相交线与平行线 导学案
第5章 相交线和平行线 精品导学案

13ab42第1课时 5.1.1相交线【学习目标】1.了解对顶角与邻补角的概念,能辨认对顶角与邻补角;掌握“对顶角相等”的性质; 2.探究对顶角、邻补角的位置关系及概念; 【活动方案】活动一 认识邻补角,对顶角阅读课本P2-3回答下列问题并在组内讨论交流 1.什么是邻补角?什么是对顶角?2.两条直线相交,共有几个小于平角的角?每个角的邻补角有几个?相邻两边位置关系如何?3.对顶角是否成对出现,如何寻找对顶角?4.完成下表,并在小组进行交流:两条直线相交 所形成的角分 类 位置关系 数量关系如果改变∠1的大小,会改变它与其他角的位置关系和数量关系吗?活动二 掌握“对顶角相等”的性质阅读课本P3例题,完成下面问题,并进行小组交流:1.如图,已知∠AOC , (1)在图中画出∠AOC 的补角∠AOB ,∠DOC ;(2)此时图中的角(不包括平角)两两相配共能组成_ __对对顶角,根据每对角存在的位置关系可将它们分成__ _类.(3)图中相等的角有________________ __ ____.2.若∠1与∠2是对顶角,则___ ____,依据是___ ____. 3.若∠1与∠2是对顶角,且∠1+∠2=130°,则∠2=_____ __.4.若∠1与∠2是对顶角,∠3与∠2互补,∠3=60°,那么∠1=_______.5.如图,已知直线l 1与l 2相交于点O ,且∠1=50°,求∠2,∠3,∠4的度数?OC A 12 34l 1课堂小结:通过这节课的学习你有什么收获?【检测反馈】1.如图,∠AOC 的对顶角是___ __;__ ___是∠DOE 的对顶角;如果∠BOE =30°, 则∠AOF =___ __,根据是______ ______.2.如图, ∠1+∠5=180°,则图中与∠1相等的角有__ __个,与∠1互补的角有__ __个. 3.如图,直线a 、b 、c 两两相交,∠1=3∠3,∠2=75°,则∠4=__________.4.如图,∠AOC 和∠COB 互为邻补角,OD.OE 分别是∠AOC 和∠COB 的平分线,则 ∠DOE=_________.5.如图直线AB.CD.EF 相交于O ,∠1=15°,∠BOD =90°,求∠2的度数。
相交线与平行线全章导学案

课题:5.1.1 相交线学习目标:1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3、通过辨别对顶角与邻补角,培养识图的能力。
学习重点:邻补角和对顶角的概念及对顶角相等的性质。
学习难点:在较复杂的图形中准确辨认对顶角和邻补角。
学具准备:剪刀、量角器学习过程:一、学前准备1、预习疑难:。
2、填空:①两个角的和是,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。
②同角或的补角。
二、探索与思考(一)邻补角、对顶角1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角逐渐变小,剪刀刃之间的角度也相应。
我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。
2、探索活动:①任意画两条相交直线,在形成的四个角(∠1,∠2,∠3,∠4)中,两两相配共能组成对角。
分别是。
②分别测量一下各个角的度数,是否发现规律?你能否把他们分类?完成教材中2页表格。
③再画两条相交直线比较。
图13、归纳:邻补角、对顶角定义邻补角。
两条直线相交所构成的四个角中,有公共顶点的两个角是对顶角。
4、总结:①两条直线相交所构成的四个角中,邻补角有对。
对顶角有对。
②对顶角形成的前提条件是两条直线相交。
......5、对应练习:①下列各图中,哪个图有对顶角?B B B AC D C D C DA AB B B(A)C D C A C DAD(二)邻补角、对顶角的性质1、邻补角的性质:邻补角。
注意:邻补角是互补的一种特殊的情况,数量上,位置上有一条。
2、对顶角的性质:完成推理过程如图,∵∠1+∠2 = ,∠2+∠3 = 。
(邻补角定义)∴∠1=180°-,∠3 =180°-(等式性质)∴∠1=∠3 (等量代换)或者∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).由上面推理可知,对顶角的性质:对顶角。
()七年级下册数学第五章相交线与平行线导学案

七年级第五章相交线与平行线导学案2.课题:相交线〔一〕学习目标:通过动手、操作、推断、交流等活动,进一步开展空间观念,培养识图能力,推理能力和有条理表达能力在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题〔二〕学习重点和难点:重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索二、问题导读单:阅读P1—3页答复以下问题:图观察并阅读有关内容体会说明:图中“剪刀〞可以看作:_______________线,画出示图为: __________________阅读“探究〞中有关内容答复相应问题并填写下表。
两条直线相交所形成的分类位置关系数量关系角O如2题图中AB交CD于点O形成四个角,∠1和∠2有一条公共边_____,它们的另一边互为_______________,具有这种关系的两个角,互为邻补角.互为邻补角的还有:___________________________________________________1和∠3有一个_____________,并且∠1的两边分别是∠3的两边的_______________.具有这种位置关系的两个角,互为对顶角.互为对顶角的还有_________________.写出对顶角的性质:___________________.写出性质的推理或说理形式.______________________________________________________________________________________________________________________________例题中求三个角的度数时,应用了哪些“原理〞?分别是:_____________________________________________________________________三、问题训练单:6.如图直线c分别交直线a、b形成如图中8个角,写出图中∠1的邻补角有:∠3的邻补角有:∠5的邻补角有:∠7的邻补角有:所有的对顶角有:__________________________________________________________________________________以下说法对不对〔1〕邻补角可以看成是平角被过它顶点的一条射线分成的两个角〔2〕邻补角是互补的两个角,互补的两个角是邻补角23〔3〕对顶角相等,相等的两个角是对顶角18.如图,填空:4 (1)∠1与∠是邻补角,∠1又与∠是邻补角;(2)∠2与∠是邻补角,∠2又与∠是邻补角;(3)如果∠1=40°,那么∠2=°,∠4=°,∠3=°.9*.如图直线AB、CD、EF相交于点O.1〕写出图中所有对顶角:2〕写出:∠AOC的邻补角有:∠AOE的邻补角有:∠AOF的邻补角有:∠AOD的邻补角有:五、谈本节课收获和体会:课题:〔1〕垂线〔一〕学习目标:1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画直线的垂线。
第5章相交线与平行线导学案5.2.2平行线的判定第1课时

c ba2 1课题:平行线的判定(第1课时)【学习目标】掌握平行线的判定,并能应用这些知识判断两条直线是否平行,逐步培养简单的推理能力。
【学习重点】运用平行线的判定方法判断两直线平行。
【学习难点】运用平行线的判定方法进行简单的推理。
【学习过程】一、由角判定线平行:如图1所示,为我们利用直尺和三角板画平行线的过程简图,1、探究1:由三角尺前后的移动位置知,∠1和∠2是同位角,且相等,则画出两条平行线。
归纳1:两条直线被第三条直线所截,如果同位角,那么这两条直线;简单地说:同位角,两直线;几何语言:∵∠1=∠2(已知)∴AB∥CD(____________________________)2、探究2:若∠1=∠3,能否推出AB∥CD吗?理由如下:∵∠1=∠3(已知),∠2=∠3()∴∠1=∠2()∴AB∥CD()归纳2:两条直线被第三条直线所截,如果内错角,那么这两条直线;简单地说:内错角,两直线;几何语言:∵∠1=∠3(已知)∴AB∥CD(____________________________)3、探究3:若∠1+∠4=180°,能得出AB∥CD吗?方法一∵∠1+∠4=180°(已知),∠2+∠4=180°()∴∠1=∠2()∴AB∥CD()方法二∵∠1+∠4=180°(已知),∠3+∠4=180°()∴∠1=∠3()∴AB∥CD()归纳3:两条直线被第三条直线所截,如果同旁内角,那么这两条直线;简单地说:同旁内角,两直线;几何语言:∵∠1+∠4=180°(已知)∴AB∥CD(____________________________)二、由平行、垂直判线平行:1、如果两条直线都和第三条直线_________,那么这两条直线也互相___________。
简单地说:___________于同一直线的两条直线平行。
∵ a∥b,b∥c (已知)∴____∥____(__________________________)2、在__________内,__________于同一条直线的两条直线______。
七下平行线和相交线导学案(共9课时)

平行线和相交线导学案课时1:相交线导学案(1)【学习目标】1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3、通过辨别对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。
【学习用具】剪刀、量角器学习过程:一、学前准备1、填空:①两个角的和是,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。
②同角或的补角。
二、探索与思考(一)邻补角、对顶角1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角逐渐变小,剪刀刃之间的角度也相应。
我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。
2、探索活动:①任意画两条相交直线,在形成的四个角(∠1,∠2,∠3,∠4)中,两两相配共能组成对角。
分别是。
②分别测量一下各个角的度数,是否发现规律?你能否把他们分类?完成教材中2页表格。
③再画两条相交直线比较。
图12、归纳:邻补角、对顶角定义邻补角。
的两个角是对顶角。
3、总结:①两条直线相交所构成的四个角中,邻补角有对。
对顶角有对。
②对顶角形成的前提条件是两条直线相交......。
5、对应练习:①下列各图中,哪个图有对顶角?B B B AC D C D C DA AB B B(A)C D C C DA D(二) 邻补角、对顶角的性质1、邻补角的性质:邻补角 。
注意:邻补角是互补的一种特殊的情况,数量上 ,位置上有一条 。
2、对顶角的性质:完成推理过程如图,∵∠1+∠2 = ,∠2+∠3 = 。
(邻补角定义)∴∠1=180°- ,∠3 =180°- (等式性质) ∴∠1=∠3 (等量代换)或者∵∠1与∠2互补,∠3与∠2互补(邻补角定义), ∴∠l =∠3(同角的补角相等).由上面推理可知,对顶角的性质:对顶角 。
导学案:相交与平行

《相交与平行》导学案课时第2课时
导学目标1.结合现实情境了解平行的现象,理解平行线的意义,理解两条直线在什么情况下互相平行,体会平行线在现实生活中的作用。
2.掌握平行线的画法。
3.经历探索平行的学习过程,在学习过程中获得成功体验。
导学过程
导学
环节
导学活动创设二次备课
自主复习1. 前一节我们学习了相交,你能画出两条相交的直线吗?
2. 生活中有两条永不相交的直线吗?如果有,想象一下它们是什么样子。
请举一个例子。
点拨自学1.认识平行线。
(1)看一看生活中的一些平行现象。
上面的图形可以画出下面3组直线。
(2)说一说:这3组直线有什么共同特点?
在同一平面内,的两条直线叫做平行线。
组成平行线的两条直线。
(3)举例说一说:哪些直线互相平行?
2.画平行线。
(1)自学书第64页,怎样画平行线?
(2)按书上的方法和步骤,自己在下面画出一组平
行线。
(3)归纳画法。
3.平行线的检验。
你能使用平行线的画法来检验下面两组直线是不是
平行线吗?
自我
通过今天的学习,你有何想法?
评价。
七年级数学下册《相交线与平行线》导学案及课后练习

七年级数学下册《相交线与平行线》导学案及课后练习《相交线与平行线》课后作业一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________;(2)与∠BOD 互余的角有________________________;(3)与∠EOA 互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______.二、选择题4.如图,直线AB 与CD 相交于点O ,若A O D A O C ∠=∠31,则∠BOD 的度数为( ).(A)30°(B)45°(C)60°(D)135°三、 解答题5.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB 的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?6.已知:如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,∠AOD ∶∠DOE =4∶1.求∠AOF 的度数.《相交线与平行线》课后作业参考答案1.公共,反向延长线.2.一个公共,反向延长线.3..(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.4.B.5.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.6.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.。
新版初一数学下册第二章平行线与相交线导学案[优秀范文5篇]
![新版初一数学下册第二章平行线与相交线导学案[优秀范文5篇]](https://img.taocdn.com/s3/m/a48c698bf424ccbff121dd36a32d7375a417c693.png)
新版初一数学下册第二章平行线与相交线导学案[优秀范文5篇]第一篇:新版初一数学下册第二章平行线与相交线导学案新版初一数学下册第二章平行线与相交线导学案以下是查字典数学网为您推荐的新版初一数学下册第二章平行线与相交线导学案,希望本篇文章对您学习有所帮助。
新版初一数学下册第二章平行线与相交线导学案一、学习目标1、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、经历探索平行线特征的过程,掌握平行线的特征,并能解决一些问题。
二、学习重点平行线的特征的探索三、学习难点运用平行线的特征进行有条理的分析、表达四、学习过程(一)预习准备(1)预习书50-53页(2)回顾:平行线有哪些判定方法?(3)预习作业1、如图,已知BE是AB的延长线,并且AD∥BC,AB∥DC,若,则度,度。
第 1 页2、如图,当∥ 时,;当∥ 时,;(二)学习过程例1 如图,已知AD∥BE,AC∥DE,可推出(1);(2)AB∥CD。
填出推理理由。
证明:(1)∵AD∥BE()又∵AC∥DE()(2)∵AD∥BE()又∵()AB∥CD()变式训练:如图,下列推理所注理由正确的是()A、∵DE∥BC(同位角相等,两直线平行)B、∵DE∥BC(内错角相等,两直线平行)C、∵DE∥BC(两直线平行,内错角相等)D、∵DE∥BC(两直线平行,同位角相等)例2 如图,已知AB∥CD,求的度数。
变式训练:如图,已知AB∥CD,试说明拓展:1、如图,已知AB∥CD,直线EF分别交AB、第 2 页CD于点E、F,的平分线与的平分线相交于点P,则,试说明理由。
2、如图,已知EF∥AB,CDAB,试说明DG∥BC。
回顾小结:1、说说平行线的三个性质是什么?2、平行线的性质与平行线的判定的区别:判定:角的关系平行关系性质:平行关系角的关系3、证平行,用判定;知平行,用性质。
2.4用尺规作角一、学习目标:1、会用尺规作一个角等于已知角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自主学习导学案
第五章相交线与平行线复习导学案
教学目标
1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化, 梳理本章的知识结构.
2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.
3.认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性
质,能利用平移设计图案.
重点、难点
重点:复习平面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.
难点:垂直、平行的性质和判定的综合应用.
一.知识点回顾
1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为
_____________.
2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的
两个角,互为__________.对顶角的性质:______ _________.
3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点
______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.
4.直线外一点到这条直线的垂线段的长度,叫做________________________.
5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且
都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.
6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.
7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.
推论:如果两条直线都与第三条直线平行,那么_____________________.
8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:
_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.
⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:
________________________________________. 9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .
10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.
⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被
第三条直线所截,同旁内角互补.简单说成:____________________________________ .
11.判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是
______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.
12.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向
不一定是水平的.
平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.
自我检测
1.如果两个角是邻补角,那么一个角是锐角,另一个角是钝角.( )
2.平面内,一条直线不可能与两条相交直线都平行.( )
3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )
4.互为补角的两个角的平行线互相垂直.( )
5.两条直线都与同一条直线相交,这两条直线必相交.( )
6.如果乙船在甲船的北偏西35°的方向线上, 那么从甲船看乙船的方向角是南偏东规定35°.( )
6.如图,,8,6,10,
BC AC CB cm AC cm AB cm
⊥===那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________.
7.设a、b、c为平面上三条不同直线,
a)若//,//
a b b c,则a与c的位置关系是_________;
b)若,
a b b c
⊥⊥,则a与c的位置关系是_________;
c)若//
a b,
b c
⊥,则a与c的位置关系是________.
8.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,
求∠COE、∠AOE、∠AOG的度数.
9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.
10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.
解:∠B +∠E =∠BCE 过点C 作CF ∥AB , 则B
∠=∠____( )
又∵AB ∥DE ,AB ∥CF ,
∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .
11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b , 求证:12∠=∠.
12.阅读理解并在括号内填注理由:
如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .
证明:∵AB ∥CD ,
∴∠MEB =∠MFD ( ) 又∵∠1=∠2,
∴∠MEB -∠1=∠MFD -∠2, 即 ∠MEP =∠______
∴EP ∥_____.( )
13. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG
的大小
.
14. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.
15. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。