS=60°.13[答案]α∩β=AB14[答案]45°[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案]9[解析] 如下图所示,连接AC ,BD ,则直线AB ,CD 确定一个平面ACBD .∵α∥β,∴AC ∥BD ,则AS SB =CS SD ,∴86=12SD ,解得SD =9.16[答案] ①②④[解析] 如图所示,①取BD 中点,E 连接AE ,CE ,则BD ⊥AE ,BD ⊥CE ,而AE ∩CE =E ,∴BD ⊥平面AEC ,AC ⊂平面AEC ,故AC ⊥BD ,故①正确.②设正方形的边长为a ,则AE =CE =22a .由①知∠AEC =90°是直二面角A -BD -C 的平面角,且∠AEC =90°,∴AC =a ,∴△ACD 是等边三角形,故②正确. ③由题意及①知,AE ⊥平面BCD ,故∠ABE 是AB 与平面BCD 所成的角,而∠ABE =45°,所以③不正确.④分别取BC ,AC 的中点为M ,N ,连接ME ,NE ,MN .则MN ∥AB ,且MN =12AB =12a ,ME ∥CD ,且ME =12CD =12a ,∴∠EMN 是异面直线AB ,CD 所成的角.在Rt △AEC 中,AE =CE =22a ,AC =a ,∴NE =12AC =12a .∴△MEN 是正三角形,∴∠EMN =60°,故④正确. 17[证明] (1)在正三棱柱ABC -A 1B 1C 1中,∵F 、F 1分别是AC 、A 1C 1的中点,∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F ,∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1,∴平面AB 1F 1⊥平面ACC 1A 1.18[解析](1)如图所示,连接AC ,由AB =4,BC =3,∠ABC =90°,得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于F ,G ,连接PF . 由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角. AB =4,AG =2,BG ⊥AF ,由题意,知∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形,故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.19[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM =3,AM=6,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°. 20[解析](1)因为侧面BCC1B1是菱形,所以B1C⊥BC1,又已知B1C⊥A1B,且A1B∩BC1=B,所以B1C⊥平面A1BC1,又B1C⊂平面AB1C所以平面AB1C⊥平面A1BC1 .(2)设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.因为A1B∥平面B1CD,A1B⊂平面A1BC1,平面A1BC1∩平面B1CD =DE,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D DC1=1.21[解](1)证明:连接AE,如下图所示.∴AE∩BD=F,且F是AE的中点,又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC ,∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED ,∴BE ⊥平面ABC ,∴BE ⊥AC .又∵AC =BC =22AB ,∴CA 2+CB 2=AB 2,∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE .(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.22[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5,∴AC ⊥BC .又∵C 1C ⊥AC .∴AC ⊥平面BCC 1B 1.∵BC 1⊂平面BCC 1B ,∴AC ⊥BC 1.(2)证明:设CB 1与C 1B 的交点为E ,连接DE ,又四边形BCC 1B 1为正方形.∵D 是AB 的中点,E 是BC 1的中点,∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(3)解:∵DE ∥AC 1,∴∠CED 为AC 1与B 1C 所成的角.在△CED 中,ED =12AC 1=52,CD =12AB =52,CE =12CB 1=22,∴cos ∠CED =252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.。

人教版高一数学必修1第二章测试题

人教版高一数学必修1第二章测试题

高一数学必修1第二章单元测试题(1)一、选择题:1.若0a >,且,m n 为整数,则下列各式中正确的是 ( )A 、m m n n a a a÷= B 、n m n m a a a ⋅=⋅ C 、()n m m n a a += D 、01n n a a -÷= 2.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21 C .2 D .4 3.式子82log 9log 3的值为 ( ) (A )23 (B )32(C )2 (D )3 4.已知(10)x f x =,则()100f = ( ) A 、100 B 、10010 C 、lg10 D 、25.已知0<a <1,log log 0a a m n <<,则( ).A .1<n <mB .1<m <nC .m <n <1D .n <m <16.已知3.0log a 2=,3.02b =,2.03.0c =,则c b a ,,三者的大小关系是( )A .a c b >>B .c a b >>C .c b a >>D .a b c >>二、填空题:请把答案填在题中横线上.7.若24log =x ,则x = .8.则,3lg 4lg lg +=x x = .9.函数2)23x (lg )x (f +-=恒过定点 。

10.已知37222--<x x , 则x 的取值范围为 。

三、解答题:解答应写出文字说明、证明过程或演算步骤11.计算:(1)7log 263log 33-; (2)63735a a a ÷⋅;12.解不等式:(1)13232)1()1(-++<+x x a a(0≠a )13.已知函数f (x )=)2(log 2-x a , 若(f 2)=1;(1) 求a 的值; (2)求)23(f 的值;(3)解不等式)2()(+<x f x f .14.已知函数()22x ax b f x +=+,且f (1)=52,f (2)=174.(1)求a b 、;(2)判断f (x )的奇偶性;(3)试判断函数在(,0]-∞上的单调性,并证明;高一数学必修1第二章单元测试题(2)一、选择题1.函数y =a x -2+log (1)a x -+1(a >0,a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,1) D .(2,2)2.已知幂函数f ( x )过点(2,22),则f ( 4 )的值为 ( ) A 、21 B 、 1 C 、2 D 、8 3.计算()()5lg 2lg 25lg 2lg 22⋅++等于 ( )A 、0B 、1C 、2D 、34.已知ab>0,下面的四个等式中,正确的是( )A.lg()lg lg ab a b =+;B.lg lg lg a a b b =-; C .b a b a lg )lg(212= ; D.1lg()log 10ab ab =. 5.已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、52a -B 、2a -C 、23(1)a a -+D 、 231a a -- 6.函数x y 2log 2+=()1≥x 的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞二、填空题:请把答案填在题中横线上7.已知函数)]91(f [f ,)0x (20)(x x log )x (f x 3则,,⎩⎨⎧≤>=的值为 8.计算:453log 27log 8log 25⨯⨯=9.若n 3log ,m 2log a a ==,则2n3m a -=10.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,问现在价格为8100元的计算机经过15年后,价格应降为 。

(人教版A版)高中数学必修第一册 第二章综合测试试卷01及答案

(人教版A版)高中数学必修第一册 第二章综合测试试卷01及答案

第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .若ac bc >,则a b>B .若22a b >,则a b >C .若a b >,0c <,则a c b c++<D .a b<2.若++,则a ,b 必须满足的条件是( )A .0a b >>B .0a b <<C .a b>D .0a ≥,0b ≥,且a b≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ÎR 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k <≤C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +”的充分不必要条件,则k 的取值范围是( )A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( )A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( )A .22ac bc <B .11a b<C .baab>D .22a ab b >>7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( )A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( )A .1c a>B .02c a<C .13c a <<D .03c a<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x $ÎR ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1B C .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________.14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题.16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ÎR ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式.(1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ì-+íî,324x üýþ≤≤,{}2=|1B x x m +≥.p x A Î:,q x B Î:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ÎR .(1)当=1a 时,求A B I ;(2)若=A B A U ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+.(1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.第二章综合测试答案解析一、1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D .2.【答案】D【解析】2=()=a b +-+-((.++Q a \,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ÎR 恒成立,需22=36480k k k D -+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A .4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++<,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +ìí-î´,,解得=4=3a b ìí-î,,所以4=3=81a b -().故选B .6.【答案】D【解析】选项A ,c Q 为实数,\取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b aa b ab--,0a b Q <<,0b a \->,0ab >,0b a ab -\,即11a b>,故选项B 不成立;选项C ,0a b Q <<,\取=2a -,=1b -,则11==22b a --,2==21a b --,\此时b aa b<,故选项C 不成立;选项D ,0a b Q <<,2=0a ab a a b \--()>,2=0ab b b a b --()>,22a ab b \>>,故选项D 正确.7.【答案】D【解析】210x a x a -++Q ()<,10x x a \--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D .8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x\--≥在02x <<时恒成立.11=2x x x x ---+--Q ()≤(当且仅当=1x 时取等号),2a \-≥,\实数a 的最小值是2-.故选B .9.【答案】A【解析】由题知{}=20N -,,则{}=0M N I .故选A .10.【答案】C【解析】2x Q >,20x \->.11==222=422y x x x x \+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a \.11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +ìï+íï+î<≤,>,>,即1311b ca abc a a c b a aì+ïïï+íïï+ïî<≤,>,>,1311b c a ac b a a ì+ïï\íï--ïî<≤,<<,两式相加得024c a ´<.c a \的取值范围为02ca<.12.【答案】D【解析】Q 二次三项式220ax x b ++≥对一切实数x 恒成立,0a \>,且=440ab D -≤,1ab \≥.又0x $ÎR ,使2002=0ax x b ++成立,则=0D ,=1ab \,又a b >,0a b \->.22222==a b a b ab a b a b a b a b +-+\-+---()()当且仅当a b -时等号成立.22a b a b+\-的最小值为故选D .二、13.【答案】111a a-+【解析】由1a <,得11a -<<.10a \+>,10a ->.2111=11a a a +--.2011a -Q <≤,2111a \-,111a a\-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a D -´´≤,解得a ,\实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则c dab ab a b--()<(),即bc ad --<,bc ad \>,即③成立;若①③成立,则bc ad ab ab ,即c d a b >,c d a b \--<,即②成立;若②③成立,则由②得c d a b >,即0bc ad ab -,Q ③成立,0bc ad \->,0ab \>,即①成立.故可组成3个正确命题.16.【答案】42x -<<【解析】不等式2162a b x x ba ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++m i n <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<.三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a D -,9=4a .所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94.若=A Æ,则=940a D -<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分)18.【答案】(1)2560x x --+Q <,2560x x \+->,160x x \-+()()>,解得6x -<或1x >,\不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x \--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x \--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >.当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<;当=0a 时,原不等式的解集是Æ;当02a <<时,原不等式的解集是{|x x a <或}2x >;当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+,配方得237=416y x -+().因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ìüíýîþ≤≤.(6分)由21x m +≥,得21x m -≥,所以{}2=|1B x x m -≥.(8分)因为p 是q 的充分条件,所以A B Í.所以27116m -≤,(10分)解得实数m 的取值范围是34m ≥或34m -≤.(12分)20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤,则{}=|23A B x x I ≤≤.(3分)(2)因为=A B A U ,所以B A Í.①当=B Æ,即23a a +>,3a >时,B A Í成立,符合题意.(8分)②当=B Æ,即23a a +≤,3a ≤时,由B A Í,有0233a a ìí+î≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a Q 、b 为正实数,且11a b+.11a b \+=a b 时等号成立),即12ab ≥.(3分)2221122=a b ab +´Q ≥≥(当且仅当=a b 时等号成立),22a b \+的最小值为1.(6分)(2)11a b+Q,a b \+.234a b ab -Q ()≥(),2344a b ab ab \+-()≥(),即2344ab ab -()≥(),2210ab ab -+()≤,210ab -()≤,a Q 、b 为正实数,=1ab \.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ÎR .当0a <时,解得1a x a +>.当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ;当0a <时,原不等式的解集为1|a x x a +ìüíýîþ>;当0a >时,原不等式的解集为1|a x x a +ìüíýîþ<.(6分)(2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤,因为2y x x a --≤在0+¥(,)上恒成立,所以11a x x+-≤在0+¥(,)上恒成立.令1=1t x x+-,只需min a t ≤,因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立.所以a 的取值范围是1a ≤.(12分)。

(北师大版)高中数学必修第一册第二章综合测试02(含答案)

(北师大版)高中数学必修第一册第二章综合测试02(含答案)

第二章综合测试一、单选题(每小题5分,共40分), 1.函数()f x =) A .[]12−,B .(]12−,C .[)2+∞,D .[)1+∞,2.设函数()221121x x f x x x x ⎧−⎪=⎨+−⎪⎩,≤,,>,则()12f f ⎫⎛⎪ ⎪⎝⎭的值为( ) A .1− B .34C .1516D .43.已知()32f x x x =+,则()()f a f a +−=( ) A .0B .1−C .1D .24.幂函数223a a y x −−=是偶函数,且在()0+∞,上单调递减,则整数a 的值是( ) A .0或1B .1或2C .1D .25.函数()34f x ax bx =++(a b ,不为零),且()510f =,则()5f −等于( ) A .10−B .2−C .6−D .146.已知函数22113f x x x x ⎫⎛+=++ ⎪⎝⎭,则()3f =( )A .8B .9C .10D .117.如果函数()2f x x bx c =++对于任意实数t 都有()()22f t f t +=−,那么( ) A .()()()214f f f << B .()()()124f f f << C .()()()421f f f <<D .()()()241f f f <<8.定义在R 上的偶函数()f x 满足对任意的[)()12120x x x x ∈+∞≠,,,有()()21210f x f x x x −−<,且()20f =,则不等式()0xf x <的解集是( )A .()22−,B .()()202−+∞,,C .()()8202−−,,D .()()22−∞−+∞,,二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.定义运算()()a ab a b b a b ⎧⎪=⎨⎪⎩≥□<,设函数()12x f x −=□,则下列命题正确的有( )A .()f x 的值域为[)1+∞,B .()f x 的值域为(]01,C .不等式()()12f x f x +<成立的范围是()0−∞,D .不等式()()12f x f x +<成立的范围是()0+∞,10.关于函数()f x = )A .定义域、值域分别是[]13−,,[)0+∞,B .单调增区间是(]1−∞,C .定义域、值域分别是[]13−,,[]02,D .单调增区间是[]11−,11.函数()f x 是定义在R 上的奇函数,下列命题中是正确命题的是( ) A .()00f =B .若()f x 在[)0+∞,上有最小值1−,则()f x 在(]0−∞,上有最大值1 C .若()f x 在[)1+∞,上为增函数,则()f x 在(]1−∞−,上为减函数 D .若0x >时,()22f x x x =−,则0x <时,()22f x x x =−−12.关于函数()1f x =,有下列结论,正确的结论是( )A .函数是偶函数B .函数在()1−∞−,)上递减 C .函数在()01,上递增D .函数在()33−,上的最大值为1 三、填空题(每小题5分,共20分)13.已知函数()()f x g x ,分别由表给出,则()()2g f =________.14.已知()f x 为R 上的减函数,则满足()11f f x ⎫⎛ ⎪⎝⎭>的实数x 的取值范围为________.15.已知函数()f x 是奇函数,当()0x ∈−∞,时,()2f x x mx =+,若()23f =−,则m 的值为________.16.符号[]x 表示不超过x 的最大整数,如[][]3.143 1.62=−=−,,定义函数:()[]f x x x =−,则下列说法正确的是________. ①()0.80.2f −=;②当12x ≤<时,()1f x x −;③函数()f x 的定义域为R ,值域为[)01,; ④函数()f x 是增函数,奇函数. 四、解答题(共70分)17.(10分)已知一次函数()f x 是R 上的增函数,()()()g x f x x m =+,且()()165f f x x =+. (1)求()f x 的解析式.(2)若()g x 在()1+∞,上单调递增,求实数m 的取值范围.18.(12分)已知()()212021021 2.f x x f x x x x x +−⎧⎪=+⎨⎪−⎩,<<,,≤<,,≥ (1)若()4f a =,且0a >,求实数a 的值.(2)求32f ⎫⎛− ⎪⎝⎭的值.19.(12分)已知奇函数()q f x px r x =++(p q r ,,为常数),且满足()()5171224f f ==,. (1)求函数()f x 的解析式.(2)试判断函数()f x 在区间102⎛⎤⎥⎝⎦,上的单调性,并用函数单调性的定义进行证明.(3)当102x ⎛⎤∈ ⎥⎝⎦,时,()2f x m −≥恒成立,求实数m 的取值范围.20.(12分)大气中的温度随着高度的上升而降低,根据实测的结果,上升到12km 为止,温度的降低大体上与升高的距离成正比,在12km 以上温度一定,保持在55−℃.(1)当地球表面大气的温度是a ℃时,在km x 的上空为y ℃,求a x y 、、间的函数关系式.(2)问当地表的温度是29℃时,3km 上空的温度是多少?21.(12分)已知函数()f x 是定义在[]11−,上的奇函数,且()11f =,对任意[]110a b a b ∈−+≠,,,时有()()0f a f b a b++>成立.(1)解不等式()1122f x f x ⎫⎛+− ⎪⎝⎭<.(2)若()221f x m am −+≤对任意[]11a ∈−,恒成立,求实数m 的取值范围.22.(12分)已知函数()[](]2312324.x x f x x x ⎧−∈−⎪=⎨−∈⎪⎩,,,,,(1)画出()f x 的图象.(2)写出()f x 的单调区间,并指出单调性(不要求证明).(3)若函数()y a f x =−有两个不同的零点,求实数a 的取值范围.第二章综合测试 答案解析一、 1.【答案】B 【解析】选B .由10420x x +⎧⎨−⎩>,≥,得12x −<≤.2.【答案】C【解析】选C .因为()222224f =+−=,所以()211115124416f f f ⎫⎛⎫⎫⎛⎛==−=⎪ ⎪ ⎪ ⎪⎝⎝⎭⎭⎝⎭. 3.【答案】A【解析】选A .()32f x x x =+是R 上的奇函数,故()()f a f a −=−,所以()()0f a f a +−=. 4.【答案】C【解析】选C .因为幂函数223aa y x −−=是偶函数,且在()0+∞,上单调递减, 所以2223023a a a z a a ⎧−−⎪∈⎨⎪−−⎩<,,是偶数.解得1a =. 5.【答案】B【解析】选B .因为()51255410f a b =++=, 所以12556a b +=,所以()()51255412554642f a b a b −=−−+=−++=−+=−. 6.【答案】C【解析】选C .因为22211131f x x x x x x ⎫⎫⎛⎛+=++=++ ⎪ ⎪⎝⎝⎭⎭,所以()21f x x =+(2x −≤或2x ≥),所以()233110f =+=. 7.【答案】A【解析】选A .由()()22f t f t +=−,可知抛物线的对称轴是直线2x =,再由二次函数的单调性,可得()()()214f f f <<.8.【答案】B 【解析】选B .因为()()21210f x f x x x −−<对任意的[)()12120x x x x ∈+∞≠,,恒成立,所以()f x 在[)0+∞,上单调递减,又()20f =, 所以当2x >时,()0f x <;当02x ≤<时,()0f x >, 又()f x 是偶函数,所以当2x −<时,()0f x <; 当20x −<<时,()0f x >,所以()0xf x <的解集为()()202−+∞,,. 二、9.【答案】AC【解析】选AC .根据题意知()10210xx f x x ⎧⎫⎛⎪ ⎪=⎨⎝⎭⎪⎩,≤,,>, ()f x 的图象为所以()f x 的值域为[)1+∞,,A 对; 因为()()12f x f x +<,所以1210x x x +⎧⎨+⎩>≤,或2010x x ⎧⎨+⎩<>,所以11x x ⎧⎨−⎩<≤,或01x x ⎧⎨−⎩<>,所以1x −≤或10x −<<, 所以0x <,C 对. 10.【答案】CD【解析】选CD .由2230x x −++≥可得,2230x x −−≤,解可得,13x −≤≤,即函数的定义域为[]13−,,由二次函数的性质可知,()[]22231404y x x x =−++=−−+∈,,所以函数的值域为[]02,,结合二次函数的性质可知,函数在[]11−,上单调递增,在[]13,上单调递减. 11.【答案】ABD【解析】选ABD .()f x 为R 上的奇函数,则()00f =,A 正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以B 正确,C 不正确;对于D ,0x <时,()()()22022x f x x x x x −−=−−−=+>,,又()()f x f x −=−,所以()22f x x x =−−,即D 正确.12.【答案】ABD【解析】选ABD .函数满足()()f x f x −=,是偶函数;作出函数图象,可知在()1−∞−,,()01,上递减, ()10−,,()1+∞,上递增, 当()33x ∈−,时,()()max 01f x f ==.三、13.【答案】1【解析】由题表可得()()2331f g ==,, 故()()21g f =.14.【答案】()()01−∞+∞,,【解析】因为()f x 在R 上是减函数, 所以11x<,解得1x >或0x <. 15.【答案】12【解析】因为()f x 是奇函数, 所以()()223f f −=−=, 所以()2223m −−=,解得12m =. 16.【答案】①②③【解析】()[]f x x x =−,则()()0.80.810.2f −=−−−=,①正确, 当12x ≤<时,()[]1f x x x x =−=−,②正确,函数()f x 的定义域为R ,值域为[)01,,③正确, 当01x ≤<时,()[]f x x x x =−=; 当12x ≤<时,()1f x x =−, 当0.5x =时,()0.50.5f =; 当 1.5x =时,()1.50.5f =,则()()0.5 1.5f f =,即有()f x 不为增函数,由()()1.50.5 1.50.5f f −==,,可得()()1.5 1.5f f −=,即有()f x 不为奇函数,④错误. 四、17.【答案】(1)由题意设()()0f x ax b a =+>.从而()()()2165f f x a ax b b a x ab b x =++=++=+,所以21655a ab ⎧=⎨+=⎩,,解得41a b =⎧⎨=⎩,或453a b =−⎧⎪⎨=−⎪⎩,(不合题意,舍去). 所以()f x 的解析式为()41f x x =+.(2)()()()()()()()414241g x f x x m x x m x m x m g x =+=++=+++,图象的对称轴为直线418m x +=−. 若()g x 在()1+∞,上单调递增,则4118m +−≤,解得94m −≥,所以实数m 的取值范围为94⎫⎡−+∞⎪⎢⎣⎭,. 18.【答案】(1)若02a <<,则()214f a a =+=, 解得32a =,满足02a <<; 若2a ≥,则()214f a a =−=,解得a =或a =, 所以32a =或a =.(2)由题意,3311222f f f ⎫⎫⎫⎛⎛⎛−=−+=− ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭1111212222f f ⎫⎫⎛⎛=−+==⨯+= ⎪ ⎪⎝⎝⎭⎭.19.【答案】(1)因为()f x 为奇函数,所以()()f x f x −=−,所以0r =.又()()5121724f f ⎧=⎪⎪⎨⎪=⎪⎩,即52172.24p q q p ⎧+=⎪⎪⎨⎪+=⎪⎩,解得212p q =⎧⎪⎨=⎪⎩,,所以()122f x x x =+. (2)()122f x x x =+在区间102⎛⎤⎥⎝⎦,上单调递减. 证明如下:设任意的两个实数12x x ,,且满足12102x x <<≤,则()()()12121211222f x f x x x x x −=−+− ()()()()21211212121214222x x x x x x x x x x x x −−−=−+=.因为12102x x <<≤,所以2112121001404x x x x x x −−>,<<,>, 所以()()120f x f x −>, 所以()122f x x x =+在区间102⎛⎤⎥⎝⎦,上单调递减. (3)由(2)知()122f x x x =+在区间102⎛⎤⎥⎝⎦,上的最小值是122f ⎫⎛= ⎪⎝⎭. 要使当102x ⎛⎤∈ ⎥⎝⎦,时,()2f x m −≥恒成立,只需当102x ⎛⎤∈ ⎥⎝⎦,时,()min 2f x m −≥,即22m −≥,解得0m ≥即实数m 的取值范围为[)0+∞,.20.【答案】(1)由题意知,可设()0120y a kx x k −=≤≤,<,即y a kx =+.依题意,当12x =时,55y =−, 所以5512a k −=+,解得5512a k +=−. 所以当012x ≤≤时,()()5501212x y a a x =−+≤≤. 又当12x >时,55y =−.所以所求的函数关系式为 ()55012125512.x a a x y x ⎧−+⎪=⎨⎪−⎩,≤≤,,> (2)当293a x ==,时,()3295529812y =−+=, 即3km 上空的温度为8℃. 21.【答案】(1)任取[]121211x x x x ∈−,,,<,()()()()()()()()1212121212f x f x f x f x f x f x x x x x +−−=+−=−+−由已知得()()()12120f x f x x x +−+−>, 所以()()120f x f x −<,所以()f x 在[]11−,上单调递增, 原不等式等价于112211121121x x x x ⎧+−⎪⎪⎪−+⎨⎪−−⎪⎪⎩<,≤≤≤≤, 所以106x ≤<,原不等式的解集为106⎫⎡⎪⎢⎣⎭,. (2)由(1)知()()11f x f =≤,即2211m am −+≥,即220m am −≥,对[]11a ∈−,恒成立.设()22g a ma m =−+,若0m =,显然成立;若0m ≠,则()()1010g g −⎧⎪⎨⎪⎩≥≥,即2m −≤或2m ≥,故2m −≤或2m ≥或0m =.22.【答案】(1)由分段函数的画法可得()f x 的图象.(2)单调区间:[]10−,,[]02,,[]24,,()f x 在[]10−,,[]24,上递增,在[]02,上递减. (3)函数()y a f x =−有两个不同的零点, 即为()f x a =有两个实根,由图象可得,当11a −<≤或23a ≤<时,()y f x =与y a =有两个交点,则a 的范围是(][)1123−,,.。

数学必修一第二章试卷(含答案).

数学必修一第二章试卷(含答案).

必修一第二章姓名:___________班级:___________考号:___________一、单选题1.已知13log 4a =,2log 3b =,0.32c -=,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>2.已知函数()112x f x b -⎛⎫=+ ⎪⎝⎭,且函数图像不经过第一象限,则b 的取值范围是( ) A .(),1-∞-B .(],1-∞-C .(],2-∞-D .(),2-∞-3.下列各式正确的是( )A 3=-B a =C .32=-D 2=40)a >可化为( )A .25aB .52aC .25a-D .-52a5.函数2x y -= 的单调递增区间是( ) A .(-∞,+∞) B .(-∞,0] C .[0,+∞)D .(0,+∞)6.已知函数()lg 030x x x f x x >⎧=⎨≤⎩,则1100f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .-2B .9C .19D .lg 27.已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()()31f x log x a =++,则()8f -等于( ) A .3a --B .3a +C .2-D .28.函数x y a =与log (0,1)a y x a a =->≠且在同一坐标系中的图像只可能是( )A .B .C .D .9.若函数()y f x =是函数3x y =的反函数,则12f ⎛⎫⎪⎝⎭的值为( ) A .2log 3-B .3log 2-C .19D10.已知(32)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 ( )A .()0,1B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭11.函数3()log (1)f x x =+的定义域为( ) A .[1,1]-B .[1,1)-C .(]1,1-D .(1,1)-12.当1a >时,x y a -=的图象与log ay x =的图象是( )A .B .C .D .二、填空题13.函数231(0x y a a -=⋅+>且1)a ≠的图象必经过点______. 14.已知log 2,log 3a a m n ==,则2m n a -=__________.15.函数y =log a (x −2)+3(a >0且a ≠1)恒过定点为 _________16.函数()212log 32y x x =-+的单调递增区间为__________. 三、解答题 17.(1(2)已知13x x -+=,求22x x -+的值.18.计算:(1)2lg 2lg3111lg 0.36lg823+++;(2)19.(1)已知53a =,54b =,用a ,b 表示25log 36. (2)求值)7112log 422116log 744π⎛⎫-++ ⎪⎝⎭.20.(121032128log 16()25e π-++-++; (2)若3log 14a >(0a >且1a ≠),求a 的取值范围.21.已知幂函数()()2157m f x m m x-=-+为偶函数.(1)求()f x 的解析式;(2)若()()3g x f x ax =--在[]1,3上不是单调函数,求实数a 的取值范围.22.已知幂函数()f x 的图象经过点13,3⎛⎫⎪⎝⎭.(1)求函数()f x 的解析式;(2)设函数()()()2g x x f x =-⋅,试判断函数()g x 在区间1,12⎡⎤⎢⎥⎣⎦上的单调性,并求函数()g x 在区间1,12⎡⎤⎢⎥⎣⎦上的值域.参考答案1.D 【解析】 【分析】先由对数函数,以及指数函数的性质,确定a ,b ,c 的范围,进而可得出结果. 【详解】 因为1133log 4log 10a =<=,22log 321log b =>=,0.300221c -<=<=, 所以b c a >>. 故选:D. 【点睛】本题主要考查比较指数幂,以及对数的大小,熟记对数函数以及指数函数的性质即可,属于基础题型. 2.C 【解析】 【分析】利用指数函数的图像即可求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修一基本初等函数(I)测试题姓名:_______________班级:_______________考号:_______________题号一、选择题二、填空题三、简答题四、综合题总分得分一、选择题1、已知函数,若函数有四个零点,则实数的取值范围为()A. B. C. D.2、若函数在(,)上既是奇函数又是增函数,则函数的图象是()3、D已知定义在R上的奇函数f(x)满足f(2+x)=f(-x),当0≤x≤1时,f(x)=x2,则f(2015)= ()A.-1 B.1 C.0 D.201524、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是()A.B.C.D.5、下图可能是下列哪个函数的图象( )评卷人得分. .. .6、已知,,,则的大小关系是()A .B .C .D .7、设,,,则的大小关系是A. B. C. D.8、下列函数中值域为(0,)的是()A. B. C. D.9、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是()A .B .C .D .10、已知函数,若,则的取值范围是()A. B. C. D.11、已知函数的最小值为()A.6 B.8 C.9D.1212、已知f(x)是定义在R上的奇函数,当x<0时,f(x)=那么的值是( )A. B.- C. D.-13、下列函数中,反函数是其自身的函数为A. B.C. D.14、对于函数,令集合,则集合M为A.空集 B.实数集 C.单元素集 D.二元素集15、函数y=定义域是A .B .C .D .二、填空题评卷人得分16、函数为奇函数,则实数 .17、设函数,给出下列四个命题:①函数为偶函数;②若其中,则;③函数在上为单调增函数;④若,则。

则正确命题的序号是..18、若,则定义域为 .19、若方程有两个不相等的实数根,则的取值范围是20、定义函数,若存在常数,对于任意,存在唯一的,使得,则称函数在上的“均值”为,已知,则函数在上的“均值”为.21、在R+上定义一种运算“*”:对于、R+,有*=,则方程*=的解是= 。

22、.对于任意实数,符号[]表示的整数部分,即[]是不超过的最大整数,例如[2]=2;[]=2;[]=, 这个函数[]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用,那么的值为三、简答题评卷人得分23、函数(为常数)的图象过点.(1)求的值;(2)函数在区间上有意义,求实数的取值范围;(3)讨论关于的方程(为常数)的正根的个数.24、已知函数.(I)求函数在上的最大值、最小值;(II)求证:在区间上,函数的图象在函数图象的下方。

25、已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.26、已知函数.(1)讨论函数的单调性;(2)对于任意正实数,不等式恒成立,求实数的取值范围;(3)是否存在最小的正常数,使得:当时,对于任意正实数,不等式恒成立?给出你的结论,并说明结论的合理性.27、已知函数(1)证明:在上为增函数;(2)证明:方程=0没有负数根。

28、已知函数(Ⅰ)讨论函数的单调性;(Ⅱ)若函数的图像在点处的切线的倾斜角为45°,那么实数m 在什么范围取值时,函数在区间内总存在极值?(Ⅲ)求证:.四、综合题评卷人得分(每空?分,共?分)29、已知函数f(x)=,x∈[-1,1],函数的最小值为h(a).(1)求h(a)的解析式;(2)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,请说明理由.30、利用自然对数的底数(…)构建三个基本初等函数. 探究发现,它们具有以下结论:三个函数的图像形成的图形(如图)具有“对称美”;图形中阴影区的面积为1等.是函数图像的交点.(Ⅰ)根据图形回答下列问题:①写出图形的一条对称轴方程;②说出阴影区的面积;③写出的坐标.(Ⅱ)设,证明:对任意的正实数,都有.31、定义在R上的函数满足,当时,且(1)求的值.(2)比较与的大小参考答案一、选择题1、C2、C3、 A4、B5、C6、D7、D8、D【解析】解:因为函数的值域,一般要根据函数的定义域和单调性得到,因此可以满足题意的为选D.选项A不能取到1,选项B能取到0,选项C中,大于等于1,。

9、B10、D11、B12、D13、D14、D15、C二、填空题16、-1 因为函数为奇函数,所以,即17、①②③④18、19、20、100721、22、857三、简答题23、(1);(2);(3)3个.【解析】试题分析:(1)依题意直接代入得;(2)将代入得,要使其在区间上有意义,只需满足对恒成立,得,令,先确定在上的单调性(可利用求导,也可利用定义),再求在上的最小值,即可得到实数的取值范围;(3)求方程(为常数)的正根的个数,可以转化为求函数与图像交点个数,其中的图像和的大小有关,所以要分,,三种情况讨论,详见解析.试题解析:(1)依题意有. 3分(2)由(1)得,则在区间上有意义,即对恒成立,得,令,先证其单调递增:法1∵在上恒成立,故在递增,法2:任取,则因为,则,故在递增,则,得. 8分(3)结合图象有:①当时,正根的个数为0;如图一②当时,正根的个数为1;如图二③当时,正根的个数为2;如图三 13分考点:(1)待定系数法;(2)导数的应用及恒成立问题;(3)函数图像.24、解答(I)∵f (x)=∴当x时,f (x)>0,∴在上是增函数,故,. ------7分(II)设,则,∵时,∴,故在上是减函数.又,故在上,,即,∴函数的图象在函数的图象的下方. ---------14分25、解:解:⑴当时,任意,则∵,,∴,函数在上是增函数。

当时,同理函数在上是减函数。

⑵当时,,则;当时,,则。

26、解:⑴令,得.当时,;当时,.所以函数在上单调递减,在上单调递增. (3分)⑵由于,所以.构造函数,则令,得.当时,;当时,.所以函数在点处取得最小值,即.因此所求的的取值范围是. (7分)⑶结论:这样的最小正常数存在. 解释如下:.构造函数,则问题就是要求恒成立. (9分)对于求导得.令,则,显然是减函数.又,所以函数在上是增函数,在上是减函数,而,,.所以函数在区间和上各有一个零点,令为和,并且有: 在区间和上,即;在区间上,即. 从而可知函数在区间和上单调递减,在区间上单调递增. ,当时,;当时,. 还有是函数的极大值,也是最大值.题目要找的,理由是:当时,对于任意非零正数,,而在上单调递减,所以一定恒成立,即题目所要求的不等式恒成立,说明;当时,取,显然且,题目所要求的不等式不恒成立,说明不能比小.综合可知,题目所要寻求的最小正常数就是,即存在最小正常数,当时,对于任意正实数,不等式恒成立. (12分)( 注意:对于和的存在性也可以如下处理:令,即. 作出基本函数和的图像,借助于它们的图像有两个交点很容易知道方程有两个正实数根和,且,(实际上),可知函数在区间和上单调递减,在区间上单调递增.,当时,;当时,. 还有是函数的极大值,也是最大值. )27、证明:(1)设,,,在上为增函数。

(2)设,则,由=0,必须,则,与矛盾。

所以方程=0没有负数根。

-(解法二:设,则,,则,故方程=0没有负数根。

)28、(Ⅰ)2分当时,的单调增区间为,减区间为; 3分当时,的单调增区间为,减区间为. 4分(Ⅱ)函数的图像在点处的切线的倾斜角为,于是,. 6分7分要使函数在区间内总存在极值.只需,即得,当时,函数在区间内总存在极值 9分(Ⅲ)令,此时, 10分由(Ⅰ)知在上单调递增,当时,,即对一切都成立. 12分于是 13分.四、综合题29、解:(1)由f(x)=x,x∈[-1,1],知f(x)∈,令t=f(x)∈记g(x)=y=t2-2at+3,则g(x)的对称轴为t=a,故有:①当a≤时,g(x)的最小值h(a)=-,②当a≥3时,g(x)的最小值h(a)=12-6a,③当<a<3时,g(x)的最小值h(a)=3-a2综上所述,h(a)=(2)当a≥3时,h(a)=-6a+12,故m>n>3时,h(a)在[n,m]上为减函数,所以h(a)在[n,m]上的值域为[h(m),h(n)].由题意,则有,两式相减得6n-6m=n2-m2,又m≠n,所以m+n=6,这与m>n>3矛盾,故不存在满足题中条件的m,n的值.30、解:(1)∵()的图像是反比例函数()的图像位于第一象限内的一支,∴()的图像关于直线对称.又,互为反函数,它们的图像关于直线互相对称,从而可知:①三个函数的图像形成的图形的一条对称轴方程为.②阴影区、关于直线对称,故阴影区的面积为.③.(2),,.(*)∵,∴,即.从而可知(*),即对任意的正实数都成立.31、解:(1)(2)。

相关文档
最新文档