第八章扭转
合集下载
工程力学第四版电子课件gclx8最新

1 A B
2 C
3 n D
T2 = −m2 − m3 = −(4.78 + 4.78) = −9.56kN⋅ m
10
③绘制扭矩图 Draw the torque diagram
T max = 9.56 kN ⋅ m
BC段为危险截面。 段为危险截面。 段为危险截面 Section BC is dangerous section .
目 的
①确定扭矩变化规律 To determine the rule of change of the torque |T| max 截面 的确定
purposes
To determine the location of dangerous section
8
[例1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW,从动轮输出 P2=150kW, 例 已知 一传动轴, 已知: , , , P3=150kW,P4=200kW,试绘制扭矩图。 , ,试绘制扭矩图。 Example 1 The transmission shaft is shown as Fig.the input power of driver wheel C is 500KW The export powers of driven wheel A,Band D are 150KW,150KW,200KW.To draw the torque diagram of the transmission shaft .
3
8–1 扭转的概念及外力偶矩的计算
Concepts of torsion and how to calculate the external couple moment 轴:工程中以扭转为主要变形的构件。如:机器中的传动轴、钻杆等。 工程中以扭转为主要变形的构件。 机器中的传动轴、钻杆等。 Shaft :the members create torsion deformation due to subjected to the external moments.such as the transmission shafts and drill pipes of the machines . 扭转的外力特点:外力的合力为一力偶, 扭转的外力特点:外力的合力为一力偶,且力偶的作用面与直杆的轴线 垂直。 垂直。 external forces:Two couples that have the same magnitude moment, the opposite direction and the plane of couples perpendicular to the axial line 变形特点: 变形特点:各横截面绕轴线发生相对转动 The deformation is that the external loads tend to twist one segment of the body with respect to the other
第八章 约束扭转

8-6 扭转角微分方程式及其解和初参数方程式 以上已得出了开口薄壁杆件受约束扭转时应力 的计算公式 : B B E1I 8 15 8 16 I
M S 8 20 I
M E1I 8 18
Mtl Mt , GIt GI t 82
便可得到它们的初参数方程式
0 C2 C4 0 C1 K C3 B0 GI t C2 L GI C t 3 0
便可得到它们的初参数方程式
§8-2
约束扭转正应力分析
符拉索夫对于开口薄壁杆件约束扭转时变 形作了如下两个假设。 (1)杆的中曲面上无剪应变 ,
(2)周边上的投影不变形。横截面的周边 无弯曲变形及沿周边切线方向无伸长缩短 s 0 ) 变形,亦即无切向线应变( 在上述两个假设的基 础上,便可研究任意 横截面上任意一点的 纵向位移,找出代表 横截面翘曲情况的纵 向位移函数
SB A
x
SB x Ix
3b 2 1h 6b 2
2
b x 2
8-4约束扭转正应力所对应的内力—双力矩 S 0 从工字形截面杆件的约束扭转变形来看, 正是翼缘平面内组成的两个相距h的等值 反向的内力矩 B,称为双力矩
h B M f h 2 x dA 2 dA dA Af Af A 2
开口薄壁杆件受自由扭转时,横截面上的扭 转剪应力沿壁厚按直线规律变化。截面中线 无剪应力(从而在包含截面中线的纵向曲面 无剪切变形,),在截面边缘处剪应力最大, 其值为 M t t max (8-1) It 开口薄壁杆自由扭转时两端截面之间的相对 扭转角 及单位长度扭转角 ,分别为
第八章 扭转

二、选择题
1、阶梯圆轴的最大切应力发生在( A.扭矩最大截面 C.单位长度扭转角最大的截面 2、扭转切应力公式 )。 B.直径最小的截面 D.不能确定 )杆件。
MT 适用于( Ip
A.任意截面 B.任意实心截面 C.任意材料的圆截面 D.线弹性材料的圆截面 3、单位长度扭转 与( )无关。 A.杆的长度 B.扭矩 C.材料性质 D.截面几何性质 解析:长度为 l 的等截面圆杆承受矩Mn 时,圆杆两端的相对扭转角为 式中GIP称为圆杆的抗扭刚度。单位长度扭转角为
故,强度满足。 (2)刚度校核。 180 4774 .5 180 T ' max GI P 80109 0.14 10.54 32
0.37
故,刚度满足。
m
' 0.5
m
6、如图所示的空心轴,外径 D=69mm,内径 d=50mm,受均布力偶 m=0.2KN.m/m 的作用。 轴的许用应力[ ]=40MPa,[ ]=1.3o/m,G=80GPa。轴的长度 l=4m。试校核轴的强度和刚 度。
Mn 2 At
式中 t 为横截面的厚度(等厚度截面 t 为常数),A为截面中线包围的面积。 截面的最大切应力发生在厚度最小处,即
max
Mn 2 At min
等厚度闭口薄壁杆件的扭转角为
M n sl (式中 s 为截面中线的长度) 4GA 2 t
9.当闭口薄壁杆件扭转时,横截面上最大切应力出现在最小厚度处。 (√) 10.受扭杆件所受的外力偶矩,经常要由杆件所传递的功率及其转速换算而得。(√) 解析:杆件所受外力偶(称为转矩)的大小一般不是直接给出时,应经过适当的换算。若已 知轴传递的功率P(kW)和转速 n(r/min),则轴所受的外力偶矩T=9549P/n(Nm)。
工程力学--第八章_圆轴的扭转

利用t t ',经整理得
s a t sin 2a , ta t cos2a
s a t sin 2a , ta t cos2a
由此可知: (1) 单元体的四个侧面(a = 0°和 a = 90°)上切应力的 绝对值最大; (2) a =-45°和a =+45°截面上切应力为零,而正应 力的绝对值最大;
1)已知二轴长度及所受外力矩完全相同。若二轴截
面尺寸不同,其扭矩图相同否?
若二轴材料不同、截面尺寸相同, 各段应力是否相同? 相同
相同 不同 变形是否相同?
2)下列圆轴扭转的剪应力分布图是否正确?
MT
o
o
MT
o
MT
o
MT
8.3.3
扭转圆轴任一点的应力状态
研究两横截面相距dx的任一A处单位厚度微元,左右二边为
t
t′
s45
t dy
t′
纯剪应力
状态等价于转过 等值拉压应力状 态。
A
c dx
A
t
c
45
t45 45后微元的二向
t
s
dx
45斜截面上的应力: tdx+(t45dx/cos45)cos45+(s45dx/cos45)sin45=0 tdx-(t45dx/cos45)sin45+(s45dx/cos45)cos45=0 解得: s45=-t;t45=0。还有:s45=t; t45=0
第八章 圆轴的扭转
8.1 扭转的概念与实例 8.2 扭矩、扭矩图 8.3 圆轴扭转时的应力与变形 8.4 圆轴扭转的强度条件和刚度条件 8.5 静不定问题
8.1 扭转的概念与实例
传动轴
实际工程中,有很多产生扭转变形的构件。图示汽车操纵杆 ;机械中的传动轴等。
第八章圆轴扭转

§8 扭 转
如图所示汽车发动机将功率通过主轴AB传递给后桥,驱动车轮行使。
如果已知主传动轴所承受的外力偶矩、主传动轴的材料及尺寸情况 下,请分析(1)主传动轴承受的载荷;(2)主传动轴的强度是否 足够?
§8.1 圆轴扭转的概念 工程实例分析:工程上传递功率的轴大多数为圆轴。
改锥拧螺母-力偶实例
钻探机钻杆
大小不变,仅绕轴线发生相对转动(无轴向移动),这一 假设称为圆轴扭转的刚性平面假设。
圆轴变形试验
按照平面假设,可得如下两点推论: (1)横截面上无正应力; (2)横截面上有切应力; (3)切应力方向与半径垂直; (4)圆心处变形为零,圆轴表面变形最大。
二、扭转横截面切应力分布规律
(1)切应力的方向垂直于半径,指向与截面扭矩的转向 相同。
圆轴扭转的刚度计算
圆轴扭转变形的程度,以单位长度扭转角θ度量,其刚度条 件为:整个轴上的最大单位长度扭转角θmax不超过规定的单位长度 许用扭转角[θ] ,即
max
l
T GI p
[ ]
式中:θmax—轴上的最大单位长度扭转角;单位rad/m [θ] —单位长度许用扭转角;单位rad/m
工程上,单位长度许用扭转角常用单位为°/m ,考虑单位换
二、圆轴扭转时横截面上的内力—扭矩 (一)用截面法确定发生圆轴扭转变形截面的内力—扭矩,
用符号T 表示。
T=截面一侧(左或右)所有外力偶矩的代数和
(二)扭矩正负号的规定
按“右手螺旋法则”确定扭矩的正负:用四指表示扭矩的转向, 大拇指的指向与该截面的外法线方向相同时,该截面扭矩为正,反 之为负。
(三)扭矩图
三、举例应用
传动轴如图6-8a所示,主动轮A输入功率PA=120kW,从动轮B、C、D 输 出 功 率 分 别 为 PB=30kW , PC=40kW , PD=50kW , 轴 的 转 速
如图所示汽车发动机将功率通过主轴AB传递给后桥,驱动车轮行使。
如果已知主传动轴所承受的外力偶矩、主传动轴的材料及尺寸情况 下,请分析(1)主传动轴承受的载荷;(2)主传动轴的强度是否 足够?
§8.1 圆轴扭转的概念 工程实例分析:工程上传递功率的轴大多数为圆轴。
改锥拧螺母-力偶实例
钻探机钻杆
大小不变,仅绕轴线发生相对转动(无轴向移动),这一 假设称为圆轴扭转的刚性平面假设。
圆轴变形试验
按照平面假设,可得如下两点推论: (1)横截面上无正应力; (2)横截面上有切应力; (3)切应力方向与半径垂直; (4)圆心处变形为零,圆轴表面变形最大。
二、扭转横截面切应力分布规律
(1)切应力的方向垂直于半径,指向与截面扭矩的转向 相同。
圆轴扭转的刚度计算
圆轴扭转变形的程度,以单位长度扭转角θ度量,其刚度条 件为:整个轴上的最大单位长度扭转角θmax不超过规定的单位长度 许用扭转角[θ] ,即
max
l
T GI p
[ ]
式中:θmax—轴上的最大单位长度扭转角;单位rad/m [θ] —单位长度许用扭转角;单位rad/m
工程上,单位长度许用扭转角常用单位为°/m ,考虑单位换
二、圆轴扭转时横截面上的内力—扭矩 (一)用截面法确定发生圆轴扭转变形截面的内力—扭矩,
用符号T 表示。
T=截面一侧(左或右)所有外力偶矩的代数和
(二)扭矩正负号的规定
按“右手螺旋法则”确定扭矩的正负:用四指表示扭矩的转向, 大拇指的指向与该截面的外法线方向相同时,该截面扭矩为正,反 之为负。
(三)扭矩图
三、举例应用
传动轴如图6-8a所示,主动轮A输入功率PA=120kW,从动轮B、C、D 输 出 功 率 分 别 为 PB=30kW , PC=40kW , PD=50kW , 轴 的 转 速
工程力学第八章圆轴的扭转详解

轴AB间的相对扭转角为:AB=TL/GIP
单位长度的扭转角为:q =AB/L=T/GIP
扭转刚度条件则为: qmax[q ] ---许用扭转角 机械设计手册建议:[q ]=0.25~0.5/m; 精度高的轴;
[q ]=0.5~1.0/m; 一般传动轴。
整理课件
32
3.扭转圆轴的设计
强度条件: t max T /WT [t ]
Mo
Mo
假想切面
取左边部分
Mo
外力偶
T 内力偶
由平衡方程: T M o 整理课件
平衡
4
返回主目录
Mo
Mo
T
取左边部分
Mo 假想切面
外力偶
扭矩
由平衡方程:
平衡
Mo
TMo T
取右边部分 T
T 和T 是同一截面上的内力, 应当有相同的大小和正负。
整理课件
扭矩
外力偶
平衡
5
扭矩的符号规定:
Mo
T
正
Mo
T
1)已知二轴长度及所受外力矩完全相同。若二轴截 面尺寸不同,其扭矩图相同否? 相同 若二轴材料不同、截面尺寸相同, 各段应力是否相同?相同 变形是否相同? 不同
2)下列圆轴扭转的切应力分布图是否正确?
T
o
o
o
o
T
T
T
整理课件
24
8.3.3 扭转圆轴任一点的应力状态
研究两横截面相距dx的任一A处单位厚度微元,左 右两边为横截面,上下两边为过轴线的径向面。
3) 计算扭转角AC
AC
TAB l AB GIPAB
+ T BC lBC GIPBC
整理课件
第八章 扭转问题

第八章 直杆的扭转 Torsion of Bar
直杆的扭转
扭转问题中应力和位移 椭圆截面的扭转 扭转问题的薄膜比拟
矩形截面杆的扭转
薄壁杆的扭转
扭转问题的位移解法
扭转问题中应力和位移
问题: (1)等截面直杆,截面形状可以任意; (2)两端受有大小相等转向相反的扭矩 M ; (3)两端无约束,为自由扭转,不计体力 ; 求:杆件内的应力与位移?
l xz s m yz s 0
将 、 l、m 代入上述边界条件,有
dy dx ( )( ) 0 y ds x ds
dy dx 0 y ds x ds
dy dx 0 y ds x ds
d 0 ds
2 f1 0, 2 z 2 f2 0, 2 x
2 f2 0 2 z 2 f1 0, 2 y
f1 u0 y z z y K1 yz
f 2 v0 z x x z K 2 zx f f 又由: 2 1 0 得: x y z K 2 z z K1 z 0
zx 0 z zy 0 z xz yz 0 x y
基本方程的求解
2 yz 0
(a)
2 zx 0
(b)
—— 扭转问题的相容方程
—— 平衡方程
由式(a)的前二式,得
zx zx ( x, y) zy zy ( x, y ) —— 二元函数
分部积分,得:
yX xY dxdy y x dxdy y y x x dxdy
zx zy
y C D
同理,得:
B y dy dx A y
直杆的扭转
扭转问题中应力和位移 椭圆截面的扭转 扭转问题的薄膜比拟
矩形截面杆的扭转
薄壁杆的扭转
扭转问题的位移解法
扭转问题中应力和位移
问题: (1)等截面直杆,截面形状可以任意; (2)两端受有大小相等转向相反的扭矩 M ; (3)两端无约束,为自由扭转,不计体力 ; 求:杆件内的应力与位移?
l xz s m yz s 0
将 、 l、m 代入上述边界条件,有
dy dx ( )( ) 0 y ds x ds
dy dx 0 y ds x ds
dy dx 0 y ds x ds
d 0 ds
2 f1 0, 2 z 2 f2 0, 2 x
2 f2 0 2 z 2 f1 0, 2 y
f1 u0 y z z y K1 yz
f 2 v0 z x x z K 2 zx f f 又由: 2 1 0 得: x y z K 2 z z K1 z 0
zx 0 z zy 0 z xz yz 0 x y
基本方程的求解
2 yz 0
(a)
2 zx 0
(b)
—— 扭转问题的相容方程
—— 平衡方程
由式(a)的前二式,得
zx zx ( x, y) zy zy ( x, y ) —— 二元函数
分部积分,得:
yX xY dxdy y x dxdy y y x x dxdy
zx zy
y C D
同理,得:
B y dy dx A y
工程力学--第八章_圆轴的扭转

rdf / dx
df /dx ,称为单位扭转角。
对半径为r的其它各处,可作类 似的分析。
1. 变形几何条件
MT
A
r
B r
rr
C
df
C O D
D
dx
对半径为r的其它各处,作类 似的分析。 同样有:
CC= dx=rdf
即得变形几何条件为:
rdf / dx --(1)
剪应变的大小与半径r成
2
TBC 2
B mx C
2 TBC
2
T
A
用假想截面2将圆轴切开 ,取左段或右段为隔离 体,根据平衡条件求得 :
TBC=-mx
(3)作扭矩图
2mx +
B
–
Cx mx
[例8-2]图示为一装岩机的后车轴,已知其行走的功率 PK=10.5kW,额定转速n=680r/min,机体上的荷载通过轴承 传到车轴上,不计摩擦,画出车轴的扭矩图
4.78
6.37
15.9
4.78
简捷画法:
MT图 10kN m 10kN m
FN图(轴力)
2kN 8kN
5kN
o
x
A
C B 20kN m
5kN 2kN 8kN
5kN
向 按右手法确定
向
MT / kN m
20
5kN
3kN
10
N图
5kN
A
B
C
在左端取参考正向,按载荷大小画水平线;遇集 中载荷作用则内力相应增减;至右端回到零。
G
df
dx
A
r 2dA
MT
3. 力的平衡关系
令:
df /dx ,称为单位扭转角。
对半径为r的其它各处,可作类 似的分析。
1. 变形几何条件
MT
A
r
B r
rr
C
df
C O D
D
dx
对半径为r的其它各处,作类 似的分析。 同样有:
CC= dx=rdf
即得变形几何条件为:
rdf / dx --(1)
剪应变的大小与半径r成
2
TBC 2
B mx C
2 TBC
2
T
A
用假想截面2将圆轴切开 ,取左段或右段为隔离 体,根据平衡条件求得 :
TBC=-mx
(3)作扭矩图
2mx +
B
–
Cx mx
[例8-2]图示为一装岩机的后车轴,已知其行走的功率 PK=10.5kW,额定转速n=680r/min,机体上的荷载通过轴承 传到车轴上,不计摩擦,画出车轴的扭矩图
4.78
6.37
15.9
4.78
简捷画法:
MT图 10kN m 10kN m
FN图(轴力)
2kN 8kN
5kN
o
x
A
C B 20kN m
5kN 2kN 8kN
5kN
向 按右手法确定
向
MT / kN m
20
5kN
3kN
10
N图
5kN
A
B
C
在左端取参考正向,按载荷大小画水平线;遇集 中载荷作用则内力相应增减;至右端回到零。
G
df
dx
A
r 2dA
MT
3. 力的平衡关系
令:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X m xi mi / mi xi wi / wi
Ym Yi mi / mi yi wi / wi
式中mi;wi,—— i个面积单元的质量和重量; Xi;,yi;一第i个面积单元的重心坐标。
二、质量中心、刚度中心及扭转偏心据
3、刚度中心 把抗侧力单元 的抗侧移刚度 作为假想面积, 求得假想面积 的形心就是刚 度中心。
转角 结构抗扭刚度
2 2 D x D y yi i xk k
五、考虑扭转时结构的剪力
V yi yi
D
e y yk D yi xi2
D yi
Vy
yi
V xk ห้องสมุดไป่ตู้ xk
D
e x xi
D xk
Vx
xk
xk 1
Dxk
Dxk y k2
yi 1
二、质量中心、刚度中心及扭转偏心距
2、质量中心 等效地震荷载的作用点即惯性力的合力作用点,与质量分布有关, 称为质心。 可将建筑面积分为若干个单元,认为在每个单元中质量是均匀分布 的,如图所示。在参考坐标系XOY中确定质心坐标Xm,Ym,计 算时可用重量代替质量
二、质量中心、刚度中心及扭转偏心据
y0
yi
/ y xi
y
yi
V x / V
yi yi
i
V / y V y V / V
xk x k xk x xk
xk k
刚度中心,即它是在不考虑扭转情况下 各抗侧力单元剪力的合力中心, 其结构已经知道各抗侧力单元抵抗的层剪力值。
三、考虑扭转后的位移
与y轴平行的第I片结构沿y方向间位移 yi xi (a) 与x轴平行的第k片结构沿x方向间位移 (b) xk y k xi 、 yk——I片及k片结构行形心 xoy坐标系中的坐标 值。
四、结构转角和抗扭刚度
Vy ex
D yi xi2 Dxk yk2
D yii
D yi xi2
2 D xk y k
六、讨论
(1)在同一个结构中,各片抗倒力单元的扭转修正系数大小不一。即α 可能大于1,也可能小于1。当某片抗侧力结构的α>1时,表示它 的剪力在考虑扭转以后将增大;α<1时表示考虑扭转后该单元的 剪力将减小。一般情况下,离刚心愈远的抗侧力结构,剪力修正也 愈多。 (2)在扭转作用下,各片抗侧力结构的层间变形及侧移也不相同,距 刚心较远的结构边缘抗侧力单元的侧移及层间变形最大。在结构设 计时应注意扭转引起的附加变形不应太大。 2 2 (3)抗扭刚度由 Dyi xi 及 Dxk yk 之和组成,也就是说,结构中纵向 和横向抗侧力单元共同抵抗扭矩。距离刚心愈远的抗侧力单元对抗 扭刚度贡献愈大。 (4)上、下布置都相同的框架一剪力墙结构中,各层刚心并不在同一 根竖轴上,有时刚心位置相差较大。各层结构的偏心距和扭矩都会 改变,各层结构扭转修正系数也会改变。
框架、剪力墙及框架—剪力墙结构的扭转近似计算 一、问题的提出
二、质量中心、刚度中心及扭转偏心据
扭转计算方法
(1)将整个结构作为一个空间结构,用矩阵位 移法来分析内力和位移(考虑扭转的影响) (2)简化计算,考虑扭转因素后修正剪力的近 似计算
二、质量中心、刚度中心及扭转偏心距
1、扭转偏心距 水平荷载合力作用线与刚度中心的垂直距离称之为 扭转偏心距。 风荷载合力作用线——按照各个受风面的风荷载合 力确定 地震作用合力作用线——质量中心(应考虑偶然偏 心距5%L)
二、质量中心、刚度中心及扭转偏心据
框架结构
x0
D
yi xi
/
D
yi
y0
D
xk yik
/
D
xk
二、质量中心、刚度中心及扭转偏心据
剪力墙结构
x0
J
eqyi xi
/
J
/
eqyi
y0
J
eqxi xi
J
eqxi
二、质量中心、刚度中心及扭转偏心据
框-剪结构
x0
V V