传感器重点总结
传感器知识点总结

传感器知识点总结一、传感器的基本概念传感器是将感知到的信息转化为电信号或其他可识别形式的装置。
传感器可以感知物理量、化学量、生物量等,并将其转换为电信号输出。
传感器是现代科技发展中不可或缺的重要组成部分,广泛应用于工业自动化、环境监测、医疗诊断和智能家居等领域。
传感器的种类繁多,包括压力传感器、温度传感器、光学传感器、湿度传感器等。
二、传感器的分类根据传感原理的不同,传感器可以分为多种类型。
常见的传感器分类包括:1. 按照感知物理量不同分类- 压力传感器:用于测量压力的传感器,常用于工业控制和汽车行业。
- 温度传感器:用于测量温度的传感器,广泛应用于空调、冰箱、热水器等设备中。
- 湿度传感器:用于测量湿度的传感器,常用于气象观测和温室控制等场合。
- 光学传感器:用于测量光的强度和波长的传感器,广泛应用于光电设备和光学仪器中。
- 力传感器:用于测量物体受力情况的传感器,常用于机械测试和体重秤等设备中。
2. 按照传感原理不同分类- 电阻式传感器:利用电阻值的变化来感知物理量的传感器,包括压敏电阻、热敏电阻等。
- 电容式传感器:利用电容值的变化来感知物理量的传感器,包括湿度传感器和接近开关等。
- 光电式传感器:利用光电效应来感知物理量的传感器,包括光敏电阻、光电开关等。
3. 按照工作原理不同分类- 主动式传感器:需要外部能量源来激励的传感器,如光电传感器、超声波传感器等。
- 被动式传感器:不需要外部能量源来激励的传感器,如压力传感器、温度传感器等。
4. 按照测量方式不同分类- 直接测量传感器:直接测量感知物理量的传感器,如温度计、湿度计等。
- 间接测量传感器:通过其他物理量的变化间接测量感知物理量的传感器,如电磁流量计、毫米波雷达等。
三、传感器的工作原理传感器的工作原理多种多样,其中常见的包括电阻变化原理、电容变化原理、光电效应原理、霍尔效应原理等。
不同类型的传感器采用不同的工作原理来感知物理量,并将其转化为电信号输出。
传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器实验总结

传感器实验总结一、引言随着科技的不断发展,传感器在现代生活中扮演着越来越重要的角色。
传感器具备检测和感知周围环境的能力,而且能够将这些信息转化为可读的信号。
本文对我所参与的传感器实验进行总结和分析,旨在探讨传感器在不同领域的应用以及其未来发展趋势。
二、传感器技术的背景与分类传感器技术在众多领域中得到了广泛的应用,如环境监测、智能家居、医疗设备等。
根据其工作原理和应用场景的不同,传感器可以被分为光学传感器、温度传感器、压力传感器、湿度传感器等多个类别。
三、光学传感器实验在光学传感器实验中,我们以光电二极管为示例,研究了其对光线强度的响应特性。
实验结果显示,光电二极管能够根据光线强度的变化产生响应电压。
这一技术在日常生活中被广泛应用于光照控制、光电传感器等领域。
四、温度传感器实验通过温度传感器实验,我们探讨了不同类型的温度传感器的工作原理和精度。
实验表明,热电阻和热敏电阻能够根据温度的变化输出相应的电阻值。
而微电机在将这一电阻值转化为数字信号时,还需考虑到温度与电阻之间的非线性关系。
五、压力传感器实验压力传感器的实验中,我们使用压阻式压力传感器作为样例,研究了其对压力的敏感性。
当压力发生变化时,传感器将输出与之对应的电阻值。
这种传感器可应用于工业自动化、液压控制等多个领域。
六、湿度传感器实验湿度传感器实验中,我们测试了电容式湿度传感器的响应特性。
实验结果表明,湿度传感器能够根据周围环境湿度的变化导致电容值的变化。
这一技术常用于气象观测、温湿度调节等领域。
七、传感器应用展望传感器技术在农业、工业、医疗等领域都有广泛的应用前景。
随着物联网技术的发展,传感器将在更多领域实现智能化的应用。
例如,在农业领域,通过传感器可以实现对农田土壤湿度、温度等参数的实时监测,从而实现农业的智能化管理和节约资源的目标。
八、结语传感器作为现代科技的重要组成部分,其在各个领域中的应用既方便了人们的生活,也提高了工作效率。
通过传感器实验,我们深入了解了传感器的工作原理和应用。
传感器原理及应用知识点总结

传感器原理及应用知识点总结传感器是一种能够感知和测量外部环境参数的器件,根据其工作原理和应用领域的不同,可以分为多种类型。
以下是传感器原理及应用的一些常见知识点总结:1. 传感器工作原理:- 电阻传感器:利用材料电阻随环境参数变化而变化的特性,如温度传感器、湿度传感器等。
- 压阻传感器:利用材料电阻随压力变化而变化的特性,如压力传感器。
- 电容传感器:利用材料电容随环境参数变化而变化的特性,如接近传感器、触摸传感器等。
- 磁性传感器:利用材料磁性随环境参数变化而变化的特性,如磁场传感器、位置传感器等。
- 光电传感器:利用材料对光的敏感性随环境参数变化而变化的特性,如光电开关、红外传感器等。
- 声波传感器:利用材料对声音的敏感性随环境参数变化而变化的特性,如声音传感器、超声波传感器等。
2. 传感器应用领域:- 工业自动化:用于监测和控制生产过程中的环境参数,如温度传感器、压力传感器、流量传感器等。
- 汽车电子:用于检测和控制汽车各个系统的参数,如发动机温度传感器、氧气浓度传感器、轮胎压力传感器等。
- 医疗器械:用于监测和测量患者的生理参数,如心率传感器、血氧传感器、体温传感器等。
- 智能家居:用于实现家庭环境的智能化控制,如温湿度传感器、光照传感器、烟雾传感器等。
- 安防监控:用于监测和识别环境中的异常行为和事件,如人体红外感应器、摄像头、指纹传感器等。
3. 传感器的特性:- 灵敏度:指传感器对环境参数变化的反应程度,一般以输出信号的变化量表示。
- 精度:指传感器输出信号与实际环境参数之间的偏差,一般以误差大小表示。
- 响应时间:指传感器从检测到环境参数变化到输出信号发生变化的时间,一般以时间间隔表示。
- 工作范围:指传感器能够正常工作的环境参数范围,一般以最大和最小值表示。
总之,传感器是现代科技中非常重要的一部分,它们的工作原理和应用领域非常广泛,为各个领域的科研和生产提供了重要的技术支持。
对传感器的研究和应用有助于实现更多领域的自动化、智能化和安全化。
传感器知识点总结

小知识点总结:1.传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
其中,敏感元件是指传感器中直接感受被测量的部分,转换元件是指传感器能将敏感元件输出转换为适于传输和测量的电信号部分。
2.传感器的静态特性:线性度、迟滞、重复性、分辨率、稳定性、温度稳定性和多种抗干扰能力3.电阻式传感器的种类繁多,应用广泛,其基本原理是将被测物理量的变化转换成电阻值的变化,再经相应的测量电路而最后显示被测量值的变化。
4.电位器通常都是由骨架、电阻元件及活动电刷组成。
常用的线绕式电位器的电阻元件由金属电阻丝绕成。
5.电阻丝要求电阻系数高,电阻温度系数小,强度高和延展性好,对铜的热电动势要小,耐磨耐腐蚀,焊接性好。
6.电阻应变片的工作原理是基于电阻应变效应,即在导体产生机械变形时,它的电阻值相应发生变化。
7.金属电阻应变片分金属丝式和箔式。
箔式应变片横向效应小。
8.电阻应变片除直接用来测量机械仪器等应变外,还可以与某种形式的弹性敏感元件相配合,组成其他物理量的测试传感器。
9.电感式传感器是利用线圈自感或互感的变化来实现测量的一种装置。
可以用来测量位移、振动、压力、流量、重量、力矩、应变等多种物理量。
10.电感式传感器的核心部分是可变自感或可变互感。
11.变压器式传感器是将非电量转换为线圈间互感M的一种磁电机构,很像变压器的工作原理,因此常称变压器式传感器。
这种传感器多采用差分形式。
12.金属导体置于变化着的磁场中,导体内就会产生感应电流,称之为电涡流或涡流。
这种现象称为涡流效应。
涡流式传感器就是在这种涡流效应的基础上建立起来的。
13.电容式传感器是利用电容器原理,将非电量转换成电容量,进而实现非电量到电量的转化的一种传感器。
14.电容式传感器可以有三种基本类型,即变极距型(非线性)、变面积型(线性)和变介电常数型(线性)。
15.霍尔式传感器是利用霍尔元件基于霍尔效应原理而将被测量、如电流、磁场、位移、压力等转换成电动势输出的一种传感器。
传感器与检测技术重点知识点总结

传感器与检测技术重点知识点总结传感器是一种能够感知、收集并转换物理量或化学量等信息的装置。
它广泛应用于各个行业和领域,如工业生产、环境监测、医疗设备、汽车等。
以下是传感器与检测技术的一些重点知识点总结。
1.传感器的基本原理-传感器是通过感知或测量物理量或化学量等信息,并将其转化为可用的电信号输出。
-常见的物理量包括温度、压力、湿度、光照强度、流量等;化学量包括气体浓度、pH值等。
-传感器的工作原理包括电学、热学、光学、化学以及机械等不同的原理。
-传感器的输出信号可以是电压、电流、频率、电阻等形式。
2.传感器的分类-按照感知的物理量或化学量的不同,传感器可以分为温度传感器、压力传感器、光敏传感器、流量传感器等。
-按照测量原理的不同,传感器可以分为电阻传感器、电容传感器、电感传感器、化学传感器等。
-按照输出信号类型的不同,传感器可以分为模拟输出传感器和数字输出传感器。
3.传感器的特性与参数-灵敏度:传感器响应物理量变化的能力,它决定了传感器的测量范围和分辨率。
-精度:传感器测量值与真实值之间的偏差,包括系统误差、随机误差等。
-响应时间:传感器从感知到输出响应所需的时间。
-可靠性:传感器在一定环境条件下长时间稳定工作的能力。
-线性度:传感器输出信号与输入物理量之间的线性关系。
-温度影响:传感器在不同温度下性能的稳定性。
-零点漂移:在长时间使用过程中,传感器输出信号发生的零点偏移。
-跨度漂移:在长时间使用过程中,传感器输出信号的量程偏移。
-电磁兼容性:传感器在干扰条件下的工作能力。
4.传感器的应用领域-工业生产:用于监测和控制工艺过程中的温度、压力、流量等参数,提高生产效率和质量。
-环境监测:用于监测大气污染、水质污染、噪声等环境参数,保护生态平衡和人类健康。
-汽车行业:用于汽车发动机的温度、压力、氧气浓度等参数的监测和控制,提高汽车性能和安全性。
-医疗设备:用于监测病人的体温、心率、血压等生理参数,辅助医疗诊断和治疗。
传感器高二知识点总结

传感器高二知识点总结传感器是一种能够感知和测量环境中物理量和化学量的装置。
它们广泛应用于各个领域,如工业、医疗、农业等。
在高二的物理学习中,我们学习了各种传感器的原理和应用。
本文将对传感器的相关知识点进行总结。
一、传感器的基本原理传感器是通过将物理量或化学量转换为电信号来实现测量的。
它们通常包括感知元件和转换元件两部分。
感知元件用于感知环境中的物理量或化学量,并将其转换为与之对应的非电信号,例如压力传感器的感知元件可以是薄膜或压力敏感电阻。
转换元件将非电信号转换为电信号,常见的转换方式包括电阻、电容、感应等。
通过测量电信号的特性,我们可以获取环境中的物理量或化学量。
二、常见传感器的类型和应用1. 压力传感器:用于测量物体所受的压力。
常见的应用包括工业自动化中的压力检测、汽车中的轮胎压力监测等。
2. 温度传感器:用于测量环境的温度。
广泛应用于空调、冰箱、温度控制系统等。
3. 光电传感器:用于测量光的强度或光的特性。
在自动化生产中,光电传感器被广泛应用于物体检测、物体计数等。
4. 加速度传感器:用于测量物体的加速度。
在手机、游戏手柄等设备中,加速度传感器被用于实现重力感应或者运动控制。
5. 湿度传感器:用于测量环境的湿度。
在气象监测、温湿度控制系统中得到广泛应用。
6. 气体传感器:用于测量空气中气体的浓度。
在空气质量检测、火灾报警等方面起着重要作用。
三、传感器的特点和选择1. 灵敏度:传感器的灵敏度指的是其对被测量物理量变化的响应程度。
灵敏度越高,传感器所能测量的范围也就越宽。
2. 精度:传感器的精度是指其测量结果与真实值之间的误差范围。
精度越高,传感器所提供的测量结果越准确。
3. 可靠性:传感器的可靠性是指其在长期使用中的稳定性和可靠性。
可靠性较高的传感器具有较长的使用寿命。
4. 成本:传感器的成本是选择传感器时需要考虑的重要因素之一。
不同类型的传感器成本差异较大,需要根据具体应用需求进行选择。
选择合适的传感器需要综合考虑以上因素,并根据具体应用场景需求进行权衡。
传感器应用归纳总结初中

传感器应用归纳总结初中传感器是一种能够感知和测量现实世界中各种物理量的装置,其应用十分广泛。
在初中的学习中,我们也接触了一些常见的传感器,并学习了它们的原理和应用。
本文将对初中阶段常见的传感器进行归纳总结。
一、光敏传感器光敏传感器是一种能够感知光强度的传感器,常见的有光敏电阻和光敏二极管。
光敏传感器可以应用于自动控制灯光的系统中,当周围光线强度发生变化时,传感器会检测到光线的变化并发出信号,从而控制灯光的开关和亮度。
二、温度传感器温度传感器是一种能够感知温度的传感器,常见的有热敏电阻和温度传感器模块。
温度传感器可以广泛应用于温度测量和控制系统中,如气象站、温室控制、空调等。
通过温度传感器,我们可以准确地测量环境的温度,并对温度进行相应的控制。
三、声音传感器声音传感器是一种能够感知声音信号的传感器,常见的有声音传感器模块和麦克风。
声音传感器可以应用于声音识别、噪声监测以及语音控制等领域。
通过声音传感器,我们可以将声音信号转化为电信号,并进行相应的处理和分析。
四、压力传感器压力传感器是一种能够感知压力变化的传感器,常见的有压敏电阻和压力传感器模块。
压力传感器可以应用于气体或液体的压力测量和控制系统中,如汽车胎压监测、液位监测等。
通过压力传感器,我们可以实时地监测物体的压力变化,并进行相应的反馈和控制。
五、触摸传感器触摸传感器是一种能够感知触摸信号的传感器,常见的有触摸开关和触摸传感器模块。
触摸传感器可以应用于触摸屏、智能家居以及电子设备中的触摸控制等领域。
通过触摸传感器,我们可以实现对物体的触摸操作,并转化为相应的电信号进行处理。
六、运动传感器运动传感器是一种能够感知物体运动的传感器,常见的有红外线传感器和加速度传感器。
运动传感器可以应用于安防监控、智能门禁等系统中,通过检测物体的运动,我们可以进行相应的预警和控制。
总结:传感器在我们的日常生活中扮演着十分重要的角色,它们能够感知并测量不同的物理量,并将其转化为电信号进行处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、名词解释1.偏差式测量用仪表指针的位移(即偏差)决定被测量的量值,这种测量方法称为偏差式测量。
2.零位式测量用指零仪表的零位反应测量系统的平衡状态,在测量系统平衡时,用已知的标准量决定被测量的量值,这种测量方法称为零位式测量。
3.微差式测量将被测量与已知的标准量相比较,取得差值后,再用偏差法测得此差值。
4.静态测量被测量在测量过程中是固定不变的,对这种被测量进行的测量称为静态测量。
静态测量不需要考虑时间因素对测量的影响。
5.动态测量被测量在测量过程中是随时间不断变化的,对这种被测量进行的测量称为动态测量。
6.测量误差是测得值减去被测量的真值。
7.随机误差在同一测量条件下,多次测量被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。
8.迟滞传感器在相同工作条件下,输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出曲线不重合的现象。
9.电阻应变效应即导体在外界作用下产生机械变形(拉伸或压缩)时,其电阻值相应发生变化。
10.正压电效应机械能转换为电能的现象11.逆压电效应当在电介质极化方向施加电场,这些电介质会产生几何变形,这种现象称为逆压电效应。
12.通常把沿电轴x方向的力作用下产生电荷的压电效应称为“纵向压电效应”。
把沿机械轴y方向的力作用下产生电荷的压电效应称为“横向压电效应”。
13.在光线的作用下能够使物体产生一定方向的电动势的现象称为光生伏特效应。
14.光电池是一种直接将光能转换为电能的光电器件。
15.绝对湿度是指在一定温度和压力条件下,每单位体积的混合气体中所含水蒸气的质量。
相对湿度是指气体的绝对湿度与同一温度下达到饱和状态的绝对湿度之比。
二、填空/选择1.测量误差的表示方法有绝对误差、实际相对误差、引用误差、基本误差、附加误差。
2.传感器的静态特性性能指标有灵敏度、迟滞、线性度、重复性和漂移等。
3.传感器的时域动态性能指标有时间常数、延迟时间、上升时间、峰值时间、超调量、衰减比。
4.半导体应变片是用半导体材料制成的,其工作原理基于半导体材料的压阻效应。
半导体材料的电阻率ρ随作用应力的变化而发生变化的现象称为压阻效应。
5.自感式电感传感器是利用线圈的变化来实现测量的,它由线圈、铁芯和衔铁三部分组成。
6. 变面积型电容式传感器(88页)7.石英晶体纵向轴z称为光轴,经过六面体棱线并垂直于光轴的x称为电轴,与x和z同时垂直的轴y称为机械轴。
8.气敏传感器是用来检测气体类别、浓度和成分的传感器。
9.半导体气敏传感器是利用气体在半导体表面的氧化和还原反应导致敏感元件阻值变化而制成的。
10.图9-3、9-4直热式和旁热式气敏器件的符号(153页)11.湿度是指大气中的水蒸气含量,通常采用绝对湿度和相对湿度两种表示方法。
12.频率在16~2×Hz之间,能为人耳所闻的机械波,称为声波;低于16Hz的机械波,称为次声波;高于2×Hz的机械波,称为超声波。
三、简答分析计算1.迟滞的定义、原因、公式、曲线(30页)2.习题9-7,ppt. 结构、Rp作用、测试过程、测量丝加热丝、旁热式优点等。
(163页)3.(171页)图10-5、10-6工作原理、公式计算4.测温电路:组成部分、各部分原理或用途、(ppt )5.铜热电阻传感器(ppt34页) 1.迟滞传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞(如图2-5所示)。
也就是说,对于同一大小的输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。
传感器在全量程范围内最大的迟滞差值ΔH max 与满量程输出值Y FS 之比称为迟滞误差,用γH 表示,即产生这种现象的主要原因是由于传感器敏感元件材料的物理性质和机械另部件的缺陷所造成的,例如弹性敏感元件弹性滞后、运动部件摩擦、传动机构的间隙、紧固件松动等。
2.实用酒精测试仪【习题9-7】 图9-23为酒精测试电路,A 是显示驱动器。
问: (1)TGS —812是什么传感器? (2)2、5脚是传感器哪个部分?有什么作用? (3)分析电路工作原理,调节RP 有什么意义?【答】()42%100max-⨯∆=FSH Y H γ(1)TGS —812是气敏传感器。
(2)2、5脚是气敏传感器加热电极。
加热电极,可以加速还原反应,提高气敏传感器的灵敏度。
烧掉金属网上的灰尘和油渍,提高响应速度。
(3)电路工作原理①当气体传感器探测不到酒精时,加在A 的第5脚电平为低电平;当气体传感器探测到酒精时,其内阻变低,从而使A 的第5脚电平变高。
A 为显示推动器,它共有10个输出端,每个输出端可以驱动一个发光二极管,显示推动器A 根据第5脚电压高低来确定依次点亮发光二极管的级数,酒精含量越高则点亮二极管的级数越大。
上面5个发光二极管为红色,表示超过安全水平。
下面5个发光二极管为绿色,代表安全水平,酒精含量不超过0.05%。
②调节RP 使测试仪适应在不同气体、不同浓度的条件下工作。
3.超声波流量传感器超声波流量传感器的测定方法是多样的, 如传播速度变化法、波速移动法、多卜勒效应法、流动听声法等。
但目前应用较广的主要是超声波传播时间差法。
超声波在流体中传播时,在静止流体和流动流体中的传播速度是不同的,利用这一特点可以求出流体的速度,再根据管道流体的截面积, 便可知道流体的流量。
如果在流体中设置两个超声波传感器,它们既可以发射超声波又可以接收超声波,一个装在上游,一个装在下游,其距离为L, 如图10-5所示。
如设顺流方向的传播时间为t 1,逆流方向的传播时间为t 2,流体静止时的超声波传播速度为c ,流体流动速度为v ,则一般来说,流体的流速远小于超声波在流体中的传播速度, 因此超声波传播时间差为由于c >> v , 从上式便可得到流体的流速, 即在实际应用中,超声波探头安装在管道的外部,从管道的外面透过管壁发射和接受超声波,而不会给管道的流体带来影响,如图10-6所示。
此时超声波的传输时间将由下式确定:()()1210131014L t c v Lt c v =-+=--()151022212--=-=∆v c Lv t t t ()1610tL2c v 2-∆=()()12θ1017θθ1018θDcos t c v sin Dcos t c v sin =-+=--4.测温电路电路由三部分组成,传感器测量部分、调理部分、显示部分。
各部分的功能作如下介绍。
⑴传感器测量电路:这是由测温三极管与几个电阻组成的电桥,m;n 两点为其输出端。
它是将0℃时的电压UBE=624.2mV 调至Umn= 0 mV的转换电路。
电路元件的选择:测温元件选择MTS102 或IN4148 均可。
R1 为限流电阻,取金属膜电阻;R1=110K;1/4W。
R2为平衡电阻,金属膜电阻;R2=100K;1/4W。
RW可调电位器,10K;1/4W。
R′w=5.72kΩ,即调零电位器的中间头对地电阻确定。
⑵电压跟随器A1A1是由运算放大器LM324组成的,其反相端与其输出端短接,同相端接至m点,即测温元件的对地电压,也是测温元件在不同温度时的输出电压。
此时我们是将其预置在0点上。
因为A1的输入阻抗ri=10—10 Ω,故不会影响测温元件的输出。
而它的输出阻抗r0很小,所以A1的带负载能力很强,实质上它就是一个同相电压跟随器。
⑶差动电压放大器A2它也是由LM324运放组成的放大调整级。
其反相端经20K电阻接至A1的输出端,同相端经20K电阻接至RW的中间调整端(实质上是接在0℃调好的一个固定电压Un 上)。
其输出端接到直流0—1V显示器的输入端。
()()()0013331f fn m nffm nR RU U U U UR RRUAU U R=-⋅-=--==--从(1)式可以看出,若Rf = 200K、R3 =20K时,Af = -10,由于Rf 是可调的,所以调节Rf 可以得到100℃时的输出电压值U0 =1V。
若将感温探头放入100℃的沸腾的水中,此时Um =400mv。
加在A2输入端的电压变化值为:()31ffm nRUAU U R==--Δ40062422422U..mV=-=-为了电路匹配,RP 也应调至89.2K 。
5.铜热电阻传感器电路由四部分组成,检测部分、设定部分、显示部分及控制部分。
值得注意的是检测与设定部分的电路结构是相同的。
A1 与 A3 是差动放大器, A2 是反相输入的比例放大器, A4 是单限比较器。
电路工作原理的分析:⑴ A1与RCu 热电阻组成温度检测部分RCu 接在A1的反馈支路中,由于RCu 随着被测对象的温度变化,其阻值也发生相应的变化,即改变了A1的输出电压U01。
即可。
封好应调到此时,的放大倍数应调至:时的值,那么模拟电压。
若用放大器的输入端的信号也是加在f f ff f R K K R A R R A A ℃mV V A U 2.892046.446.42.224100010010001322=⨯=⋅==--==∆()()度数值。
显示器将直接显示此温。
得此时温度数:,则有温度电压比例系对应电压少?时,问此时的温度为多例如:当℃℃mV mV T ℃mV ℃mVB mV U ℃mV U U A U mV U n m f m 39.55/10932.553/1010010001000100932.5532.62450046.450000==∴===-=-⨯=-⋅== 101111212121212P Cu f ff f R K R R K R R K R R K R k R K V U +='+=⎪⎪⎭⎫ ⎝⎛+-'+'+=,式中:当在0℃时,应使U01=0V ,则由上式可得 RCu = Rp1,观察显示器,若指示不为零,可以调整 RP1 使其对应为零值的位置。
即 0℃时,应使U01=0V ,这就是调零点。
固定封好RP1不动,为保持设定部分与检测部分对称,RP4也调到与RP1相 同的阻值上。
⑵ A2与显示器SB305组成温度显示电路A2组成的是反相输入比例放大器电路,其输出电压为:此时将测温探头放入150℃的介质中,持续 3—5 分钟,看显示器显示是否为满刻度,显示是否为150.0,若不是满刻度,则调整RP2使其显示150.0,即可封好RP2,这样就使0—150℃的温度测量调试完成了。
⑶ A3组成的是总体电路的设定部分A3是差动输入比例运算电路,完成不同温度的设定,以便于控制部分工作。
其电路组成与检测部分相似,不同的是反馈元件使用精密度电位器 RP3,用它来模拟不同温度时的 RCu 的阻值,以达到设定温度的目的。