二次根式练习题(初二数学)
八年级二次根式练习题及答案

一、单选题1、当x≥3时,化简二次根式√(3−x)2的结果是( ) A. 3-x B. 3+x C. x-3 D. -3-x参考答案: C 【思路分析】考查含字母的根式化简。
本考点主要是化简含字母的二次根式,熟练掌握二次根式的性质是解决问题的关键。
【解题过程】 解:∵x≥3, ∴3-x≤0,∴√(3−x)2=|3-x|=x-3。
故选C 。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2、比较二次根式的大小:2−√3( )√3−√2。
A. < B. > C. = D. ≤参考答案: B 【思路分析】先将两数分母有理化,而后再利用分子进行比较,都为正时分子大的数大,都为负时分子大的数小,正数永远大于负数。
【解题过程】解:2−√3=2+√3>0,√3−√2=√3+√2>0,∴2+√3>√3+√2∴12−√3>1√3−√2故选B 。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、比较二次根式的大小:√15−√14( )√13−√12 A. < B. >C. =D. ≤参考答案: A 【思路分析】此题考查运用分子有理化法对二次根式大小的比较,运用分子有理化法时需注意:都是正数时分母大的,原二次根式反而小。
【解题过程】先将两数分子有理化,然后比较分母。
都是正数时分母大的,原二次根式小。
解:√15−√14=√15+√14>0, √13−√12=√13+√12>0, ∵√15+√14>√13+√12, ∴√15+√14<√13+√12 ∴√15−√14<√13−√12 故选A 。
八年级数学下册《二次根式》练习题带答案

八年级数学下册《二次根式》练习题班级:__________ 座号:__________ 姓名:__________________ 成绩:___________一、选择题(每小题4分,共24分)1.二次根式1-a 中,字母a的取值范围是…………………………………………()A.a<1 B.a≤1 C.a≥1 D.a>12.下列与 2 是同类二次根式的是……………………………………………………()A. 3 B.12 C.8 D. 2 -13.下列计算正确的是……………………………………………………………………()A. 2 × 3 = 6 B. 2 + 3 = 5 C.8 =4 2 D. 4 - 2 = 24.若(3-b)2=3-b,则…………………………………………………………………()A.b>3 B.b<3 C.b≥3 D.b≤35.下列根式中不是最简二次根式的是…………………………………………………()A.10 B.8 C. 6 D. 26.已知12-n 是正整数,则实数n的最大值为………………………………………()A.12 B.11 C.8 D.3二、填空题(每题3分,共36分)7.使式子4-x 无意义的x取值的是______________;8.计算:(6)2=____________;9.化简:81×49 =______________;10.化简:153=_________;11.比较大小:-32___________-2 3 ;12.写出一个无理数,使它与32的积为有理数_____________;13.若x-23-x=x-23-x成立,则x满足________________;14.已知一个正数的平方根是2x-6和x+3 ,则这个数是___________;15.如果最简二次根式3a-3 与7-2a 是同类二次根式,那么a的值是________;16.已知a、b为两个连续整数,且a<7<b,则a+b=_________;17.把二次根式313中根号外的因数移到根号内,结果是______________;18.观察并分析右边的数据,寻找规律:0,6,3,23,15,32,…,那么第10个数据应是_____________。
(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。
【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。
【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。
m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。
【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。
【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。
【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。
2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。
【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。
1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。
二次根式初二练习题及答案

二次根式初二练习题及答案一、选择题1. 将下列二次根式化简,得出最简形式:a) $\sqrt{8}$b) $\sqrt{75}$c) $\sqrt{27}$d) $\sqrt{50}$A) $2\sqrt{2}$ B) $3\sqrt{5}$ C) $6\sqrt{3}$ D) $5\sqrt{2}$2. 根据题意,判断下列等式是否成立:a) $\sqrt{16} = 4$b) $\sqrt{82} = 9$c) $\sqrt{5^2} = 5$d) $\sqrt{11^2} = -11$A) 是 B) 否3. 将下列二次根式化成标准形式:a) $3\sqrt{2} + \sqrt{8}$b) $5\sqrt{3} - 2\sqrt{12}$c) $4\sqrt{5} + 2\sqrt{20}$d) $2\sqrt{3} - 3\sqrt{6}$A) $5\sqrt{2}$ B) $3\sqrt{3}$ C) $6\sqrt{5}$ D) $-3\sqrt{3}$4. 计算:a) $\sqrt{25} + \sqrt{9}$b) $2\sqrt{49} - \sqrt{64}$c) $3\sqrt{36} + 4\sqrt{16}$d) $5\sqrt{81} - 2\sqrt{64}$A) 20 B) 4 C) 12 D) 85. 填空:a) $\sqrt{4} =$ ________b) $\sqrt{100} =$ ________c) $\sqrt{121} =$ ________d) $\sqrt{144} =$ ________A) 2 B) 10 C) 11 D) 12二、解答题1. 将下列各式化简为最简形式:a) $\sqrt{18}$b) $\sqrt{32}$c) $\sqrt{50}$d) $\sqrt{98}$2. 简化下列二次根式:a) $2\sqrt{27} - 3\sqrt{48}$b) $5\sqrt{15} + 3\sqrt{20}$c) $\sqrt{45} - 2\sqrt{12}$d) $4\sqrt{80} + 2\sqrt{45}$三、综合运用1. 解方程:$2x^2 - 18 = 0$2. 一个正方形的边长为$x$,则它的对角线长为多少?3. 某正方形面积等于某长方形面积的五分之一,且长方形的宽为$y$,则长方形的长是多少?四、答案选择题答案:1. A) $2\sqrt{2}$ 2. A) 是 3. B) $3\sqrt{3}$ 4. C) 12 5. A) 2解答题答案:1. a) $3\sqrt{2}$ b) $4\sqrt{2}$ c) $5\sqrt{2}$ d) $7\sqrt{2}$2. a) $\sqrt{6}$ b) $4\sqrt{5}$ c) $\sqrt{45} - \sqrt{8}$ d) $6\sqrt{5} + 3\sqrt{2}$三、综合运用答案1. 解方程:$x = 3$ 或 $x = -3$2. 对角线长为$x\sqrt{2}$3. 长方形的长为$5y$通过以上练习题的训练,相信同学们对初二阶段的二次根式有了更深的理解和掌握。
【初二数学】二次根式练习题(共4页)

二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( ) A .m≤3 B .m <3 C .m≥3 D .m >32.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个 3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个5.化简二次根式352⨯-)(得 ( ) A .35- B .35 C .35± D .306.对于二次根式92+x ,以下说法不正确的是 ( ) A .它是一个正数 B .是一个无理数 C .是最简二次根式 D .它的最小值是3 7.把aba 123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b 2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:ab ab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义. 13.比较大小:23-______32-.14.=⋅baa b 182____________;=-222425__________. 15.计算:=⋅b a 10253___________.16.计算:2216acb =_________________. 17.当a=3时,则=+215a ___________.18.若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -. 20.(12分)计算:⑴))((36163--⋅-; ⑵63312⋅⋅; ⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-. 21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..;⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式:⑴27121352722-; ⑵ba c abc 4322-.23.(6分)已知:2420-=x ,求221xx +的值.参考答案: 一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A . 二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3. 三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角。
八年级上册数学二次根式练习题

《二次根式》练习题一1.下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤2.下列运算结果正确的是()A.B.C.(﹣)2=2D.3.下列式子是最简二次根式的是()A.B.C.D.4.下列二次根式中,最简二次根式是()A.−√0.75B.14√63C.13√101D.√155.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:56.计算÷3×的结果正确的是()A.1B.2.5C.5D.67.下列整数中,与最接近的是()A.﹣1B.0C.1D.28.已知a<0,b≠0,化简二次根式的结果是()A.a B.﹣a C.a D.﹣a9.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如2 +1是型无理数,则(﹣)2属于无理数的类型为()A.型B.型C.型D.型10.已知y=x+5﹣,当x分别取1,2,3,…,2021时,所对应y值的总和是()A.16162B.16164C.16166D.1616811.如图,∠MON=90°,已知△ABC中,AC=BC=10,AB=12,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,点A随之在边OM上运动,△ABC的形状保持不变,在运动过程中,点C到点O的最大距离为()A.12.5B.13C.14D.15《二次根式》练习题二12.下列4个数:0.,,π﹣3.14,,其中无理数有个.13.若使代数式有意义,则x的取值范围是.14.计算的结果是.15.计算•(a≥0,b≥0)=.16.计算×÷2=.17.计算:(3+2)(3﹣2)=.18.若成立,则x满足的条件为.19.若=2﹣x,则实数x满足的条件是.20.设a、b、c是△ABC的三边的长,化简的结果是.21.若|2020﹣m|+=m,则m﹣20202=.22.计算:(1)++|1﹣|(2)3×÷223.计算:(1)÷(2)÷3×24.计算:•(﹣)÷(a>0)25.已知a、b满足,求的平方根.《二次根式》练习题三26.如图,四边形ABCD中,∠A=90°,AB=AD=3,BC=10,CD=8,求四边形ABCD 的面积.27.如图,已知BA=BC,BD=BE,∠ABC=∠EBD=90°.(1)求证:AB平分∠EAC;(2)若AD=1,CD=3,求BD.28.求+的值.解:设x=+,两边平方得:x2=()2+()2+2=3++3﹣+4=10∴x=±∵+>0,∴+=请利用上述方法,求+的值.29.先阅读材料,然后回答问题.(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简.经过思考,小张解决这个问题的过程如下:①=②=③=④在上述化简过程中,第步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简①;②30.如图1,∠MCN=90°,点A在射线CM上滑动,点B在射线CN上滑动,且线段AB 的长始终保持10cm不变.(1)若AC=6cm,动点P从点A出发,从点A→点B→点C→点A,速度为2cm/s,设运动时间为ts.当t为何值时,△ACP为等腰三角形;(2)如图2,在滑动过程中,以AB为斜边在AB的右侧作Rt△ABE,在滑动的过程中EC的最大值为 .(直接写出结果)参考答案练习题一1.下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤【解答】解:是二次根式的有①③⑤;②中被开方数小于0无意义,④是三次根式.故选:B.2.下列运算结果正确的是()A.B.C.(﹣)2=2D.【解答】解:A:∵=4,∴A选项不符合题意;B:∵==3,∴B选项不符合题意;C:∵(﹣)2=2,所以C选项符合题意;D:∵,所以D选项不符合题意.故选:C.3.下列式子是最简二次根式的是()A.B.C.D.【解答】解:A.=2,因此选项A不符合题意;B.=,因此选项B不符合题意;C.==,因此选项C不符合题意;D.的被开方数是整数,且不含有能开得尽方的因数,因此是最简二次根式,因此选项D符合题意;故选:D.4.下列二次根式中,最简二次根式是()A.−√0.75B.14√63C.13√101D.√15【解答】解:最简二次根式的条件:①被开方数的因式或因数的指数小于2;②被开方数的因数是整数,因式是整式.A、D不符合上述条件②,不是最简二次根式;B、不符合上述条件①,不是最简二次根式.故选C.5.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【解答】解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC 是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.6.计算÷3×的结果正确的是()A.1B.2.5C.5D.6【解答】解:÷3×=3÷3×=×=1,故选:A.7.下列整数中,与最接近的是()A.﹣1B.0C.1D.2【解答】解:∵4<5<9,∴2<<3,∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∴1.2﹣1<1.3,∴与最接近的是1.故选:C.8.已知a<0,b≠0,化简二次根式的结果是()A.a B.﹣a C.a D.﹣a【解答】解:因为a<0,b≠0,所以,故选:B.9.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如2+1是型无理数,则(﹣)2属于无理数的类型为()A.型B.型C.型D.型【解答】解:(﹣)2=6﹣2××+2=﹣4+8,属于型无理数,故选:B.10.已知y=x+5﹣,当x分别取1,2,3,…,2021时,所对应y值的总和是()A.16162B.16164C.16166D.16168【解答】解:y=x+5﹣|x﹣3|,当x≤3时,∴y=x+5+x﹣3=2x+2,当x>3时,∴y=x+5﹣(x﹣3)=x+5﹣x+3=8,∴y值的总和为:4+6+8+8+8+……+8=4+6+8×2019=16162,故选:A.11.如图,∠MON=90°,已知△ABC中,AC=BC=10,AB=12,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,点A随之在边OM上运动,△ABC的形状保持不变,在运动过程中,点C到点O的最大距离为()A.12.5B.13C.14D.15【解答】解:取AB的中点D,连接CD,如图所示:∵AC=BC=10,AB=12,∵点D是AB边中点,∴BD=AB=6,∴CD===8,连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=6,∴OD+CD=6+8=14,即点C到点O的最大距离为14,故选:C.练习题二12.下列4个数:0.,,π﹣3.14,,其中无理数有2个.【解答】解:0.,,π﹣3.14,,其中无理数有π﹣3.14,,一共2个.故答案为:2.13.若使代数式有意义,则x的取值范围是x≤2且x≠0.【解答】解:由题意得:2﹣x≥0且x≠0,解得:x≤2且x≠0,故答案为:x≤2且x≠0.14.计算的结果是3.【解答】解:原式==3,故答案为:3.15.计算•(a≥0,b≥0)=6a.【解答】解:•(a≥0,b≥0)==6a.故答案为:6a.16.计算×÷2=3.17.计算:(3+2)(3﹣2)=1.【解答】解:原式=32﹣(2)2=9﹣8=1.故答案为:1.18.若成立,则x满足2≤x<3.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.19.若=2﹣x,则实数x满足的条件是x≤2.20.设a、b、c是△ABC的三边的长,化简的结果是2b﹣2a.【解答】解:原式=|a﹣b﹣c|﹣|a﹣b+c|=﹣a+b+c﹣a+b﹣c=2b﹣2a,故答案为:2b﹣2a.21.若|2020﹣m|+=m,则m﹣20202=2021.【解答】解:由题意得:m﹣2021≥0,解得:m≥2021,∵|2020﹣m|+=m,∴m﹣2020+=m,∴=2020,∴m﹣2021=20202,则m﹣20202=2021,故答案为:2021.22.计算:(1)++|1﹣|【解答】解:原式=3﹣2﹣1+=.计算:(2)3×÷2.【解答】解:原式=(3×÷2)==.23.计算:(1)÷(2)÷3×【解答】(1);(2).24.计算:•(﹣)÷(a>0).【解答】解:原式====.25.已知a、b满足,求的平方根.【解答】解:由题意知:,∴a2﹣4=0,∴a=±2,又a﹣2≠0,∴a=﹣2,当a=﹣2时,b=﹣1,∴===2,的平方根的平方根为±.练习题三26.如图,在四边形ABCD中,∠A=90°,AB=AD=3,BC=10,CD=8,求四边形ABCD的面积.【解答】解:连接BD,∵∠A=90°,AB=AD=3,∴BD===6,∵BC=10,CD=8,∴BD2+CD2=BC2,∴△BDC是直角三角形,且∠BDC=90°,∴四边形ABCD的面积S=△ABD+S△BDC==+=9+24=33.27.如图,已知BA=BC,BD=BE,∠ABC=∠EBD=90°.(1)求证:AB平分∠EAC;(2)若AD=1,CD=3,求BD.【解答】解:(1)证明:∵∠ABC=∠EBD=90°,∴∠ABD+∠CBD=∠ABD+∠ABE,∴∠CBD=∠ABE,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴∠EAB=∠BAC,∴AB平分∠EAC;(2)答案:.28.求+的值解:;设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±.∵+>0,∴+=请利用上述方法,求+的值.【解答】解:设x=+,两边平方得:x2=()2+()2+2,即x2=4++4﹣+6,x2=14∴x=±.∵+>0,∴x=29.先阅读材料,然后回答问题.(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简.经过思考,小张解决这个问题的过程如下:①=②=③=④在上述化简过程中,第④步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简①;②.【解答】解:(1)①=②=③=||=.故答案为:④;;(2)①.②===.30.如图1,∠MCN=90°,点A在射线CM上滑动,点B在射线CN上滑动,且线段AB 的长始终保持10cm不变.(1)若AC=6cm,动点P从点A出发,从点A→点B→点C→点A,速度为2cm/s,设运动时间为ts.当t为何值时,△ACP为等腰三角形;(2)如图2,在滑动过程中,以AB为斜边在AB的右侧作Rt△ABE,在滑动的过程中EC的最大值为10cm.(直接写出结果)【解答】解:(1)①AC=AP时,AP=AC=6cm,则t=6÷2=3;②AC=CP时,CP=AC=6cm,在Rt△ACB中,CB===8(cm),∴BP=CB﹣CP=8﹣6=2(cm),∴t=(10+2)÷2=6;或如图1﹣1,过点C作CD⊥AB于D,则D为AP中点,AD=×6=3.6,AP=2AD=7.2,∴t=7.2÷2=3.6;③AP=CP时,如图1﹣2,过点P作PD⊥AC于D,则D为AC中点,∵∠ADP=∠ACB=90°,∴DP∥CB,∴点P为AB的中点,∴AP=AB=×10=5(cm),则t=5÷2=2.5.故当t=3或t=6或t=3.6或t=2.5时,△ACP为等腰三角形;(2)答案为:10cm.。
二次根式测试题及答案

二次根式测试题及答案一、选择题(每题 3 分,共 30 分)1、下列式子一定是二次根式的是()A √xB √x²+1C √x² 1D √1 / x答案:B解析:二次根式的被开方数必须是非负数。
选项 A 中,当 x < 0 时,√x 无意义;选项 C 中,当-1 < x < 1 时,x² 1 < 0 ,√x² 1 无意义;选项 D 中,当 x < 0 时,√1 / x 无意义。
而对于选项 B,因为x² ≥ 0 ,所以 x²+1 ≥ 1 ,√x² + 1 一定有意义。
2、若√(2 a)²= a 2 ,则 a 的取值范围是()A a < 2B a >2C a ≤ 2D a ≥ 2答案:D解析:因为√(2 a)²=|2 a| ,而√(2 a)²= a 2 ,所以|2 a|= a 2 ,即2 a ≤ 0 ,解得a ≥ 2 。
3、下列计算正确的是()A √2 +√3 =√5B 2 +√2 =2√2C 3√2 √2 =3D √2 × √3 =√6答案:D解析:选项 A,√2 与√3 不是同类二次根式,不能合并;选项 B,2 与√2 不是同类二次根式,不能合并;选项 C,3√2 √2 =2√2 。
4、化简√( 5)²的结果是()A 5B 5C ± 5D 25答案:A解析:√( 5)²=| 5| = 5 。
5、若√x 1 +√1 x = 0 ,则 x 的值为()A 0B 1C 1D 2答案:B解析:因为二次根式有意义的条件是被开方数为非负数,所以 x 1 ≥ 0 且1 x ≥ 0 ,解得 x = 1 。
6、下列二次根式中,最简二次根式是()A √1 /2B √02C √2D √20答案:C解析:选项 A,√1 / 2 =√2 / 2 ;选项 B,√02 =√1 / 5 =√5 / 5 ;选项 D,√20 =2√5 。
(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。
【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。
【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。
m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。
【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。
【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。
【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。
2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。
【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。
1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页(共4页) 第2页(共4页)
二次根式练习题(初二数学)
一、选择题:1
合并的是( )
A
B
C
D
.2
a =-,则a 是( )
A .正数
B .负数
C .非正数
D .非负数
3
x 的取值范围是( )
A .13
x ≥
B .13
x >
C .13
x ≤
D .13
x <
4.下列等式中一定成立的是( )
A
= B
a b =- C
=
D
x y =+
5.若a<1
)
A .a-1
B .-a-1
C .1-a
D .a+1
6
50x -=,则x 的取值范围是( )
A .x>5
B .x<5
C .x≥5
D .x≤5
7
.计算23a ) A .正数 B .负数 C .非负数
D .非正数
8、下列各式中一定是二次根式的是( ) A.a .
B.13+x
C.21x -
D.21x +
9、下列计算正确的是:( )
A .228=
- B .123=- C .523=+ D .263=
10、下列各式中,与12能合并为一个二次根式的是( )
A .96
B .
72
1
C .50
D .
27
4 12、下列各式中一定是二次根式的是( )
A.a .
B.13+x
C.21x -
D.21x + 二、填空题:
1.________)23(2
=- 23与32的大小关系是______________
2.有意义时,当a a 21_______- ; 当x
时, 3.若22-+
-x x 有意义,则x=_______
4.__________2,02可以化简为那么已知a a a -< 5.当m<3时,______________)3(2=-m 6.设x,y 为实数,满足______1
1,144=--+-+-<
y y x x y 化简
7.__________1
0=-
<a
a a 时,化简当 8. 若|a-b+1|
互为相反数,则(a-b)2007= 。
9
.y =
中x 的范围 。
10.若2<x<3
|2|
2
a a -+
-= 。
11
.99101
⋅= 。
12.___________12
x x
是二次根式,则若
-.
第3页(共4页). 第4页(共4页).
13._____,2
1
838,=+---=
xy x x y y x 则为实数,且若
14.计算:22)832
1
4
64(÷+- 15。
则已知__________1,11=+
=-
x
x x
x
16、设7的小数部分为b ,那么(4+b)b=______________ 17、__________2,02可以化简为那么已知a a a -< 三.计算: (1)5025.02
1
⨯
(2))16(49-⨯-
(3))102
1
(325
3
1-⨯⨯ (4)3200
(5))0(185
2
>x y x (6)5
3
1513÷
(7)10
1
1252403-- (8)20082007)23()23(-+
(9
(10
)四、先化简,再求值:
1
、((6)a a a a --
,其中12
a =。
2、2
2
11(
)2b
a b a b a ab b -÷-+-+
,其中1a =
1b =
3、
2222
211
()a ab b a b a b -+÷--
,其中1a =
,1b =
五、观察下列分母有理化的计算:
454
51,
343
41,
232
31,
121
21-=+-=+-=+-=+,……
从计算结果中找出规律,并利用这一规律计算:
(
)2001
20021 (3)
412
311
21++
+++
++
+()12002+。