八年级数学 二次根式的化简求值 练习题及答案

合集下载

新人教版八年级下二次根式的化简与求值练习题

新人教版八年级下二次根式的化简与求值练习题

新人教版八年级下二次根式的化简与求值练习题一、化简根式1. 化简根式 $\sqrt{12}$。

2. 将根式 $\sqrt{18}$ 化简为最简根式。

3. 化简根式 $\sqrt{\frac{27}{8}}$。

4. 将根式 $\sqrt{\frac{20}{3}}$ 化简为最简根式。

二、求值1. 计算 $\sqrt{25}$ 的值。

2. 利用近似计算的方法,求出 $\sqrt{7}$ 的值(保留两位小数)。

3. 计算 $\sqrt{16 - 9}$ 的值。

4. 计算 $\sqrt{50} - \sqrt{32}$ 的值。

三、综合练1. 将根式 $\sqrt{24}$ 化简为最简根式,再求它的值。

2. 计算 $\sqrt{34} + \sqrt{8}$ 的值(保留两位小数)。

3. 将根式 $\sqrt{\frac{50}{3}}$ 化简为最简根式,再求它的值(保留两位小数)。

4. 计算 $3\sqrt{5} + 2\sqrt{20}$ 的值。

四、挑战练1. 将根式 $\sqrt{\frac{125}{16}}$ 化简为最简根式。

2. 将根式 $\sqrt{1 - \frac{1}{4}}$ 化简为最简根式。

3. 将根式 $\sqrt{\frac{2}{3} - \frac{1}{6}}$ 化简为最简根式。

4. 计算 $2\sqrt{12} - \sqrt{27} + \sqrt{48}$ 的值。

以上为《新人教版八年级下二次根式的化简与求值练习题》的内容。

请按照题目进行练习,如有疑问,请及时咨询老师或同学。

祝您学习进步!。

专题训练 二次根式化简求值有技巧(含答案)

专题训练   二次根式化简求值有技巧(含答案)

专题练习(一)二次根式化简求值有技能(含答案)【1 】► 类型之一 应用二次根式的性质a2=|a|化简 对于a2的化简,不要盲目地写成a,而应先写成绝对值的情势,即|a|,然后再依据a 的符号进行化简.即a2=|a|=⎩⎨⎧a (a >0)0(a =0)-a (a <0).1.已知a =2-3,则a2-2a +1=( )A .1-3B.3-1 C .3-3D.3-32.当a <12且a ≠0时,化简:4a2-4a +12a2-a=________. 3.当a <-8时,化简:|(a +4)2-4|.4.已知三角形的双方长分离为3和5,第三边长为c,化简:c2-4c +4-14c2-4c +16. ► 类型之二 逆用二次根式乘除法轨则化简 5.当ab <0时,化简a2b 的成果是( ) A .-a bB .a -bC .-a -bD .a b6.化简:(1)(-5)2×(-3)2;(2)(-16)×(-49); (3) 2.25a2b;(4)-25-9;(5)9a34. ► 类型之三 应用隐含前提求值7.已知实数a 知足(2016-a )2+a -2017=a,求a -12016的值. 8.已知x +y =-10,xy =8,求x y +y x 的值. ► 类型之四 巧用乘法公式化简9.盘算:(1)(-4-15)(4-15);(2)(26+32)(32-26); (3)(23+6)(2-2);(4)(15+4)2016(15-4)2017.► 类型之五 巧用整体思惟进行盘算10.已知x =5-26,则x2-10x +1的值为( )A .-306B .-186-2C .0D .10611.已知x =12(11+7),y =12(11-7),求x2-xy +y2的值. 12.已知x >y 且x +y =6,xy =4,求x +yx -y 的值.► 类型之六 巧用倒数法比较大小13.设a =3-2,b =2-3,c =5-2,则a,b,c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a_详解详析1.[解析]B a2-2a +1=|a -1|.因为a -1=(2-3)-1=1-3<0,所以|a -1|=-(1-3)=3-1.故选B.2.[答案] -1a[解析] 原式=(2a -1)2a (2a -1)=|2a -1|a (2a -1). 当a <12时,2a -1<0,所以|2a -1|=1-2a. 所以原式=1-2a a (2a -1)=-1a. 3.解:当a <-8时,a +4<-4<0,a +8<0,∴|a +4|=-(a +4),|a +8|=-(a +8).∴原式=|-(a +4)-4|=|-a -8|=|a +8|=-(a +8)=-a -8.4.[解析] 由三角形三边关系定理可得2<c <8,将这两个二次根式的被开方数分化因式,就可以应用二次根式的性质化简了.解:由三角形三边关系定理,得2<c <8.∴原式=(c -2)2-(12c -4)2=c -2-(4-12c)=32c -6. 5.[解析]A 由ab <0,可知a,b 异号且a ≠0,b ≠0.又因为a2≥0,且a2b ≥0,所以a <0,b>0.所以原式=-a b.[点评] 逆用二次根式的乘除法轨则进行化简时,症结是留意轨则成立的前提,还要留意二次根式的总体性质符号,即化简前后符号要一致.6.解:(1)原式=(-5)2×(-3)2=5×3=15.(2)原式=16×49=16×49=4×7=28.(3)原式= 2.25×a2·b =1.5a ·b =3a 2b. (4)原式=259=259=53. (5)原式=9a34=3a 2 a. 7.解:依题意可知a -2017≥0,即a ≥2017.所以原前提转化为a -2016+a -2017=a,即a -2017=2016.所以a =20162+2017. 所以a -12016=20162+20162016=2017. [点评] 解决此题的症结是从已知前提中发掘出隐含前提“a -2017≥0”,如许才干对(2016-a )2进行化简,从而求出a 的值.8.解:依题意可知x <0,y <0. 所以原式=x2xy +y2xy =-x xy +-y xy =-(x +y )xy . 因为x +y =-10,xy =8,所以原式=-(-10)8=522. [点评] 解决此题的症结是从已知前提中剖析出x,y 的正负性,如许才干对请求的式子进行化简和求值.假如盲目地化简代入,那么将会得出-522这个错误成果. 解答此题还有一个技能,那就是对x y +y x进行变形时,不要按通例化去分母中的根号,而是要依据已知前提的特色对它进行“通分”. 9.解:(1)原式=(-15)2-42=15-16=-1.(2)原式=(32)2-(26)2=18-24=-6. (3)原式=3(2+2)(2-2)=3(4-2)=2 3.(4)原式=(15+4)2016(15-4)2016(15-4)=[(15+4)(15-4)]2016(15-4)=15-4.[点评] 应用乘法公式化简时,要擅长发明公式,经由过程符号变形.地位变形.公因式变形.联合变形(添括号).指数变形等,变出乘法公式,就可以应用公式进行化简与盘算,事半功倍.10.[解析]C 原式=(x -5)2-24. 当x =5-26时,x -5=-26,∴原式=(-26)2-24=24-24=0.故选C.[点评] 解答此题时,先对请求的代数式进行配方,然后视x -5为一个整体代入求值,这比直接代入x 的值进行盘算要简略得多. 11.解:因为x +y =11,xy =14[(11)2-(7)2]=1, 所以x2-xy +y2=(x +y)2-3xy =(11)2-3=8.[点评] 这类问题平日视x +y,xy 为整体,而不是直接代入x,y 的值进行盘算.12.解:因为(x -y)2=(x +y)2-4xy =20,且x >y,所以x-y=20=25,所以原式=(x+y)2(x)2-(y)2=x+y+2xyx-y=6+425= 5.[点评] 此题需先整体求出x-y的值,然后再整体代入变形后的代数式盘算.13.[解析]A 因为(3-2)(3+2)=1,所以a=3-2=13+2.同理,b=12+3,c=15+2.当分子雷同时,分母大的分式的值反而小,所以a>b>c.故选A.[点评] 这里(3-2)(3+2)=1,即3-2与3+2互为倒数.是以,比较大小时,可把3-2转化为13+2,从而转化为分母大小的比较。

二次根式化简练习题含答案

二次根式化简练习题含答案

20. . . 下载可编辑二次根式化简练习题含答案(培优)一)判断题: (每小题 1 分,共 5分)( 2)2ab =- 2 ab .⋯⋯⋯⋯⋯3 -2 的倒数是 3 + 2.( )(x 1) = ( x 1) .⋯( )132 aa 3b 、 是同类二次根式.⋯(3 x b1, 9 x 2 都不是最简二次根式. (3每小题 2 分,共 20 分) 1______ 时,式子 1 有意义.x31.2. 3.4. 5. ab 、8x ,二)填空题: 6.当x 10 25化简-15 2 ÷a - a 21的有理化因式是 当 1<x <4时, |x -4|+ x 22x 1=10.方程 2(x -1)=x +1的解是 _______ 7.8. 9.27 12a 3ab c 2d 211.已知 a 、b 、c 为正数, d 为负数,化简ab c 2d 212.比较大小:- 1 ____________ - 1 .2 7 4 313.化简: (7-5 2 ) 2000· ( -7- 5 2 ) 2001= ___ 14.若 x 1+ y 3=0,则(x -1) 2+( y +3) 2=15.x ,y 分别为 8- 11 的整数部分和小数部分,则 三)选择题: (每小题 3 分,共 15 分)16.已知 x 3 3x (A )x ≤02=- x x 3 ,则⋯⋯⋯⋯⋯⋯B )x ≤- 3 (C )x ≥- 317.若 x < y < 0,(A )2x18.若 0< x < 1,19.A )化简2 2xy - y=)D )- 3≤x ≤0 x 22xy y 2+ x 22xy y 2=⋯⋯B )2y(C )-2x(D )- 2y12(x )24 等于⋯⋯⋯x(xxB )- 2 x( a < 0) 得A )当 a < 0 , b < 0 时,- a + 24-C) - 2xD )2xB )- a( C )- a ab- b 可变形为⋯⋯⋯D ) aA )( a b )2 (B )- ( a b )2(C )( a b )2 (D ) (a b )2四)计算题: (每小题 6 分,共 24分)21.( 5 3 2 )( 5 3 2 );22.五)求值: (每小题 7分,共 14 分)3724.( a +b ababa+bab b ab aa b)(a ≠ b ). ab25.已知 x =y =32 32,求xy32x xy 3 2 2 32x y x y的值.26.当 x =1- 2 时,求2x x 2a 2+1 2 2 2 2 2x x x a x a的值.2x六、解答题: (每小题 8分,共 16 分)27.计算( 2 5 +1)( 1 + 1 + 1 +⋯+ 1 ).1 2 2 3 3 4 99 100(一)判断题: (每小题 1 分,共 5分)1、【提示】 ( 2) =| - 2| = 2.【答案】×.2、【提示】 1 = 3 2 =-( 3 + 2).【答案】×.3 2 3 43、【提示】 (x 1)2 =|x -1|,( x 1) 2 =x - 1( x ≥ 1).两式相等,必须 x ≥1.但等式左边 x 可取任何数.【答案】×.132 a4、【提示】 1 a 3b 、化成最简二次根式后再判断. 【答案】√.3 x b5、9 x 2是最简二次根式. 【答案】×.(二)填空题: (每小题 2 分,共 20分)6、【提示】 x 何时有意义? x ≥0.分式何时有意义?分母不等于零. 【答案】 x ≥0且 x ≠9.7、【答案】- 2a a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】( a - a 21 )( ______ )= a 2- ( a 21)2.a +a 21 .【答案】 a +a 21.9、【提示】 x 2-2x +1=( )2,x -1.当 1<x <4时,x -4,x -1 是正数还是负数?x - 4是负数, x -1是正数.【答案】 3.10、【提示】把方程整理成 ax = b 的形式后, a 、b 分别是多少? 2 1, 2 1.【答案】 x =3+2 2 . . . 下载可编辑 . .28.若 x ,y 为实数,且1y = 1 4x + 4x 1 +2xy2y的值.x11、【提示】c2d2=|cd|=-cd.【答案】ab +cd.【点评】∵ ab=( ab)2(ab>0),∴ ab-c2d2=(ab cd )(ab cd ).12、【提示】 2 7=28 ,4 3=48 .1 1 1【答案】<.【点评】先比较28,48 的大小,再比较1,1的大小,最后比较-1与28 48 28 1-的大小.4813、【提示】(-7-5 2 )2001=(-7-5 2 )2000·(______ )[ -7-5 2.](7-5 2)·(-7-5 2 )=?[1 .] 【答案】-7-5 2.【点评】注意在化简过程中运用幂的运算法则和平方差公式.14、【答案】40.【点评】x 1≥0,y 3≥0.当x 1+y 3=0 时,x+1=0,y-3=0.15、【提示】∵ 3< 11 <4,∴ ___________ < 8-11 <__________ .[4 ,5] .由于8-11 介于 4 与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-11 ] 【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题 3 分,共15 分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x<y<0,∴ x-y<0,x+y<0.∴ x22xy y2=(x y)2=|x-y| =y-x.x22xy y2=(x y)2=| x+y| =-x-y.【答案】C.【点评】本题考查二次根式的性质a2=|a| .1 2 1 2 1 2 1 218、【提示】(x-)+4=(x+),(x+)-4=(x-).又∵ 0<x< 1,x x x x11∴ x+ >0,x- < 0.【答案】D.xx【点评】本题考查完全平方公式和二次根式的性质.(A)不正确是因为用性质时没有注意当0< x<1时,x-1< 0.x19、【提示】 a =a a =a · a =| a| a =- a a .【答案】C.20、【提示】∵ a<0,b<0,∴ -a>0,-b>0.并且-a=( a)2,-b=( b)2,ab=( a)( b).【答案】C.【点评】本题考查逆向运用公式( a)2=a(a≥0)和完全平方公式.注意(A)、(B)不正确是因为a<0,b<0时,a 、b 都没有意义.(四)计算题:(每小题 6 分,共24分)21、【提示】将5 3 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=( 5 3)-( 2)=5-2 15 +3-2=6-2 15 .22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4 11)-4( 11 7)-2(3 7)=4+11-11-7-3+7=1.16 11 11 7 9723、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.解】原式=( a 2 n - ab m m 1n b 21 2a 2b 2 m 1 2 - + b 2 ab 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式= a ab b ab ÷ a a( a b) b b( a b) (a b)(a b) a a 2b 2 ab ab ab ab b ab( a b)( a b) a 2 a ab b ab b 2 a 2 b 2ab( a b)( a b) ab( a b)( a b) =- aab(a b) 【点评】本题如果先分母有理化,那么计算较烦琐. (五)求值: (每小题 7分,共 14 分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x = 3 2 = ( 3 2) 32 2 = 5+ 2 6 , y = 3 2 = ( 3 2)2 =5-2 6 . 32 ∴ x +y =10,x -y =4 6,xy =52-(2 6 )2=1. x 3 xy 2 = x(x y)(x y) = x y x 2 y 3 x 2 y(x y)2 xy(x y) 化简后,根据解题的需要,先分别求出“ 4 3 2 x y 2x y 【点评】本题将 x 、 y 过程更简捷. 4 6 =1 10x +y ”、26 . 5x -y ”、“xy ”.从而使求值的26、【提示】注意: 22x +a = x 2+a 2-x x 2 ( x 2 a 2 )2, a 2 =x 2 22a x 2 x 2 a 2(2xx2 2 2 2x a ( x aa 2) x( xx 2a 2 (x 2 a 2 -x ),x 2- x x -2x x 2a 2+1x) x( x 2 a 2 x)x 2 a 22a 2x)=- x ( x 2a 2- x ).a 2 ( x x 22x x 2 a 2 ( x 2 a 2 )2x x2 a 2( x 2 a 2x x 21.当 x x =1- 2 时,原式= 2a 2x)x x 2a 2x 2=(x 2 a 2)2 x x 2 a 2 =x 2 a 2( x 2a 2 x) x) xx 2a 2(x 2a 2x) x x 2a 2( x 2a 2x)1=- 1 - 2 .【点评】本题如果将前两个“分式”分拆成两个“分12式”之差, 那么化简会更简便.即原式=11 =( ) 2 2 2 2 x a x x ax 2- ( 122xax a 2 ( x 2 a 2 x) 1)+1 = 1 xx 2 a 2x2x x 2 a2+ 1 x( x 2 a 2 x)x a六、解答题: (每小题 8分,共 16 分)27、 提示】先将每个部分分母有理化后,再计算. 2 1 3 2 4 3解】原式=( 2 5 + 1) 21 [ ( 2 100 + + +⋯+ 3 2 4 3 1 )+( 3 2 )+ 1) 100 99 ) 100 994 3 )+⋯+( 100 99 ) ]=(2 5 +1) =(2 5 +1) =9(2 5 +1). 【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为 整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 28、 提示】要使 y 有意义,必须满足什么条件? 1 4x 4x 0] 你能求出 x , 0. y 的值吗? 141.]2. 1 4x解】要使 y 有意义,必须 [4x 1 ,即14∴1.4.(x y )2( yx )1 y =2 x = 1 .当 4 x = 1 时, 41 y = 2(y y x|∵ x = 2 y 原式= 2 114 = 2 .【点评】解本题的关键是利用二次根式的意义求出 又∵ x2 yyx-xyy x |-|x原式= x y - yxxyyxy )2-x) -1x = 4y当xx<y .yx y = 1时,212x 的值,进而求出 y 的值.。

八年级初二数学二次根式练习题含答案

八年级初二数学二次根式练习题含答案
(2)
=
=
=
∵ ,

=
=

∵ , ,
∴ .
【点睛】
本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.
23.先阅读下列解答过程,然后再解答:
形如 的化简,只要我们找到两个正数 ,使 , ,使得 , ,那么便有:
例如:化简
解:首先把 化为 ,这里 ,由于 ,即: , ,
【答案】(1)4 ;(2)10
【分析】
(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;
(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.
【详解】
(1)∵a= + ,b= - ,
∴a+b= + + ﹣ =2 ,
A.m>﹣2B.m>﹣2且m≠1C.m≥﹣2D.m≥﹣2且m≠1
10.下列计算正确的是( )
A. B. C. D.
二、填空题
11.已知 ,则 ________.
12.已知a=﹣ ,则代数式a3+5a2﹣4a﹣6的值为_____.
13.已知 可写成 的形式( 为正整数),则 ______.
14.若 ,则 ______.
15.把 根号外的因式移到根号内,得_____________.
16.若 的整数部分为 ,小数部分为 ,则 的值是___.
17.化简二次根式 的结果是_____.
18.已知:x= ,则 可用含x的有理系数三次多项式来表示为: =_____.
19.把 的根号外的因式移到根号内等于?
20.最简二次根式 与 是同类二次根式,则 =________.

考点02 二次根式的运算与化简求值专项练习(解析版)

考点02 二次根式的运算与化简求值专项练习(解析版)

人教版2020——2021年八年级下册新题二次根式的运算与化简求值专项练习1.(2020秋•遵化市期末)计算:(1)﹣(1﹣);(2)(2+6)×÷2.【分析】(1)根据二次根式的乘法和加减法可以解答本题;(2)根据二次根式的乘除法和加法可以解答本题.【解答】解:(1)﹣(1﹣)=﹣+3=3;(2)(2+6)×÷2=(2×+6×)×=(4+18)×=2+9.2.(2020秋•太平区期末)计算题:(1);(2)×﹣;(3)(+3)×(3﹣)﹣(﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后约分即可;(2)利用二次根式的乘除法则运算;(3)根据平方差公式和完全平方公式计算.【解答】解:(1)原式==6;(2)原式=﹣(﹣)=10﹣(2﹣)=8+;(3)原式=9﹣5﹣(3﹣2+1)=4﹣4+2=2.3.(2020秋•市中区期末)计算:(1)﹣4+2;(2)﹣.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的除法法则运算,然后化简后合并即可.【解答】解:(1)原式=3﹣2+4=5;(2)原式=+﹣4=2+3﹣4=1.4.(2020秋•项城市期末)计算:(1);(2).【分析】(1)根据二次根式的乘法法则运算;(2)根据平方差公式计算.【解答】解:(1)原式=2××+5=3+5;(2)原式=(2)2﹣()2=12﹣6=6.5.(2020秋•织金县期末)计算下列各题:(1)﹣+;(2)﹣(3﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的除法法则和完全平方公式计算.【解答】解:(1)原式=3﹣+=;(2)原式=+﹣(18﹣6+1)=2+4﹣19+6=6﹣13.6.(2020秋•沈河区期末)计算:(1)﹣+2÷;(2)﹣×.【分析】(1)直接利用二次根式的混合运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.【解答】解:(1)﹣+2÷=2﹣+2=+2;(2)﹣×=1+﹣2=﹣1.7.(2020秋•碑林区校级期末)计算:(1)2﹣2+;(2)(﹣2)2﹣.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和二次根式的除法法则运算.【解答】解:(1)原式=6﹣+=6;(2)原式=3﹣4+4﹣(﹣)=7﹣4﹣3+2=6﹣4.8.(2020秋•武侯区期末)计算:(1)(π﹣2020)0﹣2++|1﹣|.(2)﹣(﹣)(+).【分析】(1)根据零指数幂、立方根的定义和绝对值的意义计算;(2)根据二次根式的除法法则和平方差公式计算.【解答】解:(1)原式=1﹣﹣2+﹣1=﹣2;(2)原式=+﹣(3﹣2)=2+3﹣1=4.9.(2020秋•郫都区期末)计算:(1)÷+×﹣;(2)(+2)2﹣(+2)(﹣2).【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用二次根式的混合运算法则化简得出答案.【解答】解:(1)原式=+5﹣3=3;(2)原式=5+4+4﹣(5﹣4)=9+4﹣1=8+4.10.(2020秋•龙华区期末)计算题(1)+(+2)(﹣2);(2)6+|1﹣|﹣(+1)÷.【分析】(1)先化简二次根式,利用平方差公式计算,再进一步计算即可;(2)先化简二次根式、去绝对值符号、除法转化为乘法,再计算乘法,最后计算加减即可.【解答】解:(1)原式=+()2﹣22=2+3﹣4=1;(2)原式=6×+﹣1﹣(+1)×=3+﹣1﹣3﹣=﹣1.11.(2020秋•新化县期末)已知a=1+,b=1﹣,求:(1)求a2﹣2a﹣1的值;(2)求a2﹣2ab+b2的值.【分析】(1)根据完全平方公式把原式变形,把a的值代入计算即可;(2)根据完全平方公式把原式变形,把a、b的值代入计算即可.【解答】解:(1)原式=a2﹣2a+1﹣2=(a﹣1)2﹣2,当a=1+时,原式=(1+﹣1)2﹣2=0;(2)a2﹣2ab+b2=(a﹣b)2,当a=1+,b=1﹣时,原式=(1+﹣1+)2=8.12.(2020秋•永年区期末)已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.【分析】(1)根据分母有理化把x的值化简,计算即可;(2)根据二次根式的混合运算法则计算,得到答案.【解答】解:(1)x===2+,则=2﹣,∴x+=2++2﹣=4;(2)(7﹣4)x2+(2﹣)x+=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.13.(2020春•遵义期末)已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2;(2).【分析】(1)原式利用完全平方公式变形,把a与b的值代入计算即可求出值;(2)原式通分并利用同分母分式的减法法则变形,把a与b的值代入计算即可求出值.【解答】解:(1)∵x=+1,y=﹣1,∴原式=(x+y)2=(+1+﹣1)2=(2)2=8;(2)∵x=+1,y=﹣1,∴原式====2.14.(2020春•浦北县期末)已知:m=+2,n=﹣2,求(1)m﹣n的值;(2)mn的值.【分析】(1)把m与n的值代入原式计算即可求出值;(2)把m与n的值代入原式计算即可求出值.【解答】解:(1)当m=+2,n=﹣2时,m﹣n=(+2)﹣(﹣2)=+2﹣+2=4;(2)当m=+2,n=﹣2时,mn=(+2)×(﹣2)=5﹣4=1.15.(2020春•和县期末)已知x=2+,y=2﹣,求代数式x2﹣y2的值.【分析】根据二次根式的加减法法则分别求出x+y、x﹣y,根据平方差公式把原式变形,代入计算即可.【解答】解:∵x=2+,y=2﹣,∴x+y=4,x﹣y=2,∴x2﹣y2=(x+y)(x﹣y)=8.16.(2020春•潮南区期末)已知a=+2,b=﹣2.求下列式子的值:(1)a2b+ab2;(2)(a﹣2)(b﹣2).【分析】(1)将所求式子因式分解,然后将a+b和ab的值代入即可解答本题;(2)将a、b的值代入所求式子,即可解答本题.【解答】解:(1)∵a=+2,b=﹣2,∴a+b=2,ab=1,∴a2b+ab2=ab(a+b)=1×2=2;(2)∵a=+2,b=﹣2,∴(a﹣2)(b﹣2)=(+2﹣2)×(﹣2﹣2)=×(﹣4)=5﹣4.17.(2020春•姑苏区期末)已知:a=,b=.求值:(1)ab;(2)a2﹣3ab+b2;【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)ab=(+)(﹣)=5﹣3=2.(2)a﹣b=+﹣+=2,∴a2﹣3ab+b2=(a﹣b)2﹣ab=12﹣2=10.18.(2020春•临邑县期末)已知x=,y=.(1)计算x+y=2;xy=4;(2)求x2﹣xy+y2的值;【分析】(1)先将知x=,y=进行分母有理化.然后代入求值;(2)将x2﹣xy+y2的化成(x+y)2﹣3xy,然后将(1)中数据代入求值.【解答】解:∵已知x=,y=.∴x==,y==﹣1.(1)x+y=+1+﹣1=2,xy=(+1)(﹣1)=4.故答案为2,4;(2)x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×4=20﹣12=8.19.(2020春•鱼台县期末)先化简,再求值:+(x﹣2)2﹣6,其中,x=+1.【分析】原式第一项约分,第二项利用完全平方公式化简,第三项利用二次根式性质计算得到最简结果,把x的值代入计算即可求出值.【解答】解:∵x=+1>0,∴原式=+x2﹣4x+4﹣2x=4x+x2﹣4x+4﹣2x=x2﹣2x+4=(x﹣1)2+3=5+3=8.20.(2020春•马山县期末)已知:x=+,y=﹣,求代数式x2﹣y2+5xy的值.【分析】首先把代数式利用平方差公式因式分解,再进一步代入求得答案即可.【解答】解:∵x=+,y=﹣,∴x2﹣y2+5xy=(x+y)(x﹣y)+5xy=2×2+5(+)(﹣)=4+5.。

(完整版)二次根式化简练习题含答案,推荐文档

(完整版)二次根式化简练习题含答案,推荐文档

(-2)2 ab ab 3 3 (x -1)2 ab a 3b 9 + x 2 x - 32512a 3a 2 -1 x 2 - 2x+1 24 32 2 y -3 11 x 3 + 3x 2 x + 3 x 2 - 2xy + y 2 x 2 + 2xy + y 2 (x - 1 )2 +4 x (x + 1 )2- 4 x- a 3- a - a a ab a a - a - a •二次根式化简练习题含答案(培优)(一)判断题:(每小题 1 分,共 5 分)1. =-2 .…………………( )2. -2 的倒数是 +2.() 3. = ( x -1)2.…()4. 、1 、 - 31是同类二次根式.…( )5 , 都不是最简二次根式.( ) 3(二)填空题:(每小题 2 分,共 20 分)16. 当 x时,式子有意义.15 7. 化简- 8÷ = . 8. a -的有理化因式是.9.当 1<x <4 时,|x -4|+ = .10.方程 (x -1)=x +1 的解是 .ab - c 2d 211.已知 a 、b 、c 为正数,d =.1112.13.化简:(7-5 )2000·(-7-5 )2001=.14. 若 x +1 + =0,则(x -1)2+(y +3)2= .15. x ,y 分别为 8-的整数部分和小数部分,则2xy -y 2= .(三)选择题:(每小题 3 分,共 15 分)16.已知 =-x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0 17.若 x <y <0,则 + =………………………()(A )2x (B )2y (C )-2x (D )-2y18.若 0<x <1,则 -等于………………………()2 2(A )(B )-(C )-2x(D )2xx x19.化简 a( a <0 ) 得………………………………………………………………()(A ) (B )- (C )- (D ) 20.当 a <0,b <0 时,-a +2 -b 可变形为………………………………………( )(A ) ( + b )2(B ) - (- b )2(C ) (+ - b )2(D ) (- - b )22 ax b 2 10 27 a5325324 - 11 11 -7aa ab -a3 + 2 3 - 2 3 - 2 3 + 223 +7mnab(四)计算题:(每小题6 分,共24 分)21.(-+)(--);22.5-4-2;ab n2 2n23.(a-+m ma b ;m24.(+a)÷(b a +b+-)(a≠b).(五)求值:(每小题7 分,共14 分)x3 -xy225.已知x=,y=,求x4 y + 2x3 y2 +x2 y3的值.x 2x -x2 +a2 1 26.当x=1-六、解答题:(每小题8 分,共16 分)b ab +b5 (-2)2 3 (x -1)2 a 3b 9 + x 2 x a a 2 -1 a 2 -1 a 2 -1 2 c 2d 2ab ab ab 7 28 3 48 28 48 2 2 2 2 2 2 x - 2 + yy x2 111127.计算(2 +1).28.若 x ,y 为实数,且 y = 1- 4x + 4x -1 + 1.求2 - 的值.(一)判断题:(每小题 1 分,共 5 分) 1、【提示】 =|-2|=2.【答案】×. 1 2、【提示】=3 + 2 =-(+2).【答案】×. 3 - 43、【提示】 =|x -1|, ( 数.【答案】×. x -1)2 =x -1(x ≥1).两式相等,必须 x ≥1.但等式左边 x 可取任何4、【提示】1 、- 3化成最简二次根式后再判断.【答案】√. 5、 是最简二次根式.【答案】×.(二)填空题:(每小题 2 分,共 20 分) 6、【提示】 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0 且 x ≠9. 7、【答案】-2a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a - )( )=a 2- ( a 2 -1)2 .a + .【答案】a + . 9、【提示】x 2-2x +1=( )2,x -1.当 1<x <4 时,x -4,x -1 是正数还是负数?x -4 是负数,x -1 是正数.【答案】3. 10、【提示】把方程整理成 ax =b 的形式后,a 、b 分别是多少? 11、【提示】 =|cd |=-cd .-1, +1.【答案】x =3+2 . 【答案】 +cd .【点评】∵ ab = ( ab )2 (ab >0),∴ ab -c 2d 2=( + cd ) ( - cd ).12、【提示】2 = ,4 = .1 1 1 【答案】<.【点评】先比较 ,113、【提示】(-7-5 )2001=(-7-5 )2000·()[-7-5 .](7-5 )·(-7-5 )=?[1.]【答案】-7-5 .x + 2 + y y x 3 - 22a x b2y - 3 y - 3 11 11 11 11 x 2 - 2xy + y 2 (x - y )2 (x + y )2 a 2- a 3 - a ⋅ a 2 - a a 2- a - a ab (-a )(-b ) a b 3 15 15 11 11 7 7 n ⋅ m m n a + ab + b - ab a + b 5 5 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】 x +1 ≥0, ≥0. 当 x +1 + =0 时,x +1=0,y -3=0. 15、【提示】∵ 3< <4,∴<8- <.[4,5].由于 8- 介于 4 与 5之间,则其整数部分 x =?小数部分 y =?[x =4,y =4- ]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题 3 分,共 15 分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴= =|x -y |=y -x .= =|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质 =|a |.18、【提示】(x - 1 )2+4=(x + 1 )2,(x + 1 )2-4=(x - 1)2.又∵ 0<x <1,x x x x1 1 ∴ x + >0,x - <0.【答案】D .xx【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当 0<x <1 1 时 ,x - <0.x19、【提示】 = = · =|a | =-a .【答案】C . 20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a = ( - a )2 ,-b =( - b )2 , = . 【答案】C .【点评】本题考查逆向运用公式( a )2 =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为 a <0,b <0 时, 、 都没有意义.(四)计算题:(每小题 6 分,共 24 分)21、【提示】将 - 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=( - )2- ( 2)2 =5-2 +3-2=6-2 . 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4 + 11) - 4( 11 + 7 ) - 2(3 - 7 ) =4+ - - -3+ =1. 16 -1111- 79 - 723、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2ab n - m m 1 )· a 2b 2 = 1- 1 mn ⋅ m + n b 2 mab n ma 2b 2 11 1 a2 - ab +1=-+ = .b 2aba 2b 2a 2b224、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式= ÷3 m n m nm ⋅m n nx 2 + 2xy + y 2 a a ( a - b ) - b b ( a + b ) - (a + b )(a - b )ab ( a + b )( a - b )a b3 63 - 23 + 23 664 6x2 +a2x2 +a2x2 +a2x2 +a2x2 +a222xx2 +a2 ( x2 +a2 -x)2x -x2 +a2x( x2 +a2 -x) x2 +a253 3 99555ab ( a - b )( a + b )-ab (a +b)4 100= a =a +b=a +ba +b=·=-+.【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7 分,共14 分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.2【解】∵x( +2) =5+2 ,y==( -2)2 =5-2 .∴ x+y=10,x-y=4 6 ,xy=52-(2 )2=1.x3 -xy 2 x(x +y)(x -y) x -y 2=x 4 y + 2x3 y 2 +x 2 y 3x2 y(x +y)2=== 6 .xy(x +y) 1⨯10 5【点评】本题将x、y 化简后,根据解题的需要,先分别求出“x+y”、“x-y”、“xy”.从而使求值的过程更简捷.26、【提示】注意:x2+a2=( x2+a2 )2,∴ x2+a2-x =(-x),x2-x =-x(-x).x 1=x 2 - 2x x 2 +a 2 + ( x 2 +a 2 )2 +x x 2 +a 2 -x 2 ( x2 +a2 )2 -x x2 +2x x 2 +a 2 (1x 2 +a 2 -x)1x x2 +a2 ( x2 +a2 -x)=.当x=1-1-.【点评】本题如果将前两个“分式”分拆成两个“分x式”之差,那么化简会更简便.即原式=-+1=( 1 1 --1 ) 1 1 .六、解答题:(每小题8 分,共16 分)x x27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(2 +1)( 2 -1 + 3 - 2 + 4 - 3 +…+100 - 99 )2 -1 3- 2 4 -3 100 - 99=(2 +1)[(=(2 +1)(=9(2 +1).2 -1)+(--1 ))+(-)+…+(-)]【点评】本题第二个括号内有99 个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.a +bx2 +a2 ( x2 +a2 -x)x x2 +a2 ( x2 +a2 -x)2100x yy xy x y x x y xy⎧x = 128、【提示】要使 y 有意义,必须满足什么条件?⎧[1⎨- 4x ≥ 0 ] 你能求出 x ,y 的值吗?[⎨ 4 ]⎩4x -1 ≥0. ⎧ 1⎪ y = 1 . ⎩ 2 x ≤ ⎧1 - 4x ≥ 0 4 1 1 1 【解】要使 y 有意义,必须[⎨⎩4x - 1 ≥ 0 , 即⎨⎪ 1 x ≥ .∴ x = 4.当 x = 时4 ,y = .2又∵=| + - |-| =- |∵ ⎩ 4 -x = 1 ,y = 1 ,∴x y< . 42 yx∴ 原式= - =2 当 x 1 y 1 + + = , = 时 , 421 原式=2 4 =1 2.【点评】解本题的关键是利用二次根式的意义求出 x 的值,进而求出 y 的值.x y 2 ( y )2 y x x + x + 2 + y y x x - 2 + y y x ( y )2y x x - y xx y“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

人教版初中八年级上册数学解题技巧专题练习:二次根式中的化简求值

人教版初中八年级上册数学解题技巧专题练习:二次根式中的化简求值

解题技巧专题:二次根式中的化简求值——明确计算便捷渠道◆类型一 利用二次根式的非负性化简求值1.若y =x -3+3-x +2,求x y 的值.【方法22】◆类型二 利用乘法公式化简求值2.计算:(1)(2+3)2;(2)(3+2)2-(3-2)2;(3)(2+5)11·(2-5)10.3.已知x +1x =5,求x 2x 4+x 2+1的值.◆类型三 利用整体代入求值4.已知a -b =5-1,ab =3,则12a 2+2ab +12b 2=________. 5.已知x +y =2-10,求代数式(x +y )2-4(x +y )-6的值.6.已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值.7.已知x =12(7+3),y =12(7-3),求代数式x 2+y 2-xy 的值.参考答案与解析1.解:由题意有x -3≥0,3-x ≥0,∴x =3,∴y =2,∴x y =9.2.解:(1)原式=7+4 3. (2)原式=(3+2+3-2)(3+2-3+2)=4 6. (3)原式=[(2+5)(2-5)]10(2+5)=2+ 5.3.解:原式取倒数得x 4+x 2+1x 2=x 2+1x 2+1=⎝⎛⎭⎫x +1x 2-1=(5)2-1=4,∴原式=14. 4.12-5 解析:原式=12(a 2+4ab +b 2)=12[(a -b )2+6ab ].∵a -b =5-1,ab =3,∴原式=12[(5-1)2+6×3]=12- 5. 5.解:(x +y )2-4(x +y )-6=(x +y -2)2-10=(2-10-2)2-10=0.6.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2)(1+2)=-1,∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-22)2-2×(-22)+(-1)=7+4 2.7.解:因为x =12(7+3),y =12(7-3),所以x +y =12(7+3)+12(7-3)=7,xy =12(7+3)×12(7-3)=1,所以x 2+y 2-xy =(x +y )2-3xy =(7)2-3×1=4.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。

最新二次根式化简练习题含答案

最新二次根式化简练习题含答案

(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( ) 2.3-2的倒数是3+2.( )3.2)1(-x =2)1(-x .…( )4.ab 、31b a 3、bax 2-是同类二次根式.…( ) 5.x 8,31,29x +都不是最简二次根式.( ) (二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a= . 8.a -12-a 的有理化因式是____________.9.当1<x <4时,|x -4|+122+-x x =________________. 10.方程2(x -1)=x +1的解是____________. 11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.12.比较大小:-721_________-341.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( )(A )x 2 (B )-x2(C )-2x (D )2x 19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(四)计算题:(每小题6分,共24分)21.(235+-)(235--);22.1145--7114--732+;23.(a 2mn -m ab mn +m nn m )÷a 2b 2mn ;24.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).(五)求值:(每小题7分,共14分)25.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.26.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.六、解答题:(每小题8分,共16分)27.计算(25+1)(211++321++431++…+100991+).28.若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xyy x +-2的值.(一)判断题:(每小题1分,共5分) 1、【提示】2)2(-=|-2|=2.【答案】×. 2、【提示】231-=4323-+=-(3+2).【答案】×.3、【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4、【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5、29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6、【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9.7、【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9、【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3. 10、【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22. 11、【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12、【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13、【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15、【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18、【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1, ∴ x +x 1>0,x -x 1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19、【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)计算题:(每小题6分,共24分)21、【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a nm=21b n m m n ⋅-mab 1n m mn ⋅+22b ma n nmn m ⋅=21b-ab 1+221b a =2221b a ab a +-.24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷.26、【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++ =x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x 1.六、解答题:(每小题8分,共16分) 27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--) =(25+1)[(12-)+(23-)+(34-)+…+(99100-)] =(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x -=|xy yx +|-|xy y x -|∵ x =41,y =21,∴ yx <xy.∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的化简求值
练习题
m n,y m n,则
m B. 2
m + n D. m
)n()
m n=2
(()n=n.
13 33=
3
23
23
=
2
3)
(23)(23)
=743,像这样
把分母中的根号化去或把根号中的分母化去,叫做分母有理化
(1)4+7的有理化因式是___________.
1
276
3
23
.
23
23
23(23)(23)
,2733,623.
答案:解:原式=2-3+33-23=2.
1111(20121)21
3
2
4
3
2012
2011
.
1111
(1)(1
)
n n
n n n n
n n n n ,将各个分式分别分母有理化
1
3
2
4
3
2012
2011)(1)
1)(20121)=(2012)2-12=2012-1=2011.
已知a=
3
232,b=32
32
,求223ab b 的值. 2
2(32)5263
2
(32)(32)
,同理b=
252632

26+ 526=10,a b=(526)(526)=1,然后将所要求值的式子用表示,再整体代入求值即可.
252632
,b=
252632

26+ 526=10,a b=26)(526)=23ab b =2()5a b ab =1051=95.
举一反三:
2.如图,数轴上与1,2对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数
为x,则|x-2|+2
x
=()
A.2
B.22
C.32
D. 2
解析:因为点B和点C关于点A对称,点A和点B所表示的数分别为1,2,所以点C表
示的数为2-2,即x=2-2,故|x-2|+2
x
=|2-2-2|+
2
22
=22-2+22=32.
例3 比较大小:(1)11-3与10-2;(2)22-5与10-7.
解析:(1)用平方法比较大小;(2)用倒数法比较大小.
答案:解:(1)(11-3)2=11-2×11×3+3=14-233,
(10-2)2=10-2×10×2+4=14-240.
∵33<40,∴33<40,∴-233>-240,∴14-233>14-240,
∴(11-3)2>(10-2)2.又∵11-3>0,10-2>0,∴11-3>10-2.
(2)
1
225
=
225
(225)(225)
=
225
3

1 107=
107
(107)(107)
=
107
3
.
5 3=
85
3
<
107
3

1
5<
1
107

-5>10-7.
222012)(2012)2012x y y ,
则3A.-2012 B.2012 C.-1 D.1 22
20122012
2012
x y
y
,将等式右边分母有
222012
2012x y y ①; 同理可得222012
2012y
y x
x ②;22201220120x y ,所以2
2012y ;
0y ,所以x y ;
x -3y -2011=3x 2-2x 2+3x -3x -2011=x -2011= 2012-2011
3,3=13,63,3=3,2343,15
63,…,3(1)
n,所以第10个数据是9333.
·孝感)先化简,再求值:
1
x-
x=32
+,
1012
,两边平+2a+1=7,。

相关文档
最新文档