线性矩阵不等式
《鲁棒控制》-6-线性矩阵不等式

(≤ 0)
为线性矩阵不等式(LMI)。
当存在实向量 x ,使得 F ( x) < 0(≤ 0) ,则称 LMI F ( x) < 0(≤ 0) 可行或存在可
行解。
LMI 的可行解全体构成一凸集。
令 X 是一实对称矩阵,对于任意给定实数矩阵 A 和实对称矩阵 Q ,则矩阵
不等式
AT X + XA + Q < 0
⎢ ⎣
0
⎡I ⎢⎣0
−S12 I
S −1 22
⎤ ⎥ ⎦
⎡ ⎢⎣
S11 S21
S12 S22
⎤ ⎥⎦
⎡I ⎢⎣0
−S12 I
S −1 22
⎤T ⎥ ⎦
0
⎤
S22
−
S21S1−11S12
⎥ ⎦
=
⎡ ⎢
S11
⎣
−
S12
S −1 22
S21
S21
0 ⎤⎡ I
S22
⎥ ⎦
⎢⎣−
S −1 22
S
21
0⎤
I
⎥ ⎦
x (t ) = Ax (t ) + Bu (t ) y (t ) = Cx (t ) + Du (t )
假设 D + DT > 0 。 令
H (s) = C (sI − )A −1 B + D
系统无源(passive): 当 x (0) = 0 时,
∫T 0
uT
(t
)y
(t
)
dt
≥
0
● 系统无源 iff
ALQ
⎤ ⎥
⎥
0 ⎥<0
#
⎥ ⎥
线性矩阵不等式及其在随机控制中的应用

Ab t a t A n r a e rfr ltd a o v x叩 一 s r c : u e o t t o lmsf m t h si c n ml h o y c n b omuae sc n e O i a p r h o c t e
W ANG i g Z P n , HANG e g li Ch n —e
(col f l t n f m t nadC no E g er gSadn steo Igt nut ,nn205 ,h a Sho oEe r i I o ao n ot l ni en ,hnog ntu fjh IdsyJ a 533 C i ) co cn r i r n i I it r i n
文章编号 :04 4 8 (07 0 —0 1 —0 10 — 2020 ) 1 08 3
线 性 矩 阵不等 式及 其在 随机 控 制 中的应 用
王 平, 张成 磊
( 山东轻工业学 院 电子信息与控制工程学院 , …东 济南 205 ) 533
摘要 : 随机控制理论 中许多重要的问题 , 都可转化为线性矩阵不等式 (M ) L I约束 的凸优化 问题 , 而使其在数值 上 从 易于求解 。本文阐述 了线性矩阵不等式 方法的基本概念和内容 , 并介绍 了有关算法 及计算 软件 , 举例说 明其 最后
问题本 身是有 解 的 , 找 不 出问 题 的解 。这 给 实 际 也
() 1的决策变 量 。 F
已知的实对称阵。显然 F ) ( 是变量 各元素的仿
射 函数 , 外 式 () 味着 F( 是 一 个 负定 矩 阵 , 另 1意 ) 即对 所有 的非零 向量 H , ( u< ∈ u’ ) 0或 F( F ) 的最 大特 征 值 小 于 零 。所 有 满 足 线 性 矩 阵 不 等 式
线性矩阵不等式

7.4.2线性矩阵不等式的确定
LMI工具箱可以处理具有以下一般形式的线性 矩阵不等式。 NTL(X1,…,Xk)N<MTR(X1,…,XK)M 其中:X1…,XK是具有一定结构的矩阵变量, 左、右外因子N和M是具有相同维数的给定矩 阵,左、右内因子L(﹒)和R(﹒)是具有相 同块结构的对称块矩阵。 注意,在线性矩阵不等式的描述中,左边总是 指不等式较小的一边,例如对线性矩阵不等式 X>0,X称为是不等式的右边,0称为是不等式 的左边,常表示成0< X。
I F T ( x) F ( x) F ( x) I 0 0 F ( x) I
T 2
因此,可以通过求解:
min x,
(7.3.2)
I F T ( x) s.t 0 F ( x) I
来得到所求问题的解。显然,问题(7.3.2)是一个具有线性矩阵不等式约束的线性目标函数 的最优化问题。
定的常数矩阵。由于
DED 1 1 D T E T D T DED 1 1
E T DT DE DT D
ET XE X 0
1 T 其中 X D D0 。因此,使得 DED 1 成立的对角矩阵 D 的存在性问题等价
于线性矩阵不等式 E XE X 0 的可行性问题。
要确定一个线性矩阵不等式系统,需要做以下两步: 给出每个矩阵变量X1,…,XK的维数和结构; 描述每一个线性矩阵不等式中各个项的内容。 这个过程产生所描述线性矩阵不等式系统的一个内部 表示,它以一个单一向量的形式储存在计算机内,通 常用一个名字,例如lmisys来表示。该内部表示lmisys 可以在后面处理这个线性矩阵不等式时调用。 下面将通过LMI工具箱中的一个例子来说明线性矩阵不 等式系统的确定。运行lmidem可以看到这个例子的完 整描述。
控制论常用的矩阵不等式

控制论常用的矩阵不等式控制论是一门研究如何通过控制手段来实现系统稳定、优化和鲁棒性的学科,而矩阵不等式则是控制论中常用的数学工具之一。
本文将介绍控制论中常用的几种矩阵不等式,并讨论其在控制系统设计中的应用。
1. 线性矩阵不等式(LMI)线性矩阵不等式是控制论中最常用的矩阵不等式之一。
它的形式为:$$A(x)X+B(x)Y+C^{T}(x)YC(x)<0$$其中,$A(x)$、$B(x)$、$C(x)$均为实系数矩阵函数,$X$、$Y$均为矩阵变量。
该不等式表示的是矩阵函数$A(x)$、$B(x)$、$C(x)$构成的线性系统对应的闭环系统是渐进稳定的,即对任意的初值$x_0$,系统的输出$y(t)$都会收敛到零。
2. Lyapunov矩阵不等式Lyapunov矩阵不等式是控制论中另一种常用的矩阵不等式。
它的形式为:$$A^{T}P+PA<-Q$$其中,$A$为系统的状态转移矩阵,$P$为对称正定矩阵,$Q$为对称正定矩阵。
该不等式表示的是系统的Lyapunov函数$V(x)=x^{T}Px$满足$V(x)leqslant-alpha x^{T}x$,其中$alpha$是正常数。
3. Riccati矩阵不等式Riccati矩阵不等式也是控制论中常用的矩阵不等式之一。
它的形式为:$$A^{T}P+PA-PBR^{-1}B^{T}P<-Q$$其中,$A$、$B$为系统的状态转移矩阵和输入矩阵,$P$为对称正定矩阵,$R$为对称正定矩阵。
该不等式表示的是系统的最优控制输入满足线性方程$u=-R^{-1}B^{T}Px$。
4. Schur矩阵不等式Schur矩阵不等式是控制论中最基本的矩阵不等式之一。
它的形式为:$$Mprec N$$其中,$M$、$N$为两个对称矩阵,$prec$表示矩阵的部分序。
该不等式表示的是矩阵$N-M$是正定的。
总之,矩阵不等式在控制论中具有广泛的应用,可以用于系统稳定性分析、最优控制设计和鲁棒性分析等领域。
线性矩阵不等式2

应用Schur 补,即得定理3.3成立。
y w
2 2
即得闭环系统(3-3)的L2增益小于γ。 再由
V x yT y 2wT w 0
知,当闭环系统(3-3)满足H∞性能指标γ时, V x 0.
定理得证。
Question
为什么考虑零初始条件?若非零初始 条件,系统H∞性能指标不满足。 V x 0 的证明太过牵强。
(3-3)
y Cx
A = A BK MF t E1 E2 K 系统(3-2)的L2 增益定义为:
Tyw s
sup
w 2 0
y w
2 2
定理3.2 针对闭环系统(3-3)和给定的一个常数γ >0,若 存在对称矩阵P>0,使得如下矩阵不等式成立
AT P PA C T C DT P PD 0 2 I
M , E1 和 E 2
是反映不确定性结构的常数矩阵,
。
F t 是时变的不确定矩阵,且满足 F T t F t I
设计状态反馈控制律
ห้องสมุดไป่ตู้
u t Kx t
闭环系统可写为 x A BK MF t E1 E 2 K x Dw = Ax + Dw
记X=γP CT T D 0 I
AT X XA XB BT X 2 I C D
CT T D 0 I
线性矩阵不等式3

定理4-5 对于给定的LMI区域圆盘D(q,r),如果存在对 称正定矩阵X,使得如下不等式成立
可得矩阵A是D-稳定的(必要性的证明请见书 第102页) 。定理得证。
D稳定性定理的应用
一、 LMI区域为左半开复平面
对于左半开复平面,其特征函数是 f D s s s
则
M D A, X 1 AX 1 XAT AX XAT
由D稳定性定理,可得,矩阵A的所有特征值均在 左半开复平面的充分必要条件是存在对称正定矩阵 X,使得 AX XAT 0 Lyapunov不等式
E1 E2 K X 0
Y+MFE+ETFTMT<0 Y+εMMT+ε-1ETE<0
不等式两边分别数乘ε, 并记 V X ,W KV 得
rV MM T qV VAT W T BT 0 T rV E1V E2W E1V E2W qV AV BW
x A + A x B + B u y Cx
不确定参数矩阵 A B MF t E1 E2
M , E1 和 E 2
(4-3)
是反映不确定性结构的常数矩阵,
。
F t 是时变的不确定矩阵,且满足 F T t F t I
应用Kronecker乘积的性质,可得
1.1 A A 2. A B C D AC BD
1 A A; A B C D AC BD
1 v M A, X 1 v 1 v L X M AX M L v Xv M v AXv M v Xv L + M + M
LMI(线性矩阵不等式)工具箱介绍学习

LMI:Linear Matrix Inequality,就是线性矩阵不等式。
在Matlab当中,我们可以采用图形界面的lmiedit命令,来调用GUI接口,但是我认为采用程序的方式更方便(也因为我不懂这个lmiedit的GUI)。
对于LMI Lab,其中有三种求解器(solver): feasp,mincx和gevp。
每个求解器针对不同的问题:feasp:解决可行性问题(feasibility problem),例如:A(x)<B(x)。
mincx:在线性矩阵不等式的限制下解决最小化问题(Minimization of a linear objective under LMI constraints),例如最小化c'x,在限制条件A(x) < B(x)下。
gevp:解决广义特征值最小化问题。
例如:最小化lambda,在0<B(x),A(x)<lamba*B(x)限制条件下。
要解决一个LMI问题,首要的就是要把线性矩阵不等式表示出来。
对于以下类型的任意的LMI问题N' * L(X1, . . . , XK) * N < M' * R(X1, . . . , XK) * M其中X1, . . . , XK是结构已经事先确定的矩阵变量。
左侧和右侧的外部因子(outer factors)N和M是给定的具有相同维数的矩阵。
左侧和右侧的内部因子(inner factors)L(.)和R(.)是具有相同结构的对称块矩阵。
每一个块由X1, . . . , XK以及它们的转置组合而成形成的。
解决LMI问题的步骤有两个:1、定义维数以及每一个矩阵的结构,也就是定义X1, . . . , XK。
2、描述每一个LMI的每一项内容(Describe the term content of each LMI)此处介绍两个术语:矩阵变量(Matrix Variables):例如你要求解X满足A(x)<B(x),那么X就叫做矩阵变量。
LMI线性矩阵不等式

对解的最优性不感兴趣,只是希望找到一个解,它可能不 唯一。
Example 2. 确 定 线 性 系 统 的 稳 定 性 :
考虑一个自治线性系统
x ˙ = Ax
那么,用于证明该系统稳定 性(Re{λi(A)} < 0, ∀i)的Lyapunov LMI问题,就是寻
7
找P > 0,使得
AT P + P A > 0
3
而正常情形下,我们看到的变量x是由一个或多个矩阵组 成,这些矩阵的列在不等式(4)中被堆砌成为一个向量, 即:
F (x) = F (X1, X2, · · · , Xn)
(5)
其中,Xi ∈ R
q i × pi
∑n 是一个矩阵,而 i=1 qi × pi = m,所有矩
阵变量的列堆叠起来,形成单个向量变量x。 于是我们考虑下面常用形式的函数:
(14)
这是一个关于变量P > 0的LMI可行性问题,然而,给定满 足该问题的任意的P > 0,明显地集合 { } P = βP : 标量β > 0 中任意矩阵都满足上述问题。
P > 0和(14)所描述的LMI约束,可以等价地组成一个LMI:
(15)
AT P + P A 0 0
8
<0
(16)
考虑一个自治线性系统xax那么用于证明该系统稳定性reia0?i的lyapunovlmi问题就是寻7找p0使得atppa014这是一个关于变量p0的lmi可行性问题然而给定满足该问题的任意的p0明显地集合pp
航空航天飞行器控制、制导与导 航
线性矩阵不等式
Linear matrix inequality(LMI): 矩阵变量集合中线性(或仿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则应用引理 2.1.2,可以将矩阵不等式(2.1.6)的可行性问题转化成一个等价的矩阵不等 式
AT P PA Q PB
BT P
R0
(2.1.7)
的可行性问题,而后者是一个关于矩阵变量P的线性矩阵不等式。
2.3一些标准的线性矩阵不等式问题
例2.1.1 稳定性问题 考虑线性自治系统
x(t) Ax(t)
setlmis([]) X=lmivar(1,[61]) S=lmivar(1,[20;21]) ﹪lst LMI lmiterm([111x],1,A,’s’) lmiterm([111s],c’,c) lmiterm([112x],1,B) lmiterm([122s],-1,1) ﹪2nd LMI lmiterm([-211X],1,1) ﹪3rd LMI lmiterm([-311s],1,1) lmiterm([3110],1) lmisys=getlmis
m 是一组给定的实对称矩阵,(2.1.1)中的不等号“<”指的是矩阵 F(x)是负定的,即对所有
非零的向量 v Rm , vT F (x)v0 或者 F(x)的最大特征值小于零。
在许多系统与控制问题问题中,问题的变量是以矩阵的形式出现的。例如 Lyapunov 矩阵 不等式:
F ( X ) AT X XA Q0
lmivar 函数lmivar用来描述出现在线性矩阵不等式系
统中的矩阵变量,每一次只能描述一个矩阵变 量。矩阵变量的描述包括该矩阵变量的结构。 该函数的一般表达是:
X=lmivar(type,struct) 这一函数定义了一个新的矩阵变量X。函数中
的第一个输入量type确定了矩阵变量X的类型, 第二个输入量struct进一步根据变量X的类型给 出该变量的结构。变量的类型分成三类:
阵值函数。由于
max(F (x)) F T (x)F (x) 2I 0
根据矩阵的 Schur 补性质,
F
T
(
x)F
(
x)
2
I
0
I F ( x)
FT (x)
I
0
因此,可以通过求解:
min
x ,
(2.2.4)
I FT (x)
s.t F ( x)
I
0
来得到所求问题的解。显然,问题(2.2.4)是一个具有线性矩阵不等式约束的线性目标函数 的最优化问题。
,
)
CX
I
D
BT
DT I
称为内因子。外因子可以不是一个正方矩阵,它在许多问题中常常不出现。
● X 和 是问题的矩阵变量。注意,标量也可以看成是一个 1×1 维的矩阵。 ● 内因子 L(X, )是一个对称块矩阵。根据对称性,L(X, )可以由对角线及
其上方的块矩阵完全确定。
● L(X, )中的每一块都是矩阵变量 X 和 的仿射函数。这一函数由常数项和变量
(2.2.3)
的渐近稳定性问题,其中 A Rnn 。Lyapunov 稳定性理论告诉我们:这个系统渐近
稳定的当且仅当存在一个对称矩阵 X Rnn 使得 X 0 , AT X XA0 。因此系统
(2.2.3)的渐近稳定性问题等价于线性矩阵不等式
的可行性问题。
X
0
0
AT X XA0
例 2.2.2 分析问题 在 分析中,通常要求确定一个对角矩阵 D,使得 DED1 1,其中 E 是一个给
其中:函数lmivar定义了两个矩阵 变量X和S,lmiterm则描述了每一 个线性矩阵不等式中各项的内容。 getlmis回到了这个线性矩阵不等 式系统的内部表示lmisys,lmisys 也称为是储存在机器内部的线性 矩阵不等式系统的名称。以下将 详细介绍这几个函数的功能和用 法。
setlmis和getlmis 一个线性矩阵不等式系统的描述以setlmis开始,以
LMI工具箱提供了确定、处理和数值求解线性矩阵不等式的一些工 具,它们主要用于:
● 以自然块矩阵形式来直接描述线性矩阵不等式; ● 获取关于现有的线性矩阵不等式系统的信息; ● 修改现有的线性矩阵不等式系统; ● 求解3个一般的线性矩阵不等式问题; ● 验证结果。 本附录将详细介绍LMI工具箱所提供的用于解决以上各个问题的有
表示 2×2 维的单位矩阵。 可以应用 lmivar 来定义这些矩阵变量:
setlmis([]) X1=lmivar(1,[3 1]) X2=lmivar(2,[2 4]) X3=lmivar(1,[5 1;1 0;2 0])
lmiterm
在确定了矩阵变量之后,还需要确定每一个线性矩阵不等式中各 项的内容。线性矩阵不等式的项指构成这个线性矩阵不等式的块 矩阵中的求和项。这些项可以分成三类:
Type=1:对称块对角结构。这种结构对应于具有以下形式的矩阵变量:
D1 0 0
0
D2
0
0
0
Dr
其中对角线上的每一个矩阵块 Dj 是方阵,它可以是零矩阵、对称矩阵或数量矩阵。这种结 构也包含了通常意义的对称矩阵和数量矩阵(分别相当于只有一块)。此时,struct 是一个
r×2 维的矩阵。如果该矩阵的第 i 行是(m,n)则其中的 m 表示对称矩阵块 Di 的阶数, 而 n 只能取 1、0 或-1。其中 n=1 表示 Di 是一个满的对称矩阵(或无结构的对称矩阵);n=0 表示 Di 是一个数量矩阵;n= -1 表示 Di 是一个零矩阵。 Type=2:长方型结构。这种结构对应于任意的长方矩阵。此时,struct=(m,n)表示矩阵的维 数。
Fk (x)0 同时成立当且仅 F (x)0 。因此,一个线性矩阵不等式系统也可以用一个单一的线性
矩阵不等式来表示。
2、 在许多一些非线性矩阵不等式转化成线性矩阵不等式的问题中,我们常常用到矩阵的
Schur 补性质。考虑一个矩阵 S Rnn ,并将 S 进行分块:
S
S11 S21
S12
S22
getlmis结束。当要确定一个新的系统时,输入: setlmis([]) 如果需要将一个线性矩阵不等式添加到一个名为lmiso
的现有的线性矩阵不等式系统中,则输入: setlmis(lmiso) 当线性矩阵不等式系统被完全确定好后,输入:
lmisys=getlmis 该命令返回这个线性矩阵不等式系统的内部表示lmisys。
Type=3:其他结构。这种结构用来描述更加复杂的矩阵,也可以用于描述矩阵变量之 间的一些关联。X 的每一个元或者是 0,或者是±Xn,其中 Xn 是第 n 个决策变量。相应地, struct 是一个和变量 X 有相同维数的矩阵,其中的每一个元取值如下:
0, 如果 X(i,j)=0 struct(i,j)= n, 如果 X(i,j)= Xn
项这两类基本项组成,其中常数项就是常数矩阵或以一些常数矩阵组成的算术表达式,例如
L(X, )中的 B 和 D;变量项是包含一个矩阵变量的项,例如 XA、- I 等。
一个线性矩阵不等式不论多么复杂,都可以通过描述其中每一块的各项内容来确定这个
线性矩阵不等式。
2.4.2线性矩阵不等式的确定
LMI工具箱可以处理具有以下一般形式的线性矩阵不等 式。
其中的 S11 是 r×r 维的。假定 S11 是非奇异的,则 S11 S21S111S12 称为 S11 在 S 中的 Schur
补。以下引理给出了矩阵的 Schur 补性质。
引理 2.1.1
对给定的对称矩阵
S
S11 S21
S12 S22
,其中
S11
是
r×r
维的。以下三个条
件是等价的:
(2.1.2)
其中:A, Q Rnn 是给定的常数矩阵,且 Q 是对称的, X Rnn 是对称的未知矩阵变量因
此该矩阵不等式中的变量是一个矩阵。设 E1,E2,…,EM 是 Sn 中的一组基,则对任意对称
M
X Rnn ,存在 x1,x2,…xM,使得 X xi Ei 。 i1
பைடு நூலகம்
因此,
M
M
M
关函数和命令。
2.4.1线性矩阵不等式及相关术语
考虑H∞控制中的一个线性矩阵不等式:
AT X XA XC T B
N
T
CX
I
D
N
0
BT
DT I
其中:A、B、C、D、N 是给定的矩阵,X=XT∈Rn×n 和 ∈R 是问题的变
N 称为外因子,块矩阵
AT X XA XC T B
L(X
系统与控制中的许多问题初看起来不是一个线性矩阵不等式的问题,或不具有(2.1.1) 式的形式,但可通过适当的处理将问题转换成具有(2.1.1)式形式的一个线性矩阵不等式的 问题。下面给出了这方面的一些典型的例子。
1、 多个线性矩阵不等式
F1(x)0,, FK (x)0
称 为 一 个 线 性 矩 阵 不 等 式 系 统 。 引 进 F (x) diagF1(x),,F k (x) , 则 F1(x)0 … ,
-n, 如果 X(i,j)=- Xn
例 A.2.2 考虑具有三个矩阵变量 X1、X2 和 X3 的线性矩阵不等式系统,其中 ● X1 是一个 3×3 维的对称矩阵; ● X2 是一个 2×4 维的长方矩阵;
0 0
● X 3 0 1
0
,其中△是
5×5
维的对称矩阵,δ1
和δ2
是两个标量,I2
0 0 2 I 2
(ⅰ) S 0
(ⅱ) S110, S22 S1T2S111S12 0
(ⅲ)
S 22
0,
S11
S12
S
S 1 T
22 12
0
在一些控制问题中,经常遇到二次型矩阵不等式:
AT P PA PBR 1BT P Q0