线性矩阵不等式

合集下载

《鲁棒控制》-6-线性矩阵不等式

《鲁棒控制》-6-线性矩阵不等式

(≤ 0)
为线性矩阵不等式(LMI)。
当存在实向量 x ,使得 F ( x) < 0(≤ 0) ,则称 LMI F ( x) < 0(≤ 0) 可行或存在可
行解。
LMI 的可行解全体构成一凸集。
令 X 是一实对称矩阵,对于任意给定实数矩阵 A 和实对称矩阵 Q ,则矩阵
不等式
AT X + XA + Q < 0
⎢ ⎣
0
⎡I ⎢⎣0
−S12 I
S −1 22
⎤ ⎥ ⎦
⎡ ⎢⎣
S11 S21
S12 S22
⎤ ⎥⎦
⎡I ⎢⎣0
−S12 I
S −1 22
⎤T ⎥ ⎦
0

S22

S21S1−11S12
⎥ ⎦
=
⎡ ⎢
S11


S12
S −1 22
S21
S21
0 ⎤⎡ I
S22
⎥ ⎦
⎢⎣−
S −1 22
S
21
0⎤
I
⎥ ⎦
x (t ) = Ax (t ) + Bu (t ) y (t ) = Cx (t ) + Du (t )
假设 D + DT > 0 。 令
H (s) = C (sI − )A −1 B + D
系统无源(passive): 当 x (0) = 0 时,
∫T 0
uT
(t
)y
(t
)
dt

0
● 系统无源 iff
ALQ
⎤ ⎥

0 ⎥<0
#
⎥ ⎥

线性矩阵不等式

线性矩阵不等式

则应用引理 2.1.2,可以将矩阵不等式(2.1.6)的可行性问题转化成一个等价的矩阵不等 式
AT P PA Q PB
BT P
R0
(2.1.7)
的可行性问题,而后者是一个关于矩阵变量P的线性矩阵不等式。
2.3一些标准的线性矩阵不等式问题
例2.1.1 稳定性问题 考虑线性自治系统
x(t) Ax(t)
setlmis([]) X=lmivar(1,[61]) S=lmivar(1,[20;21]) ﹪lst LMI lmiterm([111x],1,A,’s’) lmiterm([111s],c’,c) lmiterm([112x],1,B) lmiterm([122s],-1,1) ﹪2nd LMI lmiterm([-211X],1,1) ﹪3rd LMI lmiterm([-311s],1,1) lmiterm([3110],1) lmisys=getlmis
m 是一组给定的实对称矩阵,(2.1.1)中的不等号“<”指的是矩阵 F(x)是负定的,即对所有
非零的向量 v Rm , vT F (x)v0 或者 F(x)的最大特征值小于零。
在许多系统与控制问题问题中,问题的变量是以矩阵的形式出现的。例如 Lyapunov 矩阵 不等式:
F ( X ) AT X XA Q0
lmivar 函数lmivar用来描述出现在线性矩阵不等式系
统中的矩阵变量,每一次只能描述一个矩阵变 量。矩阵变量的描述包括该矩阵变量的结构。 该函数的一般表达是:
X=lmivar(type,struct) 这一函数定义了一个新的矩阵变量X。函数中
的第一个输入量type确定了矩阵变量X的类型, 第二个输入量struct进一步根据变量X的类型给 出该变量的结构。变量的类型分成三类:

鲁棒控制理论与设计 第三章 矩阵分析和线性矩阵不等式

鲁棒控制理论与设计 第三章 矩阵分析和线性矩阵不等式

k<r
则 A 与秩为 k 的任一矩阵 B 之差的 L1 和 L2 范数分别为
min A − B =
rank (B )=k
1
A − Ak
1 = σ k +1

(3.1.30)
3-5
第三章 矩阵分析和线性矩阵不等式
min A − B 2 =rank (B )=k2A − Ak
2 2
=
σ
2 k +1
+
L
∂A ∂θ
= [ ∂A ∂θ1
,
∂A ∂θ 2
,L ,
∂A ∂θ n
]
(3.1.12)
4) 标量对矩阵求导仍为矩阵。设 J 为标量, M 为矩阵,则 ∂J 是以 ∂J 为第 ij 元素的矩阵,
∂M
∂mij
其中 mij 表示 M 矩阵的第 ij 元素。
在上述约定下,有如下一些结果:
1) ∂ (aT x) = aT ; ∂x

A21
A -1 11
A12
]
(3.1.5) (3.1.6)
证明:因为
所以有
⎡ A11
⎢ ⎣
A21
A12 ⎤ ⎡ I
A22
⎥ ⎦
⎢⎣−
A−1 22
A21
0⎤
A−1 22
⎥ ⎦
=
⎡ ⎢
A11


A12 0
A−1 22
A21
A12
A−1 22
I
⎤ ⎥ ⎦
det
A ⋅ det
A −1 22
=
det[ A11
3.1.2 矢量与矩阵的微分运算
在鲁棒控制理论和系统建模中,矢量与矩阵的微分运算是非常重要的。本节我们不加证明地给出 一些常用到得运算定理和公式。为了叙述方便,采用下列约定。

线性矩阵不等式

线性矩阵不等式

7.4.2线性矩阵不等式的确定


LMI工具箱可以处理具有以下一般形式的线性 矩阵不等式。 NTL(X1,…,Xk)N<MTR(X1,…,XK)M 其中:X1…,XK是具有一定结构的矩阵变量, 左、右外因子N和M是具有相同维数的给定矩 阵,左、右内因子L(﹒)和R(﹒)是具有相 同块结构的对称块矩阵。 注意,在线性矩阵不等式的描述中,左边总是 指不等式较小的一边,例如对线性矩阵不等式 X>0,X称为是不等式的右边,0称为是不等式 的左边,常表示成0< X。
I F T ( x) F ( x) F ( x) I 0 0 F ( x) I
T 2
因此,可以通过求解:
min x,

(7.3.2)
I F T ( x) s.t 0 F ( x) I
来得到所求问题的解。显然,问题(7.3.2)是一个具有线性矩阵不等式约束的线性目标函数 的最优化问题。
定的常数矩阵。由于
DED 1 1 D T E T D T DED 1 1
E T DT DE DT D
ET XE X 0
1 T 其中 X D D0 。因此,使得 DED 1 成立的对角矩阵 D 的存在性问题等价
于线性矩阵不等式 E XE X 0 的可行性问题。


要确定一个线性矩阵不等式系统,需要做以下两步: 给出每个矩阵变量X1,…,XK的维数和结构; 描述每一个线性矩阵不等式中各个项的内容。 这个过程产生所描述线性矩阵不等式系统的一个内部 表示,它以一个单一向量的形式储存在计算机内,通 常用一个名字,例如lmisys来表示。该内部表示lmisys 可以在后面处理这个线性矩阵不等式时调用。 下面将通过LMI工具箱中的一个例子来说明线性矩阵不 等式系统的确定。运行lmidem可以看到这个例子的完 整描述。

LMI线性矩阵不等式

LMI线性矩阵不等式
航空航天飞行器控制、制导与导 航
线性矩阵不等式
Linear matrix inequality(LMI): 矩阵变量集合中线性(或仿
射)的矩阵不等式.
1.1: LMI的 基 本 性 质
1
Q正定:如果 xT Qx > 0, ∀x ̸= 0 Q半正定:如果 xT Qx ≥ 0, ∀x ̸= 0 P 负定(半负定):如果Q = −P 正定(半正定)。
9
%可行 ( 是稳定的A) tmin
当且仅当 tmin <0
运行结果:
Lyap =
1
S o l v e r f o r LMI f e a s i b i l i t y problems L ( x ) < R( x )
10
T h i s s o l v e r minimizes
t
subject to
只需要写出对角线上面,或下面的项。
% AP+PA’ <0 % 0 % P>0
l m i t e r m ( [ Lyap 1 1 P ] , 1 , A , ’ s ’ ) ; l m i t e r m ( [ Lyap 1 2 0 ] , 0 ) ; l m i t e r m ( [ Lyap 2 2 P] ,1 , − 1) ; LMIsys= g e t l m i s ; [ tmin , x f e a s ] = feasp ( LMIsys ) ;
L ( x ) < R( x ) + t ∗ I
The b e s t v a l u e o f t should be n e g a t i v e f o r f e a s i b i l i t y

控制论常用的矩阵不等式

控制论常用的矩阵不等式

控制论常用的矩阵不等式控制论是一门研究如何通过控制手段来实现系统稳定、优化和鲁棒性的学科,而矩阵不等式则是控制论中常用的数学工具之一。

本文将介绍控制论中常用的几种矩阵不等式,并讨论其在控制系统设计中的应用。

1. 线性矩阵不等式(LMI)线性矩阵不等式是控制论中最常用的矩阵不等式之一。

它的形式为:$$A(x)X+B(x)Y+C^{T}(x)YC(x)<0$$其中,$A(x)$、$B(x)$、$C(x)$均为实系数矩阵函数,$X$、$Y$均为矩阵变量。

该不等式表示的是矩阵函数$A(x)$、$B(x)$、$C(x)$构成的线性系统对应的闭环系统是渐进稳定的,即对任意的初值$x_0$,系统的输出$y(t)$都会收敛到零。

2. Lyapunov矩阵不等式Lyapunov矩阵不等式是控制论中另一种常用的矩阵不等式。

它的形式为:$$A^{T}P+PA<-Q$$其中,$A$为系统的状态转移矩阵,$P$为对称正定矩阵,$Q$为对称正定矩阵。

该不等式表示的是系统的Lyapunov函数$V(x)=x^{T}Px$满足$V(x)leqslant-alpha x^{T}x$,其中$alpha$是正常数。

3. Riccati矩阵不等式Riccati矩阵不等式也是控制论中常用的矩阵不等式之一。

它的形式为:$$A^{T}P+PA-PBR^{-1}B^{T}P<-Q$$其中,$A$、$B$为系统的状态转移矩阵和输入矩阵,$P$为对称正定矩阵,$R$为对称正定矩阵。

该不等式表示的是系统的最优控制输入满足线性方程$u=-R^{-1}B^{T}Px$。

4. Schur矩阵不等式Schur矩阵不等式是控制论中最基本的矩阵不等式之一。

它的形式为:$$Mprec N$$其中,$M$、$N$为两个对称矩阵,$prec$表示矩阵的部分序。

该不等式表示的是矩阵$N-M$是正定的。

总之,矩阵不等式在控制论中具有广泛的应用,可以用于系统稳定性分析、最优控制设计和鲁棒性分析等领域。

线性矩阵不等式2

线性矩阵不等式2
AV VAT BW W T B T 2 DD T MM T VC T CV I E1V E2W T E1V E2W 0 0 0 0
应用Schur 补,即得定理3.3成立。
y w
2 2

即得闭环系统(3-3)的L2增益小于γ。 再由
V x yT y 2wT w 0
知,当闭环系统(3-3)满足H∞性能指标γ时, V x 0.
定理得证。
Question
为什么考虑零初始条件?若非零初始 条件,系统H∞性能指标不满足。 V x 0 的证明太过牵强。
(3-3)
y Cx
A = A BK MF t E1 E2 K 系统(3-2)的L2 增益定义为:
Tyw s

sup
w 2 0
y w
2 2
定理3.2 针对闭环系统(3-3)和给定的一个常数γ >0,若 存在对称矩阵P>0,使得如下矩阵不等式成立
AT P PA C T C DT P PD 0 2 I
M , E1 和 E 2
是反映不确定性结构的常数矩阵,

F t 是时变的不确定矩阵,且满足 F T t F t I
设计状态反馈控制律
ห้องสมุดไป่ตู้
u t Kx t
闭环系统可写为 x A BK MF t E1 E 2 K x Dw = Ax + Dw
记X=γP CT T D 0 I
AT X XA XB BT X 2 I C D
CT T D 0 I

线性矩阵不等式3

线性矩阵不等式3

定理4-5 对于给定的LMI区域圆盘D(q,r),如果存在对 称正定矩阵X,使得如下不等式成立
可得矩阵A是D-稳定的(必要性的证明请见书 第102页) 。定理得证。
D稳定性定理的应用
一、 LMI区域为左半开复平面
对于左半开复平面,其特征函数是 f D s s s

M D A, X 1 AX 1 XAT AX XAT
由D稳定性定理,可得,矩阵A的所有特征值均在 左半开复平面的充分必要条件是存在对称正定矩阵 X,使得 AX XAT 0 Lyapunov不等式
E1 E2 K X 0
Y+MFE+ETFTMT<0 Y+εMMT+ε-1ETE<0
不等式两边分别数乘ε, 并记 V X ,W KV 得
rV MM T qV VAT W T BT 0 T rV E1V E2W E1V E2W qV AV BW
x A + A x B + B u y Cx
不确定参数矩阵 A B MF t E1 E2
M , E1 和 E 2
(4-3)
是反映不确定性结构的常数矩阵,

F t 是时变的不确定矩阵,且满足 F T t F t I
应用Kronecker乘积的性质,可得
1.1 A A 2. A B C D AC BD
1 A A; A B C D AC BD
1 v M A, X 1 v 1 v L X M AX M L v Xv M v AXv M v Xv L + M + M
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C 11C 2 C
C11C2称为 C 1 和 C 2 的凸组合。
将矩阵不等式的解约束在 矩阵变量定义的空间中
精品
5
关于凸集定义的理解
精品
6
Schur补定理
引理 (Schur Complement) 对于分块对称阵
X
X11
X1T2
X12
X
22
其中 X 1 1 为方阵,则以下三个条件是等价的:
ATPPAQ PB
BTP
R0
Schur补:是将非线性矩阵不等式转化为线 性矩阵不等式的有效工具
精品
8
标准的线性矩阵不等式问题
Linear Matrix Inequality (LMI)
➢ 可行性问题(LMIP)—求不等式的可行解
检验是否存在x,使得 F(x) 0成立。
➢ 特征值问题(EVP)--求不等式的优化解
m in
s .t.G ( x ) I
H (x) 0
➢ 广义特征值问题(GEVP)--仿射矩阵函数的不等式优化问 题
m in
s .t.G ( x ) F ( x )
F (x) 0
H (x) 0
精品
9
系统性能分析
精品
10
连续时间系统
3.1.1系统增益指标
考虑 x(t) Ax(t)Bw(t) z(t)Cx(t)+Dw(t)
ห้องสมุดไป่ตู้z 2
w(t)w0 (t)
w0 1
• EP(Energy-to-Peak)增益:
ep sup
z
w 21

EE(Energy-to-Energy)增益:
ee sup
z 2
w 2 1
• PP(Peak-to-Peak)增益:
pp sup
z
w 1
精品
14
定理1---IE
x(t) Ax(t)Bw(t) z(t)Cx(t)+Dw(t)
a) X 0
b) X 11 0 ,且 X22X1T 2X1 11X120
c) X 22 0 ,且 X11X12X2 2 1X1T 20
精品
7
Schur补应用
若要证明存在对称矩阵P>0,Q>0,R>0,使得如下不等 式成立
A T P P A P B R 1 B T P Q 0
只需证明如下线性矩阵不等式(LMI)成立
• 设f是一个矢性(值)函数,若它可以表示为
fx 1 x m b x 1 A 1 x m A m 0
其中A i
可以是标量,也可以是矩阵,则称f是仿射函数。
精品
4
凸(约束)问题
定义(凸集) 一个集合CRk 称为凸的,如果集合中任意两点 的连线仍在集合内。
即任意给定两点 C 1 和 C2 C及参数[0,1], 有
精品
16
定理3---EE
x(t) Ax(t)Bw(t) z(t)Cx(t)+Dw(t)
精品
17
定理4---PP
x(t) Ax(t)Bw(t) z(t)Cx(t)+Dw(t)
精品
18
H2性能
x(t) Ax(t)Bw(t) z(t)Cx(t)+Dw(t)
➢T的H2范数的平方等于系统脉冲响应的总的 输出能量。(IE)
精品
12
L∞范数
• 对幅值有界的信号 f ,定义
f sup f(t) t0
当 f 是一个标量信号时, f 等于f 的峰值。
将所有幅值有界的信号全体记成 L
即 L{f: f(t) }
f 也称为信号f 的 L 范数。
精品
13
四个性能指标
• IE(Impulse-to-Energy)增益: ie sup
min
s.t. PA AT P C T C 0
BT PB I
P>0
•若有一最优值 , 则
ie
精品
15
定理2---EP
x(t) Ax(t)Bw(t) z(t)Cx(t)+Dw(t)
min
s.t. AQ QAT BBT 0
CQCT I
Q>0
•若有一最优值 , 则
ep
➢系统的H2范数也可以用系统在白噪声输入信 号激励下的稳态输出方差来解释。(EP)
对于SISO系统 T(s)2ieep
精品
19
用线性矩阵不等式刻画系统的H2范数
x(t) Ax(t)Bw(t) z(t)Cx(t)+Dw(t)
精品
20
H∞性能
x(t) Ax(t)Bw(t) z(t)Cx(t)+Dw(t)
•增益 e e有一个频率域的解释:它恰好等于传
递函数 的T ( s ) 范数H ,即
ee T(s)
精品
21
用线性矩阵不等式刻画系统的H∞范数
• 定理:针对系统(3.1.1)和给定的一个常数γ >0,若 存在对称矩阵P>0,使得如下线性矩阵不等式成立
ATP PA PB
BT P
I
C
D
CT
F i F iT R n n 实 对 称 矩 阵
Fx 是 负 定 的
——仿射矩阵不等式
• 仿射函数即由1阶多项式构成的函数,一般形式为 f (x) = A x + b,这里, A 是一个 m×k 矩阵,x 是一个 k 向量,b是一个m向量,实际上反映了 一种从 k 维到 m 维的空间映射关系。
DT
0
I
则有||T(s)||∞< γ,且系统渐进稳定。
x(t) Ax(t)Bw(t) z(t)Cx(t)+Dw(t)
精品
22
证明:
ATP PA PB CT
BT P
I
DT
0
C
D I
对上述不等式分别左乘,右乘矩阵diag{γ1/2I,γ1/2I,γ-1/2I},得
ATPPA PB CT 记X=γP
sup size(z) w0 size(w)
精品
11
L2范数

对于平方可积的信号 f
,定义
f
(
1
f(t) 2dt)2
2
0
其中 f(t) fT(t)f(t) 是向量的欧式范数。这样
定义的 f 正好是信号 f 的能量。将所有有限能量 2
的全体记成 L 2

L2{f:
0
f(t)2dt}
f 2 也称为信号 f 的 L 2 范数
鲁棒控制
-线性矩阵不等式处理方法
Robust control –LMI Method
精品
1
主要内容
➢线性矩阵不等式概论 ➢系统性能分析 ➢控制器设计
精品
2
线性矩阵不等式概论
精品
3
线性矩阵不等式的一般表示
线性矩阵不等式:
F x F 0 x 1 F 1 x m F m 0
x ( x 1 , ,x m ) T R m 决 策 向 量
BTP
2I DT 0
C
D
I
AT X XA
BT X
C
XB
2I
D
CT
DT
0
I
精品
23
运用Schur补,可得
A T X X A C T C X B C T D 2 I D T D 1 B T X D T C 0
相关文档
最新文档