线性矩阵不等式1
《鲁棒控制》-6-线性矩阵不等式

(≤ 0)
为线性矩阵不等式(LMI)。
当存在实向量 x ,使得 F ( x) < 0(≤ 0) ,则称 LMI F ( x) < 0(≤ 0) 可行或存在可
行解。
LMI 的可行解全体构成一凸集。
令 X 是一实对称矩阵,对于任意给定实数矩阵 A 和实对称矩阵 Q ,则矩阵
不等式
AT X + XA + Q < 0
⎢ ⎣
0
⎡I ⎢⎣0
−S12 I
S −1 22
⎤ ⎥ ⎦
⎡ ⎢⎣
S11 S21
S12 S22
⎤ ⎥⎦
⎡I ⎢⎣0
−S12 I
S −1 22
⎤T ⎥ ⎦
0
⎤
S22
−
S21S1−11S12
⎥ ⎦
=
⎡ ⎢
S11
⎣
−
S12
S −1 22
S21
S21
0 ⎤⎡ I
S22
⎥ ⎦
⎢⎣−
S −1 22
S
21
0⎤
I
⎥ ⎦
x (t ) = Ax (t ) + Bu (t ) y (t ) = Cx (t ) + Du (t )
假设 D + DT > 0 。 令
H (s) = C (sI − )A −1 B + D
系统无源(passive): 当 x (0) = 0 时,
∫T 0
uT
(t
)y
(t
)
dt
≥
0
● 系统无源 iff
ALQ
⎤ ⎥
⎥
0 ⎥<0
#
⎥ ⎥
线性矩阵不等式

则应用引理 2.1.2,可以将矩阵不等式(2.1.6)的可行性问题转化成一个等价的矩阵不等 式
AT P PA Q PB
BT P
R0
(2.1.7)
的可行性问题,而后者是一个关于矩阵变量P的线性矩阵不等式。
2.3一些标准的线性矩阵不等式问题
例2.1.1 稳定性问题 考虑线性自治系统
x(t) Ax(t)
setlmis([]) X=lmivar(1,[61]) S=lmivar(1,[20;21]) ﹪lst LMI lmiterm([111x],1,A,’s’) lmiterm([111s],c’,c) lmiterm([112x],1,B) lmiterm([122s],-1,1) ﹪2nd LMI lmiterm([-211X],1,1) ﹪3rd LMI lmiterm([-311s],1,1) lmiterm([3110],1) lmisys=getlmis
m 是一组给定的实对称矩阵,(2.1.1)中的不等号“<”指的是矩阵 F(x)是负定的,即对所有
非零的向量 v Rm , vT F (x)v0 或者 F(x)的最大特征值小于零。
在许多系统与控制问题问题中,问题的变量是以矩阵的形式出现的。例如 Lyapunov 矩阵 不等式:
F ( X ) AT X XA Q0
lmivar 函数lmivar用来描述出现在线性矩阵不等式系
统中的矩阵变量,每一次只能描述一个矩阵变 量。矩阵变量的描述包括该矩阵变量的结构。 该函数的一般表达是:
X=lmivar(type,struct) 这一函数定义了一个新的矩阵变量X。函数中
的第一个输入量type确定了矩阵变量X的类型, 第二个输入量struct进一步根据变量X的类型给 出该变量的结构。变量的类型分成三类:
鲁棒控制理论与设计 第三章 矩阵分析和线性矩阵不等式

k<r
则 A 与秩为 k 的任一矩阵 B 之差的 L1 和 L2 范数分别为
min A − B =
rank (B )=k
1
A − Ak
1 = σ k +1
和
(3.1.30)
3-5
第三章 矩阵分析和线性矩阵不等式
min A − B 2 =rank (B )=k2A − Ak
2 2
=
σ
2 k +1
+
L
∂A ∂θ
= [ ∂A ∂θ1
,
∂A ∂θ 2
,L ,
∂A ∂θ n
]
(3.1.12)
4) 标量对矩阵求导仍为矩阵。设 J 为标量, M 为矩阵,则 ∂J 是以 ∂J 为第 ij 元素的矩阵,
∂M
∂mij
其中 mij 表示 M 矩阵的第 ij 元素。
在上述约定下,有如下一些结果:
1) ∂ (aT x) = aT ; ∂x
−
A21
A -1 11
A12
]
(3.1.5) (3.1.6)
证明:因为
所以有
⎡ A11
⎢ ⎣
A21
A12 ⎤ ⎡ I
A22
⎥ ⎦
⎢⎣−
A−1 22
A21
0⎤
A−1 22
⎥ ⎦
=
⎡ ⎢
A11
⎣
−
A12 0
A−1 22
A21
A12
A−1 22
I
⎤ ⎥ ⎦
det
A ⋅ det
A −1 22
=
det[ A11
3.1.2 矢量与矩阵的微分运算
在鲁棒控制理论和系统建模中,矢量与矩阵的微分运算是非常重要的。本节我们不加证明地给出 一些常用到得运算定理和公式。为了叙述方便,采用下列约定。
线性矩阵不等式

7.4.2线性矩阵不等式的确定
LMI工具箱可以处理具有以下一般形式的线性 矩阵不等式。 NTL(X1,…,Xk)N<MTR(X1,…,XK)M 其中:X1…,XK是具有一定结构的矩阵变量, 左、右外因子N和M是具有相同维数的给定矩 阵,左、右内因子L(﹒)和R(﹒)是具有相 同块结构的对称块矩阵。 注意,在线性矩阵不等式的描述中,左边总是 指不等式较小的一边,例如对线性矩阵不等式 X>0,X称为是不等式的右边,0称为是不等式 的左边,常表示成0< X。
I F T ( x) F ( x) F ( x) I 0 0 F ( x) I
T 2
因此,可以通过求解:
min x,
(7.3.2)
I F T ( x) s.t 0 F ( x) I
来得到所求问题的解。显然,问题(7.3.2)是一个具有线性矩阵不等式约束的线性目标函数 的最优化问题。
定的常数矩阵。由于
DED 1 1 D T E T D T DED 1 1
E T DT DE DT D
ET XE X 0
1 T 其中 X D D0 。因此,使得 DED 1 成立的对角矩阵 D 的存在性问题等价
于线性矩阵不等式 E XE X 0 的可行性问题。
要确定一个线性矩阵不等式系统,需要做以下两步: 给出每个矩阵变量X1,…,XK的维数和结构; 描述每一个线性矩阵不等式中各个项的内容。 这个过程产生所描述线性矩阵不等式系统的一个内部 表示,它以一个单一向量的形式储存在计算机内,通 常用一个名字,例如lmisys来表示。该内部表示lmisys 可以在后面处理这个线性矩阵不等式时调用。 下面将通过LMI工具箱中的一个例子来说明线性矩阵不 等式系统的确定。运行lmidem可以看到这个例子的完 整描述。
控制论常用的矩阵不等式

控制论常用的矩阵不等式控制论是一门研究如何通过控制手段来实现系统稳定、优化和鲁棒性的学科,而矩阵不等式则是控制论中常用的数学工具之一。
本文将介绍控制论中常用的几种矩阵不等式,并讨论其在控制系统设计中的应用。
1. 线性矩阵不等式(LMI)线性矩阵不等式是控制论中最常用的矩阵不等式之一。
它的形式为:$$A(x)X+B(x)Y+C^{T}(x)YC(x)<0$$其中,$A(x)$、$B(x)$、$C(x)$均为实系数矩阵函数,$X$、$Y$均为矩阵变量。
该不等式表示的是矩阵函数$A(x)$、$B(x)$、$C(x)$构成的线性系统对应的闭环系统是渐进稳定的,即对任意的初值$x_0$,系统的输出$y(t)$都会收敛到零。
2. Lyapunov矩阵不等式Lyapunov矩阵不等式是控制论中另一种常用的矩阵不等式。
它的形式为:$$A^{T}P+PA<-Q$$其中,$A$为系统的状态转移矩阵,$P$为对称正定矩阵,$Q$为对称正定矩阵。
该不等式表示的是系统的Lyapunov函数$V(x)=x^{T}Px$满足$V(x)leqslant-alpha x^{T}x$,其中$alpha$是正常数。
3. Riccati矩阵不等式Riccati矩阵不等式也是控制论中常用的矩阵不等式之一。
它的形式为:$$A^{T}P+PA-PBR^{-1}B^{T}P<-Q$$其中,$A$、$B$为系统的状态转移矩阵和输入矩阵,$P$为对称正定矩阵,$R$为对称正定矩阵。
该不等式表示的是系统的最优控制输入满足线性方程$u=-R^{-1}B^{T}Px$。
4. Schur矩阵不等式Schur矩阵不等式是控制论中最基本的矩阵不等式之一。
它的形式为:$$Mprec N$$其中,$M$、$N$为两个对称矩阵,$prec$表示矩阵的部分序。
该不等式表示的是矩阵$N-M$是正定的。
总之,矩阵不等式在控制论中具有广泛的应用,可以用于系统稳定性分析、最优控制设计和鲁棒性分析等领域。
lmi 特征值

lmi 特征值
线性矩阵不等式(LMI)是有如下形式的一种约束描述:其中:$x$是$m$个实数变量,称为线性矩阵不等式(1)的决策变量;$x$是由决策变量构成的向量,称之为决策向量;$A_i$是一组给定的实对称矩阵;(1)式中的不等号“$<0$”表示$F(x)$是“负定”的,也就是说,对所有非零的$x$或者$F(x)$的最大特征值小于零。
在一些将非线性矩阵不等式转化为线性矩阵不等式的问题中,常用到矩阵的Schur补性质。
在LMI特征值问题中,在一个LMI约束下,求矩阵$G(x)$的最大特征值的最小化问题,或确定问题的约束是不可行的。
如需了解更多关于LMI特征值的信息,你可以提供更具体的背景和条件,再次向我提问。
矩阵的几个不等式
矩阵的几个不等式1. 矩阵的不等式定义:矩阵的不等式指的是一组矩阵的元素之间的比较,它可以是大于、小于或等于关系。
矩阵的不等式可以表示为A≤B,其中A和B分别是两个矩阵,A≤B表示A中的每个元素都小于等于B中的对应元素。
## 2. 矩阵的不等式性质1. 对于任意的n阶矩阵A,有A+A≥A;2. 对于任意的n阶矩阵A,有A+A≤2A;3. 对于任意的n阶矩阵A,有A+A≠A;4. 对于任意的n阶矩阵A,有A+A≠2A;5. 对于任意的n阶矩阵A,有A+A≥2A;6. 对于任意的n阶矩阵A,有A+A≤A;7. 对于任意的n阶矩阵A,有A+A≠0;8. 对于任意的n阶矩阵A,有A+A≠-A;9. 对于任意的n阶矩阵A,有A+A≥0;10. 对于任意的n阶矩阵A,有A+A≤-A。
3. 矩阵的不等式应用矩阵的不等式应用可以用于多种情况,如矩阵的范数估计、矩阵的特征值估计、矩阵的迹估计、矩阵的奇异值估计、矩阵的乘积估计等。
此外,矩阵的不等式应用还可以用于求解线性方程组、求解矩阵的逆等问题。
此外,矩阵的不等式应用还可以用于矩阵的正定性判断、矩阵的正交性判断等。
#### 4. 矩阵的不等式推导1. 对于矩阵A,若A的行列式不为零,则有A的逆矩阵存在;2. 若A的行列式为零,则A的逆矩阵不存在;3. 对于任意矩阵A,有A+A的逆矩阵存在;4. 对于任意矩阵A,有A*A的逆矩阵存在;5. 对于任意矩阵A,有A*A+A的逆矩阵存在;6. 对于任意矩阵A,有A*A*A的逆矩阵存在;7. 对于任意矩阵A,有A*A*A+A的逆矩阵存在;8. 对于任意矩阵A,有A*A*A*A的逆矩阵存在;9. 对于任意矩阵A,有A*A*A*A+A的逆矩阵存在。
5. 矩阵的不等式变换:矩阵的不等式变换是指将一个矩阵中的不等式变换为另一个矩阵,这样可以更容易地解决矩阵的不等式问题。
变换的方法有很多,比如可以使用行列式,矩阵乘法,矩阵加法,矩阵转置等。
LMI(线性矩阵不等式)工具箱介绍学习
LMI:Linear Matrix Inequality,就是线性矩阵不等式。
在Matlab当中,我们可以采用图形界面的lmiedit命令,来调用GUI接口,但是我认为采用程序的方式更方便(也因为我不懂这个lmiedit的GUI)。
对于LMI Lab,其中有三种求解器(solver): feasp,mincx和gevp。
每个求解器针对不同的问题:feasp:解决可行性问题(feasibility problem),例如:A(x)<B(x)。
mincx:在线性矩阵不等式的限制下解决最小化问题(Minimization of a linear objective under LMI constraints),例如最小化c'x,在限制条件A(x) < B(x)下。
gevp:解决广义特征值最小化问题。
例如:最小化lambda,在0<B(x),A(x)<lamba*B(x)限制条件下。
要解决一个LMI问题,首要的就是要把线性矩阵不等式表示出来。
对于以下类型的任意的LMI问题N' * L(X1, . . . , XK) * N < M' * R(X1, . . . , XK) * M其中X1, . . . , XK是结构已经事先确定的矩阵变量。
左侧和右侧的外部因子(outer factors)N和M是给定的具有相同维数的矩阵。
左侧和右侧的内部因子(inner factors)L(.)和R(.)是具有相同结构的对称块矩阵。
每一个块由X1, . . . , XK以及它们的转置组合而成形成的。
解决LMI问题的步骤有两个:1、定义维数以及每一个矩阵的结构,也就是定义X1, . . . , XK。
2、描述每一个LMI的每一项内容(Describe the term content of each LMI)此处介绍两个术语:矩阵变量(Matrix Variables):例如你要求解X满足A(x)<B(x),那么X就叫做矩阵变量。
LMI线性矩阵不等式培训讲学
(5)
其中,Xi
∈
Rqi×pi
是一个矩阵,而∑n i=1
qi
×
pi
=
m,所有矩
阵变量的列堆叠起来,形成单个向量变量x。
于是我们考虑下面常用形式的函数:
F (X1, X2, · · · , Xn) = F0 + G1X1H1 + G2X2H2 + · · · + GnXnHn
4
∑n
= F0 + GiXiHi
7
找P > 0,使得
AT P + P A > 0
(14)
这是一个关于变量P > 0的LMI可行性问题,然而,给定满
足该问题的任意的P > 0,明显地集合
P
=
{
βP
:
标量β
>
}
0
(15)
中任意矩阵都满足上述问题。
P > 0和(14)所描述的LMI约束,可以等价地组成一个LMI:
AT P + P A 0 < 0
9
%可行 ( 是稳定的A) 当且仅当 tmin<0
tmin
运行结果:
Lyap = 1
Solver for LMI f e a s i b i l i t y problems L ( x ) < R( x ) 10
This solver minimizes t subject to L( x ) < R( x ) + t∗I
The best value o f t should be negative for f e a s i b i l i t y
Iteration :
线性矩阵不等式
矩阵不等式来表示。
2、 在许多一些非线性矩阵不等式转化成线性矩阵不等式的问题中,我们常常用到矩阵的
Schur 补性质。考虑一个矩阵 S Rnn ,并将 S 进行分块:
S
S11 S21
S12
S22
其中的 S11 是 r×r 维的。假定 S11 是非奇异的,则 S11 S21S111S12 称为 S11 在 S 中的 Schur
补。以下引理给出了矩阵的 Schur 补性质。
引理 2.1.1
对给定的对称矩阵
S
S11 S21
S12 S22
,其中
S11
是
r×r
维的。以下三个条
件是等价的:
(ⅰ) S 0
(ⅱ) S110, S22 S1T2S111S12 0
(ⅲ)
S 22
0,
S11
S12
S
S 1 T
22 12
0
在一些控制问题中,经常遇到二次型矩阵不等式:
AT P PA PBR 1BT P Q0
(2.1.6)
其中:A, B, Q QT 0 , R RT 0 是给定的适当维数的常数矩阵,P 是对称矩阵变量,
NTL(X1,…,Xk)N<MTR(X1,…,XK)M 其中:X1…,XK是具有一定结构的矩阵变量,左、右
外因子N和M是具有相同维数的给定矩阵,左、右内因 子L(﹒)和R(﹒)是具有相同块结构的对称块矩阵。 注意,在线性矩阵不等式的描述中,左边总是指不等 式较小的一边,例如对线性矩阵不等式X>0,X称为是 不等式的右边,0称为是不等式的左边,常表示成0< X.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现有的Riccati方程处理方法中,缺乏寻找参数最佳
值的方法,参数的人为确定给分析和综合结果带来了 很大的保守性。
Riccati矩阵方程本身的求解也存在一定的问题,比
如用于迭代求解时,收敛性无法保证。
线性矩阵不等式的引入
基于凸优化内点法,可应用于系统和控制的各个领
AT P PA + C T C T B P PB 0 I
A B M A jB B A
复矩阵不等式的表示
A B M 0 0 B A
非严格线性矩阵不等式
F 0 F 0
严格线性矩阵不等式
非严格线性矩阵不等式
X F 0 0 0 X 0 X
通常情况下,可将非严格线性矩阵不等式当成严格 线性矩阵不等式处理。但一定要视具体情况而定, 并不总是正确的。
标准的线性矩阵不等式问题
Linear Matrix Inequality (LMI)
可行性问题(LMIP)—求不等式的可行解 特征值问题(EVP)--求不等式的优化解 广义特征值问题(GEVP)--仿射矩阵函数 的不等式优化问题
关于矩阵不等式的一些结论
矩阵变量的替换法 存在标量ε>0,对称矩阵X>0,矩阵K,使得
X A BK T A BK X 2YY T XC T 0 CX I
记 V X ,W KV
存在标量ε>0,对称矩阵V>0,矩阵W,使得
VAT +W T B T + AV + BW 2YY T VC T 0 CV I
域。
1995年,MATLAB推出了求解线性矩阵不等式问
题的LMI工具箱,进一步推动了LMI的飞速发展。
任一可行解均可得到一个控制器,方便实用。
凸(约束)问题
定义(凸集) 一个集合 C R k 称为凸的,如果集合中任意两点
的连线仍在集合内。
1 2 即任意给定两点 C 和 C C 及参数 [0,1],
S-procedure(S-过程)
存在对称矩阵P>0,使得对满足πTπ ξTCTCξ的所有 ξ 0和π,若要 T AT P PA PB 0 T 0 B P 成立,当且仅当存在标量τ>0和对称矩阵P>0,使得
其中
X 11
为方阵,则以下三个条件是等价的:
a)
b) c)
X 0
T 1 X11 X12 0 X11 0 ,且 X 22 X12
1 T X 22 0 ,且 X11 X12 X 22 X12 0
。
Schur补应用
若要证明存在对称矩阵P>0,Q>0,R>0,使得如下不等 式成立 AT P PA PBR1BT P Q 0
只需证明如下线性矩阵不等式(LMI)成立
AT P PA Q PB 0 T B P R
Schur补:是将非线性矩阵不等式转化为线 性矩阵不等式的有效工具
复线性矩阵不等式的处理
复变量实矩阵的映射
a b a jb b a 复矩阵实矩阵的映射
有
C 1 C C
1 2
C 1 1 C 2称为 C 1 和 C 2 的凸组合。
将矩阵不等式的解约束在 矩阵变量定义的空间中
Schur补定理
引理 (Schur Complement) 对于分块对称阵
X11 X T X12 X12 X 22
鲁棒控制
-线性矩阵不等式处理方法
Robust control –LMI Method
主要内容
线性矩阵不等式概论 鲁棒H∞控制 区域极点配置 保性能控制 时滞系统的分析与综合 鲁棒跟踪问题 Matlab的LMI工具箱介绍
线性矩阵不等式概论
Riccati方程存在的问题
需要设计者事先确定一些待定参数。参数的选择不