线性代数方程组的解法

合集下载

线性方程组的几种求解方法

线性方程组的几种求解方法

甘肃政法学院本科学年论文(设计)题目浅议线性方程组的几种求解方法学号:姓名:指导教师:成绩:__________________完成时间: 2012 年 11 月目录第一章引言 (1)第二章线性方程组的几种解法 (1)2.1 斯消元法 (1)2.1.1 消元过程 (1)2.1.2 回代过程 (2)2.1.3 解的判断 (2)2.2 克莱姆法则 (3)2.3 LU分解法 (4)2.4 追赶法 (6)第三章结束语 (8)致谢 (8)参考文献 (9)摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.下面将综述几种不同类型的线性方程组的解法,如消元法、克莱姆法则、直接三角形法、、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,高斯消元法方法,具有表达式清晰,使用范围广的特点.另外,这些方法有利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合。

关键词:线性方程组;解法;应用Several methods of solving linear equation groupAbstract: The system of linear equations is one of linear algebra core contents, its solution research is in the algebra the classics also the important research topic. This article summarized several kind of different type system of linear equations solution, like the elimination, the Cramer principle, the generalized inverse matrix law, the direct triangle law, the square root method, pursue the law, and by concrete example introduction different solution application skill. In these solutions, the generalized inverse matrix method, has the expression to be clear, use scope broad characteristic. Moreover, these methods favor effectively solve the system of linear equations solution problem fast, provides a simple platform for the solution system of linear equations, promoted the theory and the actual union.Key word: Linear equations; Solution ; Example第一章 引言线性方程组理论是高等数学中十分重要的内容,而线性方程组的解法是利用线性方程组理论解决问题的关键.下面将介绍线性方程组的消元法、追赶法、直接三角形法等求解方法,为求解线性方程组提供一个平台。

线性方程组的几种求解方法

线性方程组的几种求解方法

线性方程组的几种解法线性方程组形式如下:常记为矩阵形式其中一、高斯消元法高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x向量。

现举例说明如下:(一)消元过程第一步:将(1)/3使x1的系数化为1 得再将(2)、(3)式中x1的系数都化为零,即由(2)-2×(1)(1)得由(3)-4×(1)(1)得)1(32)2(......3432=+xx)1(321)1(......23132=++xxx第二步:将(2)(1)除以2/3,使x 2系数化为1,得再将(3)(1)式中x 2系数化为零,即 由(3)(1)-(-14/3)*(2)(2),得第三步:将(3)(2)除以18/3,使x 3系数化为1,得经消元后,得到如下三角代数方程组:(二)回代过程由(3)(3)得 x 3=1, 将x 3代入(2)(2)得x 2=-2, 将x 2 、x 3代入(1)(1)得x 2=1 所以,本题解为[x]=[1,2,-1]T(三)、用矩阵演示进行消元过程第一步: 先将方程写成增广矩阵的形式第二步:然后对矩阵进行初等行变换初等行变换包含如下操作(1) 将某行同乘或同除一个非零实数(2) 将某行加入到另一行 (3) 将任意两行互换第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形)3(3)3(......1-=x )2(3)3( (63)18-=x )2(32)2(......02=+x x )1(32)3( (63)10314-=--x x示例:(四)高斯消元的公式综合以上讨论,不难看出,高斯消元法解方程组的公式为1.消元(1)令a ij(1) = a ij , (i,j=1,2,3,…,n)b i(1) =b i , (i=1,2,3,…,n)(2)对k=1到n-1,若a kk(k)≠0,进行l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n)a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n)b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n)2.回代若a nn(n) ≠0x n = b n(n) / a nn(n)x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n )(五)高斯消元法的条件消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。

计算方法(3)第三章 线性代数方程组的解法

计算方法(3)第三章 线性代数方程组的解法

“回代”解得

xn

bn ann


xk

1 akk
[bk

n
akj x j ]
j k 1

其中aii 0 (i 1,2,......, n)
(k n 1, n 2, ,1)
返回变量
函数名
function X=backsub(A,b) 参数表
%Input—A is an n×n upper- triangular nonsingullar matrix % ---b is an n×1 matrix
x1

xi

b1 / a11
i 1
(bi aik
k 1
xk ) / aii
(i

2,3,
, n)
如上解三角形方程组的方法称为回代法.
二. 高斯消元法(Gaussian Elimination)
高斯消元法的求解过程,可大致分为两个阶段:首先, 把原方程组化为上三角形方程组,称之为“消元”过 程;然后,用逆次序逐一求出上三角方程组(原方程组的 等价方程组)的解,称之为“回代”过程.
符号约定:
1. (λEi )(Ei ): 第i个方程乘以非零常数λ。 2. (Ei +λEj )(Ei ): 第j个方程乘以非零常数λ
加到第i个方程。
3.(Ei )(Ej ): 交换第i个方程与第j个方程。
a11 x1 a12 x2 ... a1n xn b1
a21
x1 4 x4 x2 4 1 2 1
故解为(x1,x2 ,x3 ,x4 )T (1,2,0,1)T
A=[1 1 0 1;0 -1 -1 -5;0 0 3 13;0 0 0 -13] b=[4;-7;13;-13] X=backsub(A,b)

07线性代数方程组的解法

07线性代数方程组的解法

总计∑ n (k2k) n(n21)
k1
3
除法
n1
k

n(n1)
k1
2
回 代 总 计 算 量 n(n1) 2
总 乘 除 法 共 n 3 3 n 2 1 3 n (n 3 0 ,为 9 8 9 0 )
21
三、Gauss消去法的矩阵表示
每一步消去过程相当于左乘初等变换矩阵Lk
a x a x a x a b 得

(1)


解 (1)


程 (1)A(3组 )x=b(1() 3)
(1)
11 1
12 2
13 3
1n
1

a x a x (2) (2)
22 2
23 3
a x(3) 33 3
a b (2) (2)
2n
2
a b (3) (3)


11 1
12 2
1n n
1

b x 22 2
b2nxn g 2

称 消 元 过 程 。 逐 次 计 算 b出 nn x xn n, x gn 1 n,, x 1 称 回 代 过 1程 0 。
一、Gauss 消去法计算过程
a a b b 统一记 → 号 (1) : , →(1)
(2) ,
2
(3)
(2)
2
1

0
1
L m 0 2
32
1

0 mn2 0


m a a
(2) (2)

i2
i2
22
i 3,4, ,n

线性代数方程组的解法

线性代数方程组的解法

说明:线性方程组的初等变换是可逆的。 即,方程组(1)经初等变换化为一个新方 程组,那么新方程组也可以经过初等变换还 原为原方程组(1)。因而,方程组(1)与 它经过若干此初等变换之后得到的新方程组 是同解的。
⎧ a11 x1 + a12 x 2 + L + a1n x n = b1 ⎪ a x + a x + L+ a x = b ⎪ 21 1 22 2 2n n 2 ⎨ ⎪ LLLLLLLLLLLL ⎪a m 1 x1 + a m 2 x 2 + L + a mn x n = bm ⎩
L a1n ⎞ ⎟ L a2 n ⎟ L L⎟ ⎟ L amn ⎟ ⎠
矩阵A的 (m , n)元
这m × n个数称为 A的元素 , 简称为元素 (元 ).
元素是实数的矩阵称为实矩阵, 元素是复数的矩阵称为复矩阵.
例如
⎛ 1 0 3 5⎞ ⎟ 是一个 2 × 4 实矩阵, ⎜ ⎝ − 9 6 4 3⎠ ⎛ 1⎞ ⎜ ⎟ ⎜ 2⎟ ⎜ 4⎟ ⎝ ⎠
问题:是否每个矩阵都可以经过初等行变换化 为梯矩阵呢? 定理1 任意m × n矩阵A总可以经初等行变换化为梯
矩阵及最简形。
证明 Step1 若A的元全为0, A已经是一个阶梯矩阵。
Step2 设非零矩阵A的第 j1 列是自左而右的第 一个非零列,设 a1 j ≠ 0 (否则,若 a ij1 非零,作 行变换 r1 ↔ ri ,总可使第j1列的第一个元非零), 矩阵A的各行分别作行变换:

同理可得
−2 −2 1 1 −2 1 0 1 − 3 = −10, −1
D1 = 1 0
1
1 1
− 3 = −5, D2 = 2 −1 −1 1 = −5, 0

线性代数方程组的解法

线性代数方程组的解法
上一页 下一页 3
(2) 迭代解法:所谓迭代方法,就是构造某种 极限过程去逐步逼近方程组的解.
经典迭代法有: Jacobi 迭代法、Gauss Seidel 迭代法、 逐次超松弛(SOR)迭代法等;
上一页 下一页 4
5.1.1 向量空间及相关概念和记号
1 向量的范数
设 是n维实向量空间Rn上的范数,最常用的向量
a21 x1 a22 x2 a23 x3 a24 x4 b2 ,
(1)
a31 x1 a32 x2 a33 x3 a34 x4 b3 ,
a41 x1 a42 x2 a43 x3 a44 x4 b4 .
上一页 下一页 26
若 a11 0 ,则以第 i(i 2, 3,4) 个方程减去
证明 我们只证按行严格对角占优的情形,这时有
n
aij | aii |, i 1, 2,L , n
j 1 ji
假设 Ax 0有非零解x (x1, x2,L , xn ),
则存在下标1 i n,使得 xi
max 1 jn
xj
0,
考虑 Ax 0的第i 行 ai1x1 ai2x2 L ain xn 0
j 1 ji
且至少有一 i 个使不等式严格成立,则称矩阵 A 为按行对角占优矩阵。若 i 1, 2,L , n 严格不等 式均成立,则称 A 为按行严格对角占优矩阵. 类似地,可以给出矩阵 A 为按列(严格)对角
占优矩阵的定义.
上一页 下一页 22
定理 5.8 若 A为严格对角占优矩阵,则 A非奇异.
此时 A ( AT A) 2
若 A Rnn 为对称阵, A ( A) 2 ( 因为 ( AT A) ( A2 ) )
上一页 下一页 15

线性方程组的解法与矩阵的特征值与特征向量

线性方程组的解法与矩阵的特征值与特征向量

线性方程组的解法与矩阵的特征值与特征向量线性方程组是数学中的重要概念,它描述了线性关系的一种形式。

解决线性方程组可以帮助我们理解和解决各种实际问题,并且在数学和工程等领域有着广泛的应用。

而矩阵的特征值与特征向量则是矩阵理论中的重要内容,它们与线性方程组之间有着密切的联系。

本文将介绍线性方程组的解法以及矩阵的特征值与特征向量的相关知识。

一、线性方程组的解法1.1. 高斯消元法高斯消元法是解决线性方程组的基本方法之一。

它通过消元操作将线性方程组化为最简形式,从而求出方程组的解。

具体步骤如下:步骤一:写出线性方程组的增广矩阵。

步骤二:利用初等行变换将增广矩阵化为阶梯形式。

步骤三:从最后一个非零行开始,利用回代法求解方程组的解。

1.2. 矩阵的逆另一种解决线性方程组的方法是使用矩阵的逆。

如果矩阵A可逆,那么我们可以通过左乘矩阵A的逆来求解线性方程组Ax=b,即x=A^(-1)b。

1.3. 克拉默法则克拉默法则是解决线性方程组的另一种方法。

它利用矩阵的行列式来求解方程组的解。

具体步骤如下:步骤一:计算系数矩阵A的行列式D。

步骤二:计算替换掉系数矩阵A的第i列为常数向量b后的行列式D_i。

步骤三:方程组的解为x_i=D_i/D。

二、矩阵的特征值与特征向量2.1. 特征值与特征向量的定义给定n阶矩阵A,如果存在非零向量x使得Ax=λx,其中λ为常数,那么向量x称为矩阵A的特征向量,常数λ称为矩阵A的特征值。

2.2. 特征值与特征向量的计算要计算矩阵A的特征值与特征向量,可以通过以下步骤进行:步骤一:求解矩阵A-λI的零空间,其中I为单位矩阵。

步骤二:将零空间中的向量标准化,得到单位特征向量。

步骤三:通过将特征向量代入矩阵A-λI的定义式,计算对应的特征值。

2.3. 特征值与特征向量的应用特征值与特征向量在矩阵理论中有着广泛的应用。

例如,它们可以用于矩阵的对角化,从而简化矩阵的计算;它们还可以用于解决微分方程和差分方程等应用问题。

线性代数方程组的直接解法赖志柱

线性代数方程组的直接解法赖志柱

第二章线性代数方程组的直接解法教学目标:1.了解线性代数方程组的结构、基本理论以及相关解法的发展历程;2.掌握高斯消去法的原理和计算步骤,理解顺序消去法能够实现的条件,并在此基础上理解矩阵的三角分解(即LU分解),能应用高斯消去法熟练计算简单的线性代数方程组;3.在理解高斯消去法的缺点的基础上,掌握有换行步骤的高斯消去法,从而理解和掌握选主元素的高斯消去法,尤其是列主元素消去法的理论和计算步骤,并能灵活的应用于实际中。

教学重点:1. 高斯消去法的原理和计算步骤;2. 顺序消去法能够实现的条件;3. 矩阵的三角分解(即LU分解);4. 列主元素消去法的理论和计算步骤。

教学难点:1. 高斯消去法的原理和计算步骤;2. 矩阵的三角分解(即LU分解);3. 列主元素消去法的理论和计算步骤。

教学方法:教具:引言在自然科学和工程技术中,许多问题的解决常常归结为线性方程组的求解,有的问题的数学模型中虽不直接表现为线性方程组,但它的数值解法中将问题“离散化”或“线性化”为线性方程组。

例如,电学中的网络问题、船体数学放样中建立三次样条函数问题、最小二乘法用于求解实验数据的曲线拟合问题、求解非线性方程组问题、用差分法或有限元法求解常微分方程边值问题及偏微分方程的定解问题,都要导致求解一个或若干个线性方程组的问题。

目前,计算机上解线性方程组的数值方法尽管很多,但归纳起来,大致可以分为两大类:一类是直接法(也称精确解法);另一类是迭代法。

例如线性代数中的Cramer法则就是一种直接法,但其对高阶方程组计算量太大,不是一种实用的算法。

实用的直接法中具有代表性的算法是高斯(Gauss)消元法,其它算法都是它的变形和应用。

在数值计算历史上,直接法和迭代法交替生辉。

一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。

一般说来,对同等规模的线性方程组,直接法对计算机的要求高于迭代法。

对于中、低阶(200n )以及高阶带形的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 3 2 n O( n ) 3
mult a(i , j ) a( j, j ); for k j 1 : n a(i , k ) a(i , k ) mult * a( j , k ); end b(i ) b(i ) mult * b( j ); end
end
LU分解
求A的LU分解(L是下三角矩阵,U是上三角矩阵)
1 1 1 1 3 4 3 4
LU分解
性质1 设向量
, xn ) 且 xk 0 T 则存在唯一的下三角阵 Lk I lk ek ,满足 x ( x1 , x2 ,
T
Lk x ( x1 ,
第三章 线性方程组的直接解法
/*Direct Method for Solving Linear Systems*/
求解 A x b, A R
Cramer法则:
nn
det( A) 0
Di xi D
i 1, 2,
,n
所需乘除法的运算量大约为(n+1)!+n
n=20时,每秒1亿次运算速度的计算机要算30多万年!
Gauss消去法的消元过程算法
for for
j 1: n 1
i j 1: n
2 3 2 n O( n ) 3
mult a(i , j ) a( j, j ); for k j 1 : n a(i , k ) a(i , k ) mult * a( j , k ); end b(i ) b(i ) mult * b( j ); end
方程组可化为下面两个易求解的三角方程组
Ly b Ux y
二、 高斯消去法
设给定矩阵
1 1 3 1 1 3 [ A b] 3 4 2 0 7 7
Gauss消去法的消元过程算法
for for
j 1: n 1
i j 1: n
设给定矩阵
1 0 0 L1 2 1 0 3 0 1
则有
7 1 4 L1 A 0 3 6 0 6 11
再取Gauss变换矩阵
1 0 0 L2 0 1 0 0 2 1
,a
( k 1) 的上三角矩阵 k 1,k 1
矩阵 A
(k )
k) 的k阶主子式 ( 是上三角的 k

(k ) k
0a
0

(k ) k
[L ] [L
1 j
1 k 1 k
1 k 2 k
]
[ L ] k
1 1 k
k
其中 L
( j 1, 2,
1 j
, k 1) 均为单位下三角矩阵
end
经过n-1次消元,并将
lik 存放在矩阵零元素位置
a l 21 l 31 l n1
(1) 11
a a
(1) 12 ( 2) 22
l32
ln 2
ln,n1
a . . . (n) ann a
(1) 1n ( 2) 2n
A 的各阶顺序主子式都不等于零,即
a11 a12 i a21 a22 ai1 ai 2
a1i a2 i aii 0, i 1, 2, , k ( n)
证明: 归纳法证明(对k归纳)
设直到k-1成立,只要证明
1 , 2 ,
, k 1 非零时,
k非零的充要条件是 a
(k ) kk
1 l3 , 2 1 ln ,2 ln ,n 1
1 1 n 2 n1
1
可以分解为一系列初等下三角阵的乘积
L L L
1 1 1 2
L L
三、 三角分解的计算
Gauss消去法
1 4 7 A 2 5 8 3 6 10 取Gauss变换矩阵
Li L j ( j i)
1
1
性质4 若记 L
1 k
1

lk 1,k 1 ln ,k
1
,则有
1
L L
1 1 1 2
1 l21 1 1 Ln1 L l31 l32 1
ln1 ln 2
ln,n1 1
1 l 2 ,1 即单位下三角阵 L l3,1 ln ,1
uij x j , i n, n 1, j i 1
n
,1;
两种算法的工作量(加减乘除运算次数之和)均为 n
2ห้องสมุดไป่ตู้
三角分解法的基本思想:
设已知方程组系数矩阵的三角分解为
其中,
A LU
y Ux
L 为下三角矩阵, U 为上三角矩阵.

Ax b LUx b
(1) 11

L1 I l e
其中 l i1
T 1 1
l1 (0, l21 ,
a
(1) 11
, ln1 )
,n
T

1 1
a
(1) i1
i 2, 3,
1 1 T 1 1

A
( 2)
( 2)
L A
(1)
L I le
0 a I n1 c1
(1 ) 11
直接法 在没有舍入误差的情况下,经过有限次 运算可以得到方程组的精确解的方法。
§3.1 三角形方程组和三角分解
一、 三角形方程组的解法
考虑下三角形方程组
Ly b
y1 b1 y b 2 2 y ,b L lnn1 lnn ln1 ln 2 y b n n yi 的计算公式为: i 1 1 yi bi lij y j , i 1, 2, , n; lii j 1
写成分量形式:
xi xk li ,k 0 i k 1,
,n
唯一确定
li ,k
性质2
xi xk
1
i k 1,
,n
L
1 k
lk 1,k 1 ln ,k
1
I l e
T k k
1
性质3
1 1 li 1,i 1
l j 2,i ln ,i l j 1, j 1 ln , j

, xk , 0,
, 0)
T
, 0) .
Lk I l e
T k k
T
证明:寻找满足条件的初等下三角阵
y ( x1 ,
, xk , 0,
lk (0,
, 0, lk 1,k ,
T k k
, ln , k )
T k k
T
Lk x ( I l e ) x x l e x x lk xk y
A
1 c1 (1) a11
r A1
T 1
( 2) ( 2) T A (aij ) c1r1 A1 (1) a11 (1) (1) ai1 a1 j ( 2) (1) aij aij i , j 2, 3, , n (1) a11
l11 l21 l22 l31 l32 l33
考虑上三角形方程组
Ux y
x1 y1 x y 2 2 x ,y xn yn
U
u11 u12 ... u1n u22 ... u2 n unn
xi 的计算公式为: 1 x i yi uii
L L
L L A U
(1)
1 1 2 1
上三角矩阵
A L1L2
1 l 1 21 L l31 l32 1 ln1 ln 2 ln3
Ln1U LU
u1n u2 n u3n unn
u11 u12 u13 u u 22 23 U u33 1
(1) (1) ij
A aij R

n n
A (a ) (aij ) A
(1)
a c1
(1) 11
(1) 11
r A1
T 1
Step 1:如果 a
(1) 11
0
r
T 1
A
(1)
a c1
r A1
T 1
高斯变换
a 0
1 1 1 2
1 4 7 L2 L1 A 0 3 6 U 0 0 1
A L L U LU
其中
1 0 0 1 1 L L1 L2 2 1 0 3 2 1
Gauss消去法的矩阵表示
设给定 n 阶矩阵 记 令A
6 3 y 23 5 191 74
1 1 x 1 1
(Gauss消去法的实现条件) Th3.1.1 (i ) aii (i 1, 2, , k(k n)) 全不为零的充要条件是

det( L ) 1
(k ) kk
k 0 a
0
结论得证
因此,若矩阵的各阶顺序主子式均不为零, 可以采用Gauss消元法进行三角分解。
(矩阵三角分解的一个充分条件) Th3.1.2 若 A R
n n
的顺序主子式 Ak R
kk
(k 1, 2, , n 1)
L R
n n
(1) 11
a 0
r
T 1
类似地,对A
相关文档
最新文档