指数函数典型例题详细解析

合集下载

4.2 指数函数(精讲)(原卷版附答案).docx

4.2 指数函数(精讲)(原卷版附答案).docx

4.2指数函数考点一 指数函数的判断【例1-1】(2019·河北桥西.邢台一中高一月考)下列函数中指数函数的个数是( )①23x y =⋅ ②13x y += ③3xy = ④()21xy a =-(a 为常数,12a >,1a ≠) ⑤3y x = ⑥4xy =- ⑦()4xy =-A .1B .2C .3D .4【例1-2】(2019·河南中原.郑州一中高一开学考试)函数f (x )=(a 2﹣3a +3)a x 是指数函数,则a 的值为( ) A .1 B .3 C .2 D .1或3【一隅三反】1.(2019·山东高三学业考试)函数()2xy a a =-是指数函数,则( )A .1a =或3a =B .1a =C .3a =D .0a >且1a ≠2.(2019·呼和浩特开来中学高一期中)若函数1()(3)2xf x a a =-⋅是指数函数,则1()2f 的值为( )A .2B .-2C .-D .3.(2019·辽宁葫芦岛.高一月考)下列函数不是指数函数的是( ) A .12x y +=B .3x y -=C .4x y =D .32x y =考点二 定义域和值域【例2-1】(2020·全国高一课时练习)求下列函数的定义域和值域:(1)142x y -=;(2)23y ⎛= ⎪⎝⎭(3)22312x x y --⎛⎫=⎪⎝⎭.【例2-2】(2018·湖南开福.长沙一中高一月考)若函数y =的值域为[0,+∞),则实数a 的取值范围是_____.【一隅三反】1.(2020·全国高一课时练习)求下列函数的定义域和值域; (1)12x y +=;(2)y =(3)y =2.(2020·全国高一课时练习)求下列函数的定义域与值域.(1)y =(2)1(0,1x x a y a a -=>+且1)a ≠(3)110.3;x y -=(4)y =3.(2020·河北新华.石家庄二中高二期末)若函数()1,121,14xxx f x a x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩的值域为(),+∞a ,则a 的取值范围为( )A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,14⎛⎤⎥⎝⎦4.(2020·云南五华.昆明一中高三其他(理))设函数y =A ,函数12x y -=的值域为B ,则AB =( )A .()0,1B .(]0,1C .()1,1-D .[]1,1-5.(2019·湖南高一期中)若函数2411()3ax x f x -+⎛⎫= ⎪⎝⎭有最大值3,则实数a 的值为( )A .2-B .1-C .1D .2考点三 指数函数性质【例3】(1)(2020·贵溪市实验中学高二期末(文))若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3(2)(2019·湖南岳阳楼.岳阳一中高一期中)已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( ) A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)(3)(2019·湖北襄阳)如果1111222b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,那么( )A .a b a a a b <<B .a a b a b a <<C .b a a a a b <<D .b a a a b a <<【一隅三反】1.(2019·浙江南湖.嘉兴一中高一月考)函数2213x xy -+⎛⎫= ⎪⎝⎭为增函数的区间是( )A .[)1,-+∞B .(],1-∞-C .[)1,+∞D .(],1-∞2.(2019·浙江柯城.衢州二中高三一模)已知定义在R 上的函数()||32x m f x -+=+m 为实数)为偶函数,记()0.2log 3a f =,()5log b f e =,()c f m π=+,则( )A .c b a <<B .c a b <<C .a c b <<D .a b c <<3.(2020·浙江高一课时练习)设0.914y =,0.4828y =, 1.5312y -⎛⎫= ⎪⎝⎭,则( )A .312y y y >>B .213y y y >>C .123y y y >>D .132y y y >>1.指数函数性质记忆口诀指数增减要看清,抓住底数不放松; 反正底数大于0,不等于1已表明; 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减; 无论函数增和减,图象都过(0,1)点. 2.比较幂值大小的三种类型及处理方法4.(2020·永安市第三中学高二月考)若关于x 的方程()94340xxa ++⋅+=有解,则实数a 的取值范围是( )A .(,8][0,)-∞-+∞B .(),4-∞-C .[8,4)--D .(,8]-∞-5(2020·上海高一课时练习)已知函数2221()2x x f x ++⎛⎫= ⎪⎝⎭,则该函数的单调递增区间是__________.6.(2020·上海普陀.曹杨二中高一期末)函数12x y =-的单调递增区间为________7.(2020·全国高一课时练习)比较下列各题中的两个值的大小. (1)0.10.8-,0.21.25;(2)1ππ-⎛⎫ ⎪⎝⎭,1;(3)30.2-,()0.23-.考点四 定点【例4】(2020·浙江高一课时练习)函数()-1=4+x f x a (0a >,且1a ≠)的图象过定点P ,则P 点的坐标为( ) A .(1,5) B .(1,4) C .(0,5)D .(0,4)【一隅三反】1.(2019·涡阳县第九中学高二期末)函数()10,1xy a a a =+>≠的图象必经过点( )A .(0,1)B .(1,1)C .()0,2D .(2,2)2.(2019·贵州省织金县第二中学高一期中)函数21()x f x a-=(0a >且1)a ≠过定点( ) A .(1,1) B .1(,0)2C .(1,0)D .1(,1)23.(2020·宁夏贺兰县景博中学高一月考)函数y=a x ﹣1+2(a >0且a≠1)图象一定过点( )A .(1,1)B .(1,3)C .(2,0)D .(4,0)考点五 图像【例5-1】(2020·广东顺德一中高一期中)函数1(0,1)xy a a a a=->≠的图像可能是( ). A . B .C .D .【例5-2】(2020·浙江高一课时练习)若函数(01,1)xy a a a m =>-≠+的图像在第一、三、四象限内,则( ) A .1a >B .1a >,且0m <C .01a <<,且0m >D .01a <<【一隅三反】1.(2019·浙江高一期中)函数y x a =+与xy a =,其中0a >,且1a ≠,它们的大致图象在同一直角坐标系中有可能是 ( )A .B .C .D .2.(2020·全国高一课时练习)在如图所示的图象中,二次函数2y ax bx c =++与函数xb y a ⎛⎫= ⎪⎝⎭的图象可能是( )A .B .C .D .3.(2020·上海高一课时练习)若函数2xy m =+的图像不经过第二象限,则m 的取值范围是( )A .m 1≥B .1m <C .1m >-D .1m ≤-4.(2020·内蒙古集宁一中高二期末(理))若直线2y a =与函数|1|(0,1)x y a a a =->≠的图象有两个大众点,则a的取值范围是___________4.2指数函数考点一 指数函数的判断【例1-1】(2019·河北桥西.邢台一中高一月考)下列函数中指数函数的个数是( )①23x y =⋅ ②13x y += ③3xy = ④()21xy a =-(a 为常数,12a >,1a ≠) ⑤3y x = ⑥4xy =- ⑦()4xy =-A .1B .2C .3D .4【参考答案】B【解析】对①:指数式的系数为2,不是1,故不是指数函数;对②:其指数为1x +,不是x ,故不是指数函数; 对③④:满足指数函数的定义,故都是指数函数; 对⑤:是幂函数,不是指数函数;对⑥:指数式的系数为-1,不是1,故不是指数函数;对⑦:指数的底数为-4,不满足底数大于零且不为1的要求,故不是; 综上,是指数函数的只有③④,故选:B.【例1-2】(2019·河南中原.郑州一中高一开学考试)函数f (x )=(a 2﹣3a +3)a x 是指数函数,则a 的值为( ) A .1B .3C .2D .1或3【参考答案】C【解析】因为函数f (x )=(a 2﹣3a +3)a x 是指数函数,故可得2331a a -+=解得1a =或2a =, 当1a =时,不是指数函数,舍去.故选:C.【一隅三反】1.(2019·山东高三学业考试)函数()2xy a a =-是指数函数,则( )A .1a =或3a =B .1a =C .3a =D .0a >且1a ≠【参考答案】C【解析】因为函数()2xy a a =-是指数函数所以21a -=,0a >且1a ≠,解得3a =.故选:C.2.(2019·呼和浩特开来中学高一期中)若函数1()(3)2xf x a a =-⋅是指数函数,则1()2f 的值为( )A .2B .-2C.-D.【参考答案】D【解析】∵函数f (x )=(12a ﹣3)•a x 是指数函数,∴12a ﹣3=1,a >0,a ≠1,解得a =8, ∴f (x )=8x ,∴f (12)==,故选:D . 3.(2019·辽宁葫芦岛.高一月考)下列函数不是指数函数的是( ) A .12x y += B .3x y -= C .4x y = D .32x y =【参考答案】A【解析】指数函数是形如xy a =(0a >且1a ≠)的函数. 对于A :1222x x y +==⨯,系数不是1,所以不是指数函数;对于B :133xx y -⎛⎫== ⎪⎝⎭,符合指数函数的定义,所以是指数函数;对于C :4xy =,符合指数函数的定义,所以是指数函数;对于D :382x xy ==,符合指数函数的定义,所以是指数函数.故选:A.考点二 定义域和值域【例2-1】(2020·全国高一课时练习)求下列函数的定义域和值域: (1)142x y -=;(2)23y ⎛= ⎪⎝⎭(3)22312x x y --⎛⎫=⎪⎝⎭.【参考答案】(1)定义域{|4}x x ≠,值域为{|0y y >且1}y ≠; (2)定义域{|0}x x =,值域{|1}y y =;(3)定义域R ,值域(]0,16【解析】(1)要使函数式有意义,则40x -≠,解得4x ≠.所以函数142x y -=的定义域为{|4}x x ≠.因为104x ≠-,所以1421x -≠,即函数142x y -=的值域为{|01}y y y >≠,且. (2)要使函数式有意义,则||0x -,解得0x =,所以函数23y ⎛= ⎪⎝⎭{|0}x x =.因为0x =,所以022133⎛⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即函数23y ⎛= ⎪⎝⎭{|1}y y =.(3)函数的定义域为R .因为2223(1)44x x x --=--≥-,所以2234111622x x ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. 又223102x x --⎛⎫>⎪⎝⎭,所以函数22312x x y --⎛⎫= ⎪⎝⎭的值域为(]0,16.【例2-2】(2018·湖南开福.长沙一中高一月考)若函数y =的值域为[0,+∞),则实数a 的取值范围是_____. 【参考答案】(﹣∞,﹣2]【解析】设()421x x g x a =+⋅+,若函数y =的值域为[0,)+∞,则等价于[0,)+∞是()g x 值域的子集,2()421(2)21x x x x g x a a =+⋅+=+⋅+,设2x t =,则0t >,则2()1y h t t at ==++,(0)10h =>,∴当对称轴02at =-,即0a 时,不满足条件. 当02at =->,即0a <时,则判别式△240a =-,即022a a a <⎧⎨-⎩或,则2a -, 即实数a 的取值范围是(-∞,2]-.故参考答案为:(-∞,2]-【一隅三反】1.(2020·全国高一课时练习)求下列函数的定义域和值域; (1)12x y +=;(2)y =(3)y =【参考答案】(1)定义域为R ,值域为(0,)+∞;(2)(,0]-∞,[0,1);(3)[0,)+∞,[1,)+∞.【解析】(1)12x y +=的定义域为R ,值域为(0,)+∞.(2)由120x -≥知0x ,故y =(,0]-∞;由0121x -<知0121x -<,故y =[0,1).(3)y =[0,)+∞0x 知1x,故y =[1,)+∞.2.(2020·全国高一课时练习)求下列函数的定义域与值域.(1)y =(2)1(0,1x x a y a a -=>+且1)a ≠(3)110.3;x y -=(4)y =【参考答案】(1)定义域为[0,)+∞;值域为[0,1);(2)定义域为R ;值域为(-1,1);(3)定义域为{1}xx ≠∣;值域为{0y y >∣且1}y ≠;(4)定义域为15xx ⎧⎫≥⎨⎬⎩⎭∣;值域为{1}yy ≥∣. 【解析】(1)1102x⎛⎫-≥ ⎪⎝⎭,解得:0x ≥, ∴原函数的定义域为[0,)+∞,令11(0)2xt x ⎛⎫=-≥ ⎪⎝⎭,则01,01t ≤<∴≤∴原函数的值域为[0,1) (2)原函数的定义域为R.设x a t =,则(0,)t ∈+∞,11221111t t y t t t -+-===-+++, 0,11t t >∴+>,1201,2011t t -∴<<∴-<<++,21111t ∴-<-<+,即原函数的值域为(1,1)-. (3)由10x -≠得1x ≠,所以函数定义域为{|1}x x ≠,由101x ≠-得1y ≠, 所以函数值域为{|0y y >且1}y ≠.(4)由510x -≥得15x ≥,所以函数定义域为15x x ⎧⎫≥⎨⎬⎩⎭∣,0≥得1y ≥,所以函数值域为{1}yy ≥∣. 3.(2020·河北新华.石家庄二中高二期末)若函数()1,121,14xxx f x a x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+≥⎪⎪⎝⎭⎩的值域为(),+∞a ,则a 的取值范围为( )A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,14⎛⎤ ⎥⎝⎦【参考答案】B【解析】当1x <时,()1,212xf x ⎛⎫∈+∞⎛ ⎪⎝⎫= ⎪⎭⎭⎝ 当1≥x 时,()114,4xf x a a a ⎛⎤∈+⎛⎫=+ ⎪⎝⎭ ⎥⎝⎦ 函数()f x 的值域为(),+∞a 114212a a ⎧+≥⎪⎪∴⎨⎪≤⎪⎩,即11,42a ⎡⎤∈⎢⎥⎣⎦故选:B 4.(2020·云南五华.昆明一中高三其他(理))设函数y =A ,函数12x y -=的值域为B ,则AB =( )A .()0,1B .(]0,1C .()1,1-D .[]1,1-【参考答案】A【解析】函数定义域满足:210x ->,即11x -<<,所以{}11A x x =-<<,函数12x y -=的值域{}0B y y =>,所以()0,1AB =,故选:A.5.(2019·湖南高一期中)若函数2411()3ax x f x -+⎛⎫= ⎪⎝⎭有最大值3,则实数a 的值为( )A .2-B .1-C .1D .2【参考答案】D【解析】由于函数2411()3ax x f x -+⎛⎫= ⎪⎝⎭有最大值3,所以0a >,且当422x a a-=-=时,()f x 取得最大值为2224411412113333a a a aaf a ⎛⎫⋅-⋅+-+ ⎪-⎝⎭⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故4411,2,2a a a-===.故选:D 考点三 指数函数性质【例3】(1)(2020·贵溪市实验中学高二期末(文))若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3(2)(2019·湖南岳阳楼.岳阳一中高一期中)已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( ) A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)(3)(2019·湖北襄阳)如果1111222b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,那么( )A .a b a a a b <<B .a a b a b a <<C .b a a a a b <<D .b a a a b a <<【参考答案】(1)B (2)B(3)C【解析】(1)函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .(2)可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a-<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-.故选B.(3) 根据函数()1()2x f x =在R 是减函数,且1111222ba⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,所以10b a >>>,所以a a b a b a <<,故选C.【一隅三反】1.(2019·浙江南湖.嘉兴一中高一月考)函数2213x xy -+⎛⎫= ⎪⎝⎭为增函数的区间是( )A .[)1,-+∞B .(],1-∞-C .[)1,+∞D .(],1-∞【参考答案】C【解析】∵13uy ⎛⎫= ⎪⎝⎭是减函数,222(1)1u x x x =-+=--+在(,1]-∞上递增,在[1,)+∞上递减,∴函数2213x xy -+⎛⎫= ⎪⎝⎭的增区间是[1,)+∞.故选:C .2.(2019·浙江柯城.衢州二中高三一模)已知定义在R 上的函数()||32x m f x -+=+m 为实数)为偶函数,记()0.2log 3a f =,()5log b f e =,()c f m π=+,则( )11.指数函数性质记忆口诀指数增减要看清,抓住底数不放松; 反正底数大于0,不等于1已表明; 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减; 无论函数增和减,图象都过(0,1)点. 2.比较幂值大小的三种类型及处理方法A .c b a <<B .c a b <<C .a c b <<D .a b c <<【参考答案】B【解析】()f x 为偶函数,()()f x f x ∴-=,||||3232x m x m --+-+∴+=+,||||x m x m ∴-+=+;0m ∴=;||()32x f x -∴=+;()f x ∴在[0,)+∞上单调递减,并且0.25(|log 3|)(log 3)a f f ==,5(log )b f e =,()()c f m f ππ=+=550log log 3e π<<<c a b ∴<<.故选:B .3.(2020·浙江高一课时练习)设0.914y =,0.4828y =, 1.5312y -⎛⎫= ⎪⎝⎭,则( )A .312y y y >>B .213y y y >>C .123y y y >>D .132y y y >>【参考答案】D【解析】 1.50.920.9 1.80.4830.481.44 1.35121422,22282,y y y -⨯⨯⎛⎫======⎝== ⎪⎭,因为函数2xy =在定义域上为单调递增函数,所以132y y y >>.故选:D .4.(2020·永安市第三中学高二月考)若关于x 的方程()94340xxa ++⋅+=有解,则实数a 的取值范围是( )A .(,8][0,)-∞-+∞B .(),4-∞-C .[8,4)--D .(,8]-∞-【参考答案】D【解析】由9(4)340x xa ++⋅+=,得443(4)0,(4)3433xxx x a a +++=∴-+=+≥(当且仅当32x =时等号成立),解得8a ≤-故选D5(2020·上海高一课时练习)已知函数2221()2x x f x ++⎛⎫= ⎪⎝⎭,则该函数的单调递增区间是__________.【参考答案】(,1]-∞-【解析】由题得函数的定义域为R . 设2122,()2uu x x v =++=,函数222,u x x =++在∞(-,-1]单调递减,在[1,)-+∞单调递增,函数1()2uv =在其定义域内单调递减,所以2221()2x x f x ++⎛⎫= ⎪⎝⎭在∞(-,-1]单调递增,在[1,)-+∞单调递减.故参考答案为:(,1]-∞-.6.(2020·上海普陀.曹杨二中高一期末)函数12x y =-的单调递增区间为________【参考答案】(,0]-∞【解析】函数12,010221,1x xxy x x ⎧->⎪=⎨⎛⎫-≤⎪ ⎪⎝⎭=⎩-, 根据指数函数单调性可得,函数在(,0]-∞单调递增,在0,单调递减,所以函数12xy =-的单调递增区间为(,0]-∞.故参考答案为:(,0]-∞ 7.(2020·全国高一课时练习)比较下列各题中的两个值的大小. (1)0.10.8-,0.21.25;(2)1ππ-⎛⎫ ⎪⎝⎭,1;(3)30.2-,()0.23-.【参考答案】(1)0.10.20.81.25-<(2)11ππ-⎛⎫> ⎪⎝⎭(3)()0.230.23->-【解析】(1)因为0.10.10.1450.854--⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 0.20.251.254⎛⎫= ⎪⎝⎭, 又指数函数54xy ⎛⎫= ⎪⎝⎭为增函数,且0.10.2<,所以0.10.25544⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭,即0.10.20.8 1.25-<. (2)1ππ-⎛⎫ ⎪⎝⎭01πππ=>=,(3)30.2-00.21>=,()()10.25330-=-=<,所以()0.230.23->-.考点四 定点【例4】(2020·浙江高一课时练习)函数()-1=4+x f x a (0a >,且1a ≠)的图象过定点P ,则P 点的坐标为( ) A .(1,5) B .(1,4) C .(0,5)D .(0,4)【参考答案】A【解析】因为xy a =的图象恒过(0,1)点,则1x y a-=的图象恒过(1,1)点,所以()-1=4+x f x a恒过定点()1,5P .故选A .【一隅三反】1.(2019·涡阳县第九中学高二期末)函数()10,1xy a a a =+>≠的图象必经过点( )A .(0,1)B .(1,1)C .()0,2D .(2,2)【参考答案】C【解析】函数x y a =的图象过点(0,1),而函数1x y a =+的图象是把函数x y a =的图象向上平移1个单位,∴函数1x y a =+的图象必经过的点(0,2).故选:C .2.(2019·贵州省织金县第二中学高一期中)函数21()x f x a-=(0a >且1)a ≠过定点( ) A .(1,1) B .1(,0)2C .(1,0)D .1(,1)2【参考答案】D【解析】令12102x x -=⇒=,所以函数21()x f x a -=(0a >且1)a ≠过定点1(,1)2. 3.(2020·宁夏贺兰县景博中学高一月考)函数y=a x ﹣1+2(a >0且a≠1)图象一定过点( )A .(1,1)B .(1,3)C .(2,0)D .(4,0)【参考答案】B 由x ﹣1=0,解得x=1,此时y=1+2=3,即函数的图象过定点(1,3),故选B考点五 图像【例5-1】(2020·广东顺德一中高一期中)函数1(0,1)xy a a a a=->≠的图像可能是( ). A . B .C .D .【参考答案】D 【解析】∵0a >,∴10a>,∴函数x y a =需向下平移1a 个单位,不过(0,1)点,所以排除A,当1a >时,∴101a <<,所以排除B,当01a <<时,∴11a>,所以排除C,故选D. 【例5-2】(2020·浙江高一课时练习)若函数(01,1)xy a a a m =>-≠+的图像在第一、三、四象限内,则( ) A .1a >B .1a >,且0m <C .01a <<,且0m >D .01a <<【参考答案】B【解析】因为函数xy a =的图像在第一、二象限内,所以欲使其图像在第三、四象限内,必须将xy a =向下移动,因为当01a <<时,图像向下移动,只能经过第一、二、四象限或第二、三、四象限, 所以只有当1a >时,图像向下移动才可能经过第一、三、四象限,故1a >,因为图像向下移动小于一个单位时,图像经过第一、二、三象限,而向下移动一个单位时,图像恰好经过原点和第一、三象限,所以欲使图像经过第一、三、四象限,则必须向下平移超过一个单位, 故11m -<-,0m <,故选:B.【一隅三反】1.(2019·浙江高一期中)函数y x a =+与xy a =,其中0a >,且1a ≠,它们的大致图象在同一直角坐标系中有可能是 ( )A .B .C .D .【参考答案】D【解析】因为函数y x a =+单调递增,所以排除AC 选项;当1a >时,y x a =+与y 轴交点纵坐标大于1,函数xy a =单调递增,B 选项错误;当01a <<时,y x a =+与y 轴交点纵坐标大于0小于1,函数xy a =单调递减;D 选项正确.故选:D2.(2020·全国高一课时练习)在如图所示的图象中,二次函数2y ax bx c =++与函数xb y a ⎛⎫= ⎪⎝⎭的图象可能是( )A .B .C .D .【参考答案】A【解析】根据选项中二次函数图象,可知0c ,根据选项中指数函数的图象,可知01b a <<,所以1022b a-<-<, 所以二次函数2y ax bx c =++的对称轴在y 轴左侧,且1,022b x a ⎛⎫=-∈- ⎪⎝⎭, 所以可排除B 、C 、D,只有A 符合题意.故选:A.3.(2020·上海高一课时练习)若函数2xy m =+的图像不经过第二象限,则m 的取值范围是( )A .m 1≥B .1m <C .1m >-D .1m ≤-【参考答案】D【解析】指数函数2x y =过点0,1,则函数2xy m =+过点()0,1m +,若图像不经过第二象限,则10m +≤,即1m ≤-,故选:D4.(2020·内蒙古集宁一中高二期末(理))若直线2y a =与函数|1|(0,1)x y a a a =->≠的图象有两个大众点,则a 的取值范围是___________【参考答案】102⎛⎫ ⎪⎝⎭,【解析】当01,1a a <<>时,做出|1|xy a =-图象,如下图所示,直线2y a =与函数|1|(0,1)x y a a a =->≠的图象有两个大众点时,1021,02a a <<<<. 故参考答案为:102⎛⎫ ⎪⎝⎭,知识改变命运。

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析1.(本小题12分)不用计算器求下列各式的值⑴⑵【答案】(1)(2)【解析】(1)……6分(2)……12分【考点】本小题主要考查指数和对数的运算,考查学生的运算求解能力.点评:指数和对数的运算性质的灵活应用是解决此类问题的关键,另外也经常用到. 2.要使方程x+px+q = 0的两根a、b满足lg(a+b) = lga+lgb,试确定p和q应满足的关系.【答案】p+q = 0且q>0【解析】由已知得,又lg(a+b) = lga+lgb,即a+b = ab,再注意到a>0,b>0,可得-p = q>0,所以p和q满足的关系式为p+q = 0且q>0.3.计算:=【答案】【解析】原式4.当时,不等式恒成立,则实数的取值范围是()A.B.C.D.【答案】A【解析】,当时,,则,解得,故选A。

点睛:利用分离参数法得到,因为对任意的,不等式恒成立,则只需,解得,最后求得的取值范围。

函数恒成立问题,分离参数法是最常用的方法,属于含参函数题型的通法之一。

5.已知:,则__________.【答案】2【解析】由题意得.6.设,,,则的大小关系是()A.B.C.D.【答案】A【解析】∵在x>0时是增函数∴a>c又∵在x>0时是减函数,所以c>b故答案选A。

7.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】因为,,,所以,故选C.8.化简计算下列各式:(1);(2).【答案】(1);(2).【解析】(1)根据指数幂的运算法则即可求出;(2)根据对数的运算法则及特殊值的对数即可求解.试题解析:(1)原式.(2)原式.9.函数y=a x(-2≤x≤3)的最大值为2,则a=________.【答案】或【解析】当0<a<1时,y=a x在[-2,3]上是减函数,=a-2=2,得a=;所以ymax当a>1时,y=a x在[-2,3]上是增函数,=a3=2,解得a=.综上知a=或.所以ymax10.要得到函数y=21-2x的图像,只需将指数函数y=的图像()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位【答案】D【解析】,所以可以由图象右移个单位,故选D。

高中数学《指数函数图像与性质》精选练习(含详细解析)

高中数学《指数函数图像与性质》精选练习(含详细解析)

高中数学《指数函数图像与性质》精选练习(含详细解析)一、选择题1.函数y=的定义域为( )A.RB.(-∞,+∞)C.(-∞,0)D.{x|x≠0,x∈R}2.定义运算:a·b=则函数f(x)=1·2x的图象大致为( )3.若函数y=(1-a)x是实数集R上的减函数,则实数a的取值范围是( )A.(-1,0)B.(0,1)C.(-2,0)D.(0,2)4.下列函数中,值域为的函数是( )A.y=B.y=C.y=D.y=5.若函数f=a x-1(a>0且a≠1)的定义域和值域都是[0,2],则实数a等于( )A.1B.C.1或D.26函数f(x)=a x-b的图象如图所示,其中a,b均为常数,则下列结论正确的是( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<02.已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中可能成立的关系式有( )A.①②③B.①②⑤C.①③⑤D.③④⑤二、填空题7.若函数f(x)=(a2-2a+2)(a+1)x是指数函数,则a= .8.函数y=2a x-2+1(a>0,且a≠1)的图象过定点.9.当x>0时,函数f(x)=的值总是大于1,则a的取值范围是. 【补偿训练】当x<0时,函数y=(2a-1)x的值总小于1,则a的取值范围是.【解析】由题意,2a-1>1,所以a>1.答案:a>110已知函数f(x)=a x+b(a>0,且a≠1),经过点(-1,5),(0,4),则f(-2)的值为.11.函数y=(a>0,且a≠1)的定义域是(-∞,0],则实数a的取值范围为.三、解答题(每小题10分,共20分)12.求下列函数的定义域和值域:(1)y=-1.(2)y=.13已知函数f(x)=a x-1(x≥0)的图象经过点,其中a>0且a≠1.(1)求a的值.(2)求函数y=f(x≥0)的值域.14.若y=(a-3)(a-2)x是指数函数,求函数f(x)=的定义域与值域..15.已知函数f(x)=-1.(1)作出f(x)的简图.(2)若关于x的方程f(x)=3m有两个解,求m取值范围.(2).参考答案与解析1【解析】选D.因为2x-1≠0,所以x≠0.2【解析】选A.f(x)=3【解析】选B.由于函数y=(1-a)x是实数集R上的减函数,则有0<1-a<1,解得0<a<1.4【解析】选D.y=中y>0且y≠1,y=中y可以为0,y=中y>1.5【解析】选B.由题意知或解得a=.6【解析】选D.f(x)=a x-b的图象是由y=a x的图象平移得到的,由图象可知f(x)在R上是递减函数,所以0<a<1,由y=a x过点(0,1)得知y=a x的图象向左平移|b|个单位得f(x)的图象,所以b<0.7【解析】由指数函数的定义得解得a=1.答案:1【解析】令x-2=0,解得x=2,则y=3,所以过定点(2,3).答案:(2,3)【解题指南】指数函数只有底数大于1时,才会有x>0时,函数值总大于1.9【解析】由题意知,a2-1>1,即a2>2,解得a>或a<-.答案:a>或a<-10【解析】由已知得解得所以f(x)=+3,所以f(-2)=+3=4+3=7.答案:711【解析】由题意,当x≤0时,a x≥1,所以0<a<1.答案:0<a<1【误区警示】本题由x≤0时,a x≥1,易得出a>1的错误答案.12【解析】(1)要使y=-1有意义,需x≠0,则>0且≠1,故-1>-1且-1≠0,故函数y=-1的定义域为,函数的值域为(-1,0)∪(0,+∞).(2)函数y=的定义域为实数集R,由于2x2≥0,则2x2-2≥-2,故0<≤9,所以函数y=的值域为(0,9].13【解析】(1)函数图象经过点,所以a2-1=,则a=.(2)由(1)知函数为f(x)=(x≥0),由x≥0,得x-1≥-1.于是0<≤=2,所以函数的值域为(0,2].14【解析】因为y=(a-3)(a-2)x是指数函数,所以解得a=4,所以f(x)=,由x+2≠0,得x≠-2,所以f(x)的定义域是∪,令t=,所以t≠0,即f(x)≠1,所以f(x)的值域是∪15【解析】(1)f(x)=如图所示.作出直线y=3m,当-1<3m<0时,即-<m<0时,函数y=f(x)与y=3m有两个交点,即关于x的方程f(x)=3m有两个解。

指数函数的性质及常考题型(含解析)

指数函数的性质及常考题型(含解析)
故选:A.
【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个

B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于




如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)

(1)底数相同,指数不同:利用指数函数的单调性来判断;




【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).

(1)求()的解析式;

(2)解不等式( + 3) > (4).







【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1

C.0 < < 1, > 1
D. > 1,0 < < 1


【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

x
2
1 ,故值域为 y
|
0
y
1
.
8.(2021·黑龙江·绥化市第一中学高一期中)已知函数 f x 4x a 2x 3 , a R .
(1)当 a 4 ,且 x 0, 2 时,求函数 f x 的值域;
(2)若函数 f x 在0, 2 的最小值为1,求实数 a 的值;
【答案】(1)1,3 (2) a 2 2

y
2
x
是指数函数;
④ y xx 的底数是 x 不是常数,不是指数函数;

y
3
1 x
的指数不是自变量
x
,不是指数函数;
1
⑥ y x3 是幂函数.
故答案为:③
9.(2021·全国·高一专题练习)函数 y a2 5a 5 ax 是指数函数,则 a 的值为________.
【答案】 4
f
x
ax2 2x ,
a
1 x
x 1
3a,
x
1 的最小值为
2,则实数
a 的取值范围是______.
【答案】1,
【解析】由题意,函数
f
x
ax2 2x ,
a 1 x
x 1
3a, x
1 的最小值为
2

因为函数 f x 在[1, ) 上为增函数,可得 x 1时,函数 f x 有最小值为 2 ,
则当 x (,1) 时,函数 f x 2 , min

A. c a b
B. c b a
【答案】A
1
2
【解析】
b
1 4
3
1 2
3

C. b c a

指数函数习题(经典含答案及详细解析)

指数函数习题(经典含答案及详细解析)

指数函数习题一、选择题1.概念运算⎩⎨⎧>≤=⊗ba b b a a b a ,那么函数x x f 21)(⊗=的图象大致为( )2.函数f (x )=x 2-bx +c 知足f (1+x )=f (1-x )且f (0)=3,那么f (b x )与f (c x )的大小关系是( )A .f (b x )≤f (c x )B .f (b x )≥f (c x )C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x -1|在区间(k -1,k +1)内不单调,那么k 的取值范围是( )A .(-1,+∞)B .(-∞,1)C .(-1,1)D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的概念域是A ,函数g (x )=lg(a x -2x -1)的概念域是B ,假设A ⊆B ,那么正数a 的取值范围( )A .a >3B .a ≥3C .a > 5D .a ≥ 55.已知函数⎩⎨⎧>≤--=-77)3)(3()(6x a x x a x f x ,假设数列{a n }知足a n =f (n )(n ∈N *),且{a n }是递增数列,那么实数a 的取值范围是( )A .[94,3) B .(94,3) C .(2,3)D .(1,3) 6.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,那么实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14)∪[4,+∞) 二、填空题7.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a 2,那么a 的值是________. 8.假设曲线|y |=2x +1与直线y =b 没有公共点,那么b 的取值范围是________.9.(2020·滨州模拟)概念:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的概念域为[a ,b ],值域为[1,2],那么区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =2342x x ---+的概念域、值域和单调区间.11.(2020·银川模拟)假设函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的概念域为[0,1].(1)求a 的值;(2)假设函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a ⊗b =⎩⎪⎨⎪⎧ a a ≤b b a >b 得f (x )=1⊗2x =⎩⎪⎨⎪⎧ 2x x ≤0,1 x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2.又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,那么3x ≥2x ≥1,∴f (3x )≥f (2x ).若x <0,那么3x <2x <1,∴f (3x )>f (2x ).∴f (3x )≥f (2x ).答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,因此有k -1<0<k +1,解得-1<k <1.答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x >1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,那么u ′(x )=a x ln a -2x ln2>0,因此函数u (x )在(1,2)上单调递增,那么u (x )>u (1)=a -3,即a ≥3.答案:B5. 解析:数列{a n }知足a n =f (n )(n ∈N *),那么函数f (n )为增函数,注意a 8-6>(3-a )×7-3,因此⎩⎪⎨⎪⎧ a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2, 当0<a <1时,必有a ≥12,即12≤a <1, 综上,12≤a <1或1<a ≤2. 答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32. 答案:12或328. 解析:别离作出两个函数的图象,通过图象的交点个数来判定参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如下图,由图象可得:若是|y |=2x +1与直线y =b 没有公共点,那么b 应知足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图知足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数成心义,那么只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的概念域为{x |-4≤x ≤1}.令t =-x 2-3x +4,那么t =-x 2-3x +4=-(x +32)2+254, ∴当-4≤x ≤1时,t max =254,现在x =-32,t min =0,现在x =-4或x =1. ∴0≤t ≤254.∴0≤-x 2-3x +4≤52. ∴函数y =2341()2x x --+[28,1].由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知, 当-4≤x ≤-32时,t 是增函数, 当-32≤x ≤1时,t 是减函数. 依照复合函数的单调性知:y =1()2在[-4,-32]上是减函数,在[-32,1]上是增函数. ∴函数的单调增区间是[-32,1],单调减区间是[-4,-32]. 11. 解:令a x =t ,∴t >0,那么y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去).②假设0<a <1,∵x ∈[-1,1],∴t =a x ∈[a ,1a ],故当t =1a,即x =-1时, y max =(1a+1)2-2=14. ∴a =13或-15(舍去). 综上可得a =3或13. 12. 解:法一:(1)由已知得3a +2=18⇒3a =2⇒a =log 32.(2)现在g (x )=λ·2x -4x ,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,因此g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,因此实数λ的取值范围是λ≤2.法二:(1)同法一.(2)现在g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,因此有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x ]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立.因为u ∈[1,2],只需λ≤2u 恒成立,因此实数λ的取值范围是λ≤2.。

高一数学典型例题分析 指数函数 试题

高一数学典型例题分析 指数函数 试题

卜人入州八九几市潮王学校指数函数·例题解析【例1】求以下函数的定义域与值域:解(1)定义域为x∈R且x≠2.值域y>0且y≠1.(2)由2x+2-1≥0,得定义域{x|x≥-2},值域为y≥0.(3)由3-3x-1≥0,得定义域是{x|x≤2},∵0≤3-3x-1<3,【例2】指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,那么a、b、c、d、1之间的大小关系是[] A.a<b<1<c<dB.a<b<1<d<cC.b<a<1<d<cD.c<d<1<a<b解选(c),在x轴上任取一点(x,0),那么得b<a<1<d<c.【例3】比较大小:(3)解(3)借助数打桥,利用指数函数的单调性,>,作函数y1=x,y2=x的图像如图2.6-3,取x=,得>∴>.说明如何比较两个幂的大小:假设不同底先化为同底的幂,再利用指数函数的单调性进展比较,如例2中的(1).假设是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与同底与同指数的特点,即为(或者),如例2中的(3).【例5】作出以下函数的图像:(3)y=2|x-1| (4)y=|1-3x|解(2)y=2x-2的图像(如图2.6-5)是把函数y=2x的图像向下平移2个单位得到的.解(3)利用翻折变换,先作y=2|x|的图像,再把y=2|x|的图像向右平移1个单位,就得y =2|x-1|的图像(如图2.6-6).解(4)作函数y=3x的图像关于x轴的对称图像得y=-3x的图像,再把y=-3x的图像向上平移1个单位,保存其在x轴及x轴上方局部不变,把x轴下方的图像以x轴为对称轴翻折到x轴上方而得到.(如图2.6-7)当x=0时,函数y有最大值为1.(1)判断f(x)的奇偶性;(2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解(1)定义域是R.∴函数f(x)为奇函数.即f(x)的值域为(-1,1).(3)设任意取两个值x1、x2∈(-∞,+∞)且x1<x2.f(x1)-f(x2)。

指数函数习题(经典含答案及详细解析)

指数函数习题(经典含答案及详细解析)

2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且A .f (b x )≤f (c x) B .f (b x )≥f (c x) lg(a x -2x-5 ≥5 [9,(9,1,,1[1,[1,,1)上的最大值比最小值大,则234x x ---+11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.的取值范围.指数函数答案指数函数答案1.1.解析:由解析:由a ⊗b =îïíïìa a ≤bba >b得f (x )=1⊗2x=îïíïì2xx,1x答案:答案:A A 2. 2. 解析:∵解析:∵f (1(1++x )=f (1(1--x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)(0)==3,∴c =3.3.∴∴f (x )在(-∞,-∞,1)1)1)上递减,在上递减,在上递减,在(1(1(1,+∞)上递增.,+∞)上递增.,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0<0,则,则3x<2x<1<1,∴,∴f (3x)>f (2x). ∴f (3x )≥f (2x ). 答案:答案:A A3.3.解析:由于函数解析:由于函数y =|2x-1|1|在在(-∞,-∞,0)0)0)内单调递减,在内单调递减,在内单调递减,在(0(0(0,+∞)内单调递增,而函数在,+∞)内单调递增,而函数在区间区间((k -1,k +1)1)内不单调,所以有内不单调,所以有k -1<0<k +1,解得-,解得-1<1<k <1. 答案:答案:C C4. 4. 解析:由题意得:解析:由题意得:A =(1,2)(1,2),,a x -2x >1且a >2>2,由,由A ⊆B 知a x -2x>1在(1,2)(1,2)上恒成立,即上恒成立,即a x -2x -1>0在(1,2)(1,2)上恒成立,令上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0ln2>0,所以函数,所以函数u (x )在(1,2)(1,2)上单调递增,则上单调递增,则u (x )>u (1)(1)==a -3,即a ≥3.≥3. 答案:答案:B B5. 5. 解析:数列解析:数列解析:数列{{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,为增函数,注意a 8-6>(3>(3--a )×7-)×7-33,所以îïíïìa >13-a >0a8-6-a -3,解得2<a <3.答案:答案:C C6. 6. 解析:解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,的图象,当a >1时,必有a -1≥12,即1<a ≤2,≤2,当0<a <1时,必有a ≥12,即12≤a <1<1,,综上,12≤a <1或1<a ≤2.≤2.答案:答案:C C7. 7. 解析:当解析:当a >1时,y =a x 在[1,2][1,2]上单调递增,故上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax 在[1,2][1,2]上单调递减,故上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线曲线||y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果的图象如图所示,由图象可得:如果||y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]1,1].. 答案:答案:[[-1,1]9. 9. 解析:如图满足条件的区间解析:如图满足条件的区间解析:如图满足条件的区间[[a ,b ],当a =-=-11,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-=-11,b =1时区间长度最大,最大值为2,故其差为1. 答案:答案:1 110. 10. 解:要使函数有意义,则只需-解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.≤1. ∴函数的定义域为∴函数的定义域为{{x |-4≤x ≤1}.≤1}. 令t =-x 2-3x +4,则t =-x 2-3x +4=-=-((x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-=-44或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x ---+的值域为的值域为[[28,1]1]..+)+(≤-时,≤234()2x x ---+在,-32]-32,-32,,-32][1a,,1a ]=1a,即(1a+=13或-15(或13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数典型例题详细解析指数函数·例题解析第一课时【例1】(基础题)求下列函数的定义域与值域:(1)y 3(2)y (3)y 12x===-+---213321x x解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}.(2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}.(3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 31.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞)2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)3. 求函数的值域:①利用函数Y=ax单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是[ ] A.a<b<1<c<dB.a<b<1<d<cC.b<a<1<d<cD.c<d<1<a<b解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c .【例3】(基础题)比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()(3)4.54.1________3.73.6解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.222242821621338254912284162123135258389493859=====解 (2)0.6110.6∵>,>,∴>.----451245123232()()解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3).【例4】解比较大小与>且≠,>.当<<,∵>,>,a a a aan n n n n n nn n nn n -+-+-=-11111111(a 0a 1n 1)0a 1n 10()()∴<,∴<当>时,∵>,>,∴>,>aa a n n aa a n n n n n n n n n n n n 1111111111()()()--+--+-1a 1n 101【例5】(中档题)作出下列函数的图像:图像变换法例题4(中档题)(1)y (2)y 22x ==-,()121x +(3)y =2|x-1|(4)y =|1-3x |解 (1)y (264)(0)(11)y 1=的图像如图.-,过点,及-,.是把函数=的图像向左平移个单位得到的.()()1212121x x +解 (2)y =2x -2的图像(如图2.6-5)是把函数y =2x 的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y =2|x|的图像,再把y =2|x|的图像向右平移1个单位,就得y =2|x-1|的图像(如图2.6-6). 解 (4)作函数y =3x 的图像关于x 轴的对称图像得y =-3x 的图像,再把y =-3x 的图像向上平移1个单位,保留其在x 轴及x 轴上方部分不变,把x 轴下方的图像以x 轴为对称轴翻折到x 轴上方而得到.(如图2.6-7)例6(中档题) : 用函数单调性定义证明:当a >1时,y = a x 是增函数.【解析】设x 1,x 2∈R 且x 1<x 2,并令x 2 =x 1 + h (h >0,h ∈R),很独特的方式则有)1(11112-=-=-+hx x hx x x a a a a a a , ∵a >1,h >0,∴1,01>>hx a a ,∴012>-x x a a ,即故y = a x (a >1)为R 上的增函数,同理可证0<a <1时,y = a x 21x x a a <是R 上的减函数.【例6】解求函数=的单调区间及值域.令=-+,则=是关于的减函数,而=--+y u x 5x 6y u u x 5xx 25x 622()()3434u+在∈∞,上是减函数,在∈,∞上是增函数.∴函数=的单调增区间是∞,,单调减区间是,∞.-+6x x y x 25x 6(][)()(][)-+-+5252345252又∵=-+=≥,函数=,在∈,∞上是减函数,所以函数=的值域是,.-+u x 5x 6y u y 2x 25x 6()()[)()(]x u ----+5214143414340108324例题7 中档题) 指数函数与二次函数的复合函数(由内到外分析) 二次函数为内层函数,指数函数为外层函数变式1 求函数y=(21)xx 22-的单调区间,并证明之.解法一(在解答题):在R 上任取x 1、x 2,且x 1<x 2,则12yy =12122222)21()21(x x x x --=(21)(x 2-x 1)(x 2+x 1-2) 【(21)为底数,红色部分为指数】 ,∵x 1<x 2,∴x 2-x 1>0.当x 1、x 2∈(-∞,1]时,x 1+x 2-2<0.这时(x 2-x 1)(x 2+x 1-2)<0,则12yy >1. ∴y 2>y 1,函数在(-∞,1]上单调递增. 当x 1、x 2∈[1,+∞)时,x 1+x 2-2>0,这时(x 2-x 1)(x 2+x 1-2)>0,即12yy <1. (此处点评:上述证明过程中,在对商式正负判断时,利用了指数函数的值域及单调性)∴y 2<y 1,函数在[1,+∞上单调递减. 综上,函数y 在(-∞,1]上单调递增,在[1,+∞)上单调递减.合作探究:在填空、选择题中用上述方法就比较麻烦,因此我们可以考虑用复合函数的单调性来解题.解法二、在填空、选择题中(用复合函数的单调性):设:x x u 22-=则:uy ⎪⎭⎫ ⎝⎛=21对任意的211x x <<,有21u u<,又∵uy ⎪⎭⎫ ⎝⎛=21是减函数∴21y y< ∴xx y 2221-⎪⎭⎫⎝⎛=在),1[+∞是减函数对任意的121≤<x x,有21u u>又∵uy ⎪⎭⎫ ⎝⎛=21是减函数∴21y y< ∴xx y 2221-⎪⎭⎫⎝⎛=在),1[+∞是增函数在该问题中先确定内层函数(x x u 22-=)和外层函数(uy ⎪⎭⎫ ⎝⎛=21)的单调情况,再根据内外层函数的单调性确定复合函数的单调性.变式2 已知0>a 且1≠a ,讨论232)(++-=x x a x f 的单调性. 【分析】这是一道与指数函数有关的复合函数讨论单调性题,指数417)23(2322+--=++-x x x,当x ≥23时是减函数,x ≤23时是增函数, 而)(x f 的单调性又与10<<a 和1>a 两种范围有关,应分类讨论.【解析】设232u x x =-++2317()24x =--+,则当x ≥23时,u 是减函数, 当x ≤23时,u是增函数,又当1>a 时,u a y =是增函数, 当10<<a 时,ua y =是减函数,所以当1>a 时,原函数232)(++-=x x ax f 在),23[+∞上是减函数,在]23,(-∞上是增函数. 当10<<a 时,原函数232)(++-=x x ax f 在),23[+∞上是增函数,在]23,(-∞上是减函数. 【小结】一般情况下,两个函数都是增函数或都是减函数,则其复合函数是增函数; ;如果两个函数中一增一减,则其复合函数是减函数,但一定注意考虑复合函数的定义域.第二课时例题8:(疑难题)指数函数与二次函数的复合函数换元法 先换元,再利用二次函数图象与性质(注意新元u 的范围)【例7】解求函数=+≥的单调区间及它的最大值.=,令=,∵≥,∴<≤,又∵=是∈,+∞上的减函数,函数=y 1(x 0) y u x 00u 1u x 0)y ()()[()]()[()]()()[()141212121121234121212222x x x x x x x u --+=-+-+-3401212121212121412在∈,上为减函数,在,上是增函数.但由<≤得≥,由≤≤,得≤≤,∴函数=+单调增区间是,+∞,单调减区间,u 1)0x 110x 1y 11)[01](][()()()()[x x x x当x =0时,函数y 有最大值为1.内层指数函数u=(1/2)x 为减,当u 在(0,1/2】时,此时外层二次f (u)为减函数,即x 在【1,正无穷大),,则复合函数为增(画草图分析法)点评:(1)指数函数的有界性(值域):x2≥0; ax>0(2)上述证明过程中,在两次求x 的范围时,逆向利用了指数函数的值域及逆向利用了指数函数的单调性,是关键及疑难点。

变式: 求(3)1241++=+x xy 的值域.解1421x x y +=++ R x ∈ y 22(2)221(21),x xx=+⋅+=+ 且1,02>∴>y x.故1241++=+x xy 的值域为}1|{>y y . 【小结】求与指数函数有关的函数的值域时,要注意到充分考虑并利用指数函数本身的要求,并利用好指数函数的单调性.例题9 (中档题)分式型指数函数【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111 ∴函数f(x)为奇函数.(2)y y 1a 1y 1x 函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110反函数法,用指数即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2. f(x 1)-f(x 2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l xx x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212变式1 设a 是实数,)(122)(R x a x f x ∈+-=试证明对于任意a,)(x f 为增函数;证明:设21,x x ∈R,且 21x x <则12()()f x f x -1222()()2121x x a a =---++1221122(22)22212(21)(21)x x x x x x-=-=+++由于指数函数y=x2在R 上是增函数,且21x x <,所以 2122x x <即2122x x -<0, 又由 x2 >0得 12x +1>0, 22x +1>0所以)()(21x f x f -<0即)()(21x f x f <因为此结论与a 取值无关,所以对于 a 取任意实数,)(x f 为增函数例题10(中档题)抽象函数第三课时复合函数作业课本:课本P 习题。

相关文档
最新文档