最新中考专题复习-一元一次方程(组)含答案说课讲解

合集下载

中考一元一次方程专题(知识点+题目)

中考一元一次方程专题(知识点+题目)

一元一次方程基本知识点:1.一元一次方程的概念含有未知数的等式叫方程.只含有一个未知数,并且未知数的指数是一次的方程叫一元一次方程.能使方程两边相等的未知数的值,叫方程的解.其中方程0=+b ax (x 为未知数,0≠a )叫做一元一次方程的标准形式.a是未知数x 的系数,b 是常数项.如果a 是字母,则说这个方程就是一个含有字母系数的一元一次方程.公式从一种形式变成另一种形式,叫做公式变形.公式变形往往就是解含有字母系数的一元一次方程.2.等式的性质:(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是0),所得结果仍是等式.注意:性质(2)是等式的两边乘以(或除以)同一个不等于零的数,而没说同一个整式.3.一元一次方程的解法一元一次方程的解法的一般步骤是:(1)去分母:在方程的两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(3)移项:把含有未知数的项都移到方程的一边,其它项都移到方程的另一边(记住移项要变号);(4)合并同类项:把方程化成b ax =的形式;(5)系数化为1:在方程两边都除以未知数的系数a (当0≠a 时),得到方程的解ab x =. 考点一:解一元一次方程例:解方程 34[43(12x -14)-8]=32x 213x +-516x -=1 例::关于x 的一元一次方程(k 2-1)x k -1+(k -1)x -8=0的解为_____. 考点二:一元一次方程的应用1.行程问题行程问题中有三个基本量:路程、时间、速度。

关系式为:①路程=速度×时间;②速度= ; ③时间=航行问题是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化:①顺水(风)速度=静水(无风)速度+水流速度(风速);②逆水(风)速度=静水(无风)速度-水流速度(风速)。

由此可得到航行问题中一个重要等量关系:顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)速度。

中考数学专题复习《整式方程(组)的应用》经典题型讲解

中考数学专题复习《整式方程(组)的应用》经典题型讲解

中考数学专题复习《整式方程(组)的应用》经典题型讲解类型之一一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t,还剩下8 t未装;若每辆车装4.5 t,恰好装完.这个车队有多少辆车?解:设这个车队有x辆车,依题意,得4x+8=4.5x,解得x=16.答:这个车队有16辆车.【思想方法】利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是(C) A.25台B.50台C.75台D.100台【解析】设今年购置计算机的数量是x台,去年购置计算机的数量是(100-x)台,根据题意可得x=3(100-x),解得x=75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎪⎨⎪⎧4x +3y =2 000,x +2y =1 000,解得⎩⎪⎨⎪⎧x =200,y =400.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎪⎨⎪⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎪⎨⎪⎧2x +4y =560,4x +4y =800,解得⎩⎪⎨⎪⎧x =120,y =80.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min).∵5<458,∴该教学楼建造的这4个门不符合安全规定.【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值; (2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎪⎨⎪⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝ ⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3. 答:此批次蛋糕属第3档次产品.⎝⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品. (2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x -1)][76-4(x -1)]=1 080,解得x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B 卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg ,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.。

(完整word)七年级数学一元一次方程(教师讲义带答案)

(完整word)七年级数学一元一次方程(教师讲义带答案)

第三章 一元一次方程(韩老师)本章知识网络结构图3.1一元一次方程的概念和性质【本讲主要内容】1. 等式与方程表示相等关系的式子叫做等式。

含有未知数的等式叫做方程。

可见方程必须具备两个条件:一是必须含有未知数,二是必须是一个等式。

2. 等式的性质等式的性质1:等式两边加(减)同一个数(式子)。

结果仍相等。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

应用等式的性质对等式进行变形时,必须注意“同”字。

要对等式进行变形,就要保证等式两边始终相等,也就是说,运用等式的性质时,等式两边必须同时进行变形。

3. 一元一次方程的概念我们把含有一个未知数,并且未知数的指数都是1的方程叫做一元一次方程。

一元一次方程的最简形式是b ax =(≠a 0)。

方程中的未知数叫做“元”,一个方程中有几个未知数,就称这个方程为几元方程。

方程中含未知数的项的最高次数叫做方程的次数,这一点和多项式的次数有类似的地方。

例如27x 3-=-是一元一次方程,4y 4y 2y 2-=+是一元二次方程,0y x 3=-是二元一次方程,6y 4x 32-=+是二元二次方程。

4. 方程的解与解方程方程是一个有待研究的等式,即研究这个等式中的未知数取什么值时等式才成立。

解方程就是确定使方程中等号左右两边相等的未知数的值,我们把这样的未知数的值叫做方程的解。

这样的值可能有一个或多个,也可能没有,所以方程可能有一个解、多个解,也可能无解。

如方程3x-5=4x+3只有一个解x=-8。

方程2x-7=5x-(3x+7)有无数个解,而方程2x-3=2x+2无解。

求方程的解或判定方程无解的过程叫做解方程。

利用等式的性质,对方程进行一系列的变形,就可以求出方程的解。

5. 思想方法(本单元常用到的数学思想方法小结)⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a 的形式. 体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.【典型例题】例1. 已知方程2x m -3+3x=5是一元一次方程,则m= .解析:由一元一次方程的定义可知m -3=1,解得m=4.或m -3=0,解得m=3所以m=4或m=3警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x 的指数是(m -3).例2. 已知2x =-是方程ax 2-(2a -3)x+5=0的解,求a 的值.解析:∵x=-2是方程ax 2-(2a -3)x+5=0的解∴将x=-2代入方程,得 a·(-2)2-(2a -3)·(-2)+5=0化简,得 4a+4a -6+5=0∴ a=81 点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a 的一元一次方程就可以例3.已知a 、b 为定值,无论k 为何值,关于x 的一元一次方程26bk x 3a kx 3=--+的解总是1,试求a 、b 的值。

初中数学《一元一次方程》知识梳理+练习题讲解

初中数学《一元一次方程》知识梳理+练习题讲解

一元一次方程知识梳理和练习题讲解【知识梳理】1、方程的概念方程含有未知数的等式叫做方程重点解读(1)方程含有两个要素,一是含有未知数,二是必须是等式,二者缺一不可;(2)方程一定是等式,但等式不一定是方程;(3)方程中含有的未知数个数不限.2、一元一次方程的概念定义只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程,它的一般形式是()00ax b a +=≠重点解读3、方程的解与解方程定义实质方程的解使方程等号左右两边相等的未知数的值叫做方程的解具体数值解方程求方程解的过程叫做解方程变形过程4、等式的性质语言叙述字母表示等式性质1等式两边加(或减)同一个数(或式子),结果仍相等如果ba=,那么cbca±=±等式性质2等式两边乘同一个数,或除以一个不为0的数,结果仍相等如果ba=,那么bcac=;如果ba=,那么()0≠=ccbca重点解读(1)注意等式左右两边同时加、减、乘或除以不能遗漏任一边,并且同时加、减、乘或除以的数必须是同一个数;(2)等式的两边除以一个数或整式时,这个数或整式不能为0;(3)等式还有以下性质:①如果ba=,cb=,那么ca=;②如果ba=,那么ab=5、解一元一次方程的一般步骤①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。

变形名称依据具体做法注意事项去分母等式的性质2在等号两边都乘各分母的最小公倍数(1)不要漏乘不含分母的项;(2)若分子是一个多项式,需加上括号去括号乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项;(2)不要弄错符号移项移项法则把含有未知数的项移动到方程的一边,其他的项移动到方程的另一边(1)移项要变号;(2)不要丢项合并同类项合并同类项法则把方程化为()0≠=abax的形式(1)字母及其指数不变,系数相加;(2)不要漏项系数化为1等式的性质2在方程()0≠=abax的两边都除以未知数的系数a,得到方程的解abx=切忌分子、分母位置颠倒6、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。

专题03 一元一次方程(专题详解)(解析版)

专题03 一元一次方程(专题详解)(解析版)

专题03 一元一次方程专题详解专题03 一元一次方程专题详解 (1)3.1从算式到方程 (3)知识框架 (3)一、基础知识点 (3)知识点1 方程和一元一次方程的概念 (3)知识点2 方程的解与解方程 (4)知识点3 等式的性质 (4)二、典型题型 (6)题型1 依题意列方程 (6)题型2 运用等式的性质解方程 (6)三、难点题型 (8)题型1 利用定义求待定字母的值 (8)3.2解一元一次方程-合并同类项和移项 (9)知识框架 (9)一、基础知识点 (9)知识点1 合并同类项解一元一次方程 (9)知识点2 移项解一元一次方程 (10)二、典型题型 (12)题型1 一元一次方程的简单应用 (12)3.3解一元一次方程-去括号与去分母 (13)知识框架 (13)一、基础知识点 (13)知识点1 去括号 (13)知识点2 去分母 (14)二、典型题型 (16)题型1 去括号技巧 (16)题型2 转化变形解方程 (17)题型3 解分子分母中含有小数系数的方程 (19)三、难点题型 (21)题型1 待定系数法 (21)题型2 同解问题 (21)题型3 含参数的一元一次方程 (22)题型4 利用解的情况求参数的值 (23)题型5 整体考虑 (24)3.4实际问题与一元一次方程 (25)一、基础知识点 (25)知识点1 列方程解应用题的合理性 (25)知识点2 建立书写模型常见的数量关系 (25)知识点3 分析数量关系的常用方法 (26)二、典型例题 (28)3.1从算式到方程知识框架一、基础知识点知识点1 方程和一元一次方程的概念1) 方程:含有未知数的等式。

例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。

如何判断一元一次方程:①整式方程;②只含有一个未知数,且未知数 的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 例1.下列各式中,那些是等式?那些是方程?①3x-6;②3-5=-2;③x+2y=8;④x+2≠3;⑤x-x1=2; ⑥y=10;⑦3y 2+2y=0;⑧3a<-5a ;⑨3x 2+2x-1=0;⑩213m m y =-+ 【答案】是方程的有:③、⑤、⑥、⑦、⑨、⑩方程需满足2个条件:1)含有未知数;2)是等式。

专题 一元一次方程(知识大串讲)(解析版)

专题  一元一次方程(知识大串讲)(解析版)

专题08 一元一次方程(知识大串讲)【知识点梳理】考点1 一元一次方程1.概念:只含一个未知数(元)且未知数的次数都是1的方程;标准式:ax+b=0(x是未知数,a、b是已知数,且a≠0);2.方程的解:使方程等号左右两边相等的未知数的值考点2 等式的性质等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;如果a=b,那么ac=bc;如果a=b,c0,那么;考点3含参一元一次方程1、次数含参:主要考察一元一次方程定义2、常数项含参:求解一个常数项含参的一元一次方程,依然采用常规的五步法解题3、解已知或可求:将解代入参数方程,求出参数考点4一元一次方程的解使一元一次方程等号左右两边相等的未知数的值。

考点5 解一元一次方程解一元一次方程的步骤:1.去分母两边同乘最简公分母2.去括号(1)先去小括号,再去中括号,最后去大括号(2)乘法分配律应满足分配到每一项 注意 :特别是去掉括号,符合变化 3.移项(1)定义: 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边; (2)注意: ①移项要变符号 ; ②一般把含有未知数的项移到左边 ,其余项移到右边 . 4. 合并同类项(1)定义: 把方程中的同类项分别合并,化成“ ax = b ”的形式( a ≠ 0 ); (2)注意:合并同类项时,把同类项的系数相加,字母不变. 5. 系数化为 1(1)定义: 方程两边同除以未知数的系数 a ,得 abx =; (2)注意:分子、分母不能颠倒【典例分析】【考点1 一元一次方程定义】【典例1】(2021秋•雅安期末)下列四个方程中,是一元一次方程的是( ) A .x 2﹣1=0 B .x ﹣1=0C .x +y =1D .﹣1=0【答案】B【解答】解:A .根据一元一次方程的定义,x 2﹣1=0中x 的次数是2,那么x 2﹣1=0不是一元一次方程,故A 不符合题意.B .根据一元一次方程的定义,x ﹣1=0是一元一次方程,那么B 符合题意.C .根据一元一次方程的定义,x +y =1中含有两个未知数,那么x +y =1不是一元一次方程,故B 不符合题意.D .根据一元一次方程的定义,不是整式方程,而是分式方程,那么不是一元一次方程,故D 不符合题意. 故选:B .【变式1】(2022春•沙坪坝区期末)下列方程是一元一次方程的是( ) A .2x 2﹣1=0B .y =x +1C .=1D .x ﹣2=1【答案】D【解答】解:A、未知数的最高次数是2,不是一元一次方程,故本选项不符合题意;B、含有两个未知数,不是一元一次方程,故本选项不符合题意;C、方程左边是分式,不是一元一次方程,故本选项不符合题意;D、符合一元一次方程的定义,故本选项符合题意.故选:D【考点2 等式性质】【典例2】(2022春•龙凤区期末)下列各式运用等式的性质变形,正确的是()A.由a=b,得=B.由﹣3x=﹣3y,得x=﹣yC.由=1,得x=D.若(m2+1)a=(m2+1)b,则a=b【答案】D【解答】解:A.由a=b,得=,故A选项不符合题意;B.由﹣3x=﹣3y,得x=y,故B选项不符合题意;C.由=1,得x=4,故C选项不符合题意;D.若(m2+1)a=(m2+1)b,则a=b,故D选项符合题意;故选:D.【变式2-1】(2021秋•渭城区期末)根据等式的性质,下列变形错误的是()A.若a=b,则2a=2b B.若2a=3b,则2a﹣2=3b﹣2C.若ac=bc,则a=b D.若=,则2a=2b【答案】C【解答】解:A.根据等式的基本性质,若a=b,则2a=2b,故A正确,那么A不符合题意;B.根据等式的基本性质,若2a=3b,得2a﹣2=3b﹣2,故B正确,那么B不符合题意;C.根据等式的基本性质,由ac=bc,当c≠0,得a=b,故C错误,那么C符合题意;D.根据等式的基本性质,若=,则2a=2b,故D正确,那么D不符合题意.故选:C.【变式2-2】(2021秋•庄河市期末)已知等式2a﹣3b=9,则下列等式不成立的是()A.2a=9+3b B.2a﹣4=9+3b C.D.3b=2a﹣9【答案】B【解答】解:A、因为2a﹣3b=9,所以2a=9+3b,故A不符合题意;B、因为2a﹣3b=9,所以2a﹣4=9+3b﹣4,故B符合题意;C、因为2a﹣3b=9,所以a﹣b=,故C不符合题意;D、因为2a﹣3b=9,所以3b=2a﹣9,故D不符合题意;故选:B.【考点3含参一元一次方程】【典例3】(2021秋•禹州市期末)已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=()A.3或1B.1C.3D.0【答案】B【解答】解:根据题意得:|a﹣2|=1,解得a=3或a=1,因为a﹣3≠0,所以a≠3,综上可知:a=1.故选:B.【变式3-1】(2021秋•巩义市期末)若使方程(m+2)x=1是关于x的一元一次方程,则m的值是()A.m≠﹣2B.m≠0C.m≠2D.m>﹣2【答案】A【解答】解:由题意可知:m+2≠0,解得m≠﹣2.故选:A.【变式3-2】(2022春•漳州期末)若关于x的方程2x m﹣1+3=0是一元一次方程,则m的值为()A.﹣1B.0C.1D.2【解答】解:根据题意得:m﹣1=1,解得:m=2.故选:D.【典例4】(2022春•漳州期末)若x=2是方程2x+a﹣5=0的解,则a的值是()A.1B.﹣1C.9D.﹣9【答案】A【解答】解:把x=2代入方程得:4+a﹣5=0,解得:a=1.故选:A.【变式4-1】(2021秋•许昌期末)已知x=2是关于x的方程2x﹣a+6=0的解,则常数a 的值是()A.8B.10C.﹣8D.﹣10【答案】B【解答】解:把x=2代入方程2x﹣a+6=0得:4﹣a+6=0,解得:a=10,故选:B.【变式4-2】(2021秋•东莞市期末)若x=2是方程4x+2m﹣14=0的解,则m的值为()A.10B.4C.﹣3D.3【答案】D【解答】解:把x=2代入方程得:4×2+2m﹣14=0,解得:m=3,故选:D.【典例5】(2021秋•山西期末)若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣8【答案】A【解答】解:∵x=2是方程ax﹣b=3的解,∴4a﹣2b=6,∴4a﹣2b+1=7,故选:A.【变式5】(2022•江津区一模)若x=3是方程a﹣bx=4的解,则﹣6b+2a+2021值为()A.2017B.2027C.2045D.2029【答案】D【解答】解:把x=3代入方程a﹣bx=4得:a﹣3b=4,所以﹣6b+2a+2021=2(a﹣3b)+2021=2×4+2021=8+2021=2029,故选:D.【考点4 解一元一次方程】【典例6】(2021秋•潼南区期末)方程5x﹣2(x﹣1)=8去括号变形正确的是()A.5x﹣2x+1=8B.5x﹣2x﹣1=8C.5x﹣2x+2=8D.5x﹣2x﹣2=8【答案】C【解答】解:方程5x﹣2(x﹣1)=8去括号变形得:5x﹣2x+2=8.故选:C.【变式6-1】(2021秋•天桥区期末)解方程3﹣(x﹣6)=5(x﹣1)时,去括号正确的是()A.3﹣x+6=5x+5B.3﹣x﹣6=5x+1C.3﹣x+6=5x﹣5D.3﹣x﹣6=5x﹣1【答案】C【解答】解:方程3﹣(x﹣6)=5(x﹣1),去括号得:3﹣x+6=5x﹣5.故选:C.【典例7】(2022春•沙坪坝区期末)解方程﹣3时,去分母正确的是()A.3(2x﹣3)=5×2x﹣3B.3(2x﹣3)=5×2x﹣3×5C.5(2x﹣3)=3×2x﹣3×15D.3(2x﹣3)=5×2x﹣3×15【答案】D【解答】解:解方程﹣3时,去分母得:3(2x﹣3)=5×2x﹣3×15.故选:D.【变式7-1】(2022春•交城县校级期末)解方程,以下去分母正确的是()A.3(x+1)﹣2x﹣3=1B.3(x+1)﹣2(x﹣3)=1C.3(x+1)﹣2(x﹣3)=6D.3(x+1)﹣2x+3=6【答案】C【解答】解:,去分母,得3(x+1)﹣2(x﹣3)=6.故选:C.【变式7-2】(2021秋•铁西区期末)解一元一次方程(x+1)=﹣x时,去分母正确的是()A.3(x+1)=2x B.3(x+1)=x C.x+1=2x D.3(x+1)=﹣2x 【答案】D【解答】解:解一元一次方程(x+1)=﹣x时,去分母得:3(x+1)=﹣2x.故选:D.【典例8】(2021秋•三原县期末)代数式3x+1与互为相反数,则x的值为()A.B.﹣C.﹣D.【答案】A【解答】解:根据题意得:3x+1+=0,去分母得:2(3x+1)+(x﹣3)=0,去括号得:6x+2+x﹣3=0,移项合并得:7x=1,解得:x=.故选:A.【变式8-1】(2021秋•福田区校级期末)如果单项式﹣xy b与是同类项,那么关于x的方程ax+b=0的解为()A.x=1B.x=﹣1C.x=3D.x=﹣3【答案】D【解答】解:∵单项式﹣xy b与x a y3是同类项,∴a=1,b=3,代入方程得:x+3=0,解得:x=﹣3.故选:D.【变式8-2】(2021秋•海淀区校级期末)如果3(x﹣2)与2(3﹣x)互为相反数,那么x 的值是()A.0B.1C.2D.3【答案】A【解答】解:根据题意得:3(x﹣2)+2(3﹣x)=0,去括号得:3x﹣6+6﹣2x=0,移项得:3x﹣2x=6﹣6,合并得:x=0.故选:A.【典例9】(2021秋•秀英区校级期末)解下列方程:(1)4﹣(x+3)=2(x﹣1);(2).【解答】解:(1)4﹣(x+3)=2(x﹣1),4﹣x﹣3=2x﹣2,﹣x﹣2x=﹣2﹣4+3,﹣3x=﹣3,x=1;(2),21﹣7(2x+5)=3(4﹣3x),21﹣14x﹣35=12﹣9x,﹣14x+9x=12﹣21+35,﹣5x=26,x=﹣.【变式9-1】(2022春•二道区期末)解方程:3(x﹣2)=x﹣(8﹣3x).【解答】解:去括号,可得:3x﹣6=x﹣8+3x,移项,可得:3x﹣x﹣3x=﹣8+6,合并同类项,可得:﹣x=﹣2,系数化为1,可得:x=2.【变式9-2】(2022春•常宁市期末)解方程:.【解答】解:2(2x﹣1)﹣3(x+1)=6(x﹣1),4x﹣2﹣3x﹣3=6x﹣6,4x﹣3x﹣6x=﹣6+2+3,﹣5x=﹣1,x=.【变式9-3】(2021秋•邹平市校级期末)解方程(1)x﹣=+1;(2)=1;【解答】解:(1)去分母,可得:15x﹣3(x﹣2)=5(2x﹣5)+15,去括号,可得:15x﹣3x+6=10x﹣25+15,移项,可得:15x﹣3x﹣10x=﹣25+15﹣6,合并同类项,可得:2x=﹣16,系数化为1,可得:x=﹣8.(2)原方程可化为:﹣=1,去分母,可得:30x﹣7(17﹣20x)=21,去括号,可得:30x﹣119+140x=21,移项,可得:30x+140x=21+119,合并同类项,可得:170x=140,系数化为1,可得:x=.。

最新中考数学总复习:一次方程及方程组--知识讲解(含答案解析)

中考总复习:一次方程及方程组--知识讲解责编:常春芳【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:0(0)ax b a +=≠.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释:解一元一次方程的一般..步骤 步骤名 称 方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2 去括号 去括号法则(可先分配再去括号)乘法分配律 注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边等式性质1移项一定要改变符号(右边)4 合并同类项分别将未知项的系数相加、常数项相加 1、整式的加减; 2、有理数的加法法则 单独的一个未知数的系数为“±1”5系数化为“1” 在方程两边同时除以未知数的系数(或方程两边同时乘以未知数系数的倒数)等式性质2不要颠倒了被除数和除数(未知数的系数作除数——分母)*6检根 x=a 方法:把x=a 分别代入原方程的两边,分别计算出结果.① 若 左边=右边,则x=a 是方程的解; ② 若 左边≠右边,则x=a 不是方程的解.注:当题目要求时,此步骤必须表达出来.说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组. 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 要点诠释:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0. 3. 二元一次方程组的解法(1) 代入消元法; (2) 加减消元法. 要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y =0时,求x 的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤:1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释:列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程2n 731x 157--=是关于x 的一元一次方程,则n 的值为( ). A.2 B.4 C.3 D.1 【思路点拨】未知数x 的指数是1即可. 【答案】B ;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解. 举一反三:【变式1】已知关于x 的方程4x-3m=2的解是x=5,则m 的值为 . 【答案】由题意可知4×5-3m =2,∴m=6.【高清课程名称:一次方程及方程组 高清ID 号:404191 关联的位置名称(播放点名称):例4】【变式2】若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.【答案】a=0,b=11.2.(2015•顺德区校级三模)一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,结果还剩下6公顷麦田未收割.这块麦田一共有多少公顷?【思路点拨】设这块麦田一共有x 公顷,根据上午收割了麦田的25%,则剩余x (1﹣25%)公顷,再利用下午收割了剩下麦田的20%,则剩余x (1﹣25%)(1﹣20%)公顷,进而求出即可. 【答案与解析】解:设这块麦田一共有x 公顷, 根据题意得出:x (1﹣25%)(1﹣20%)=6, 解得:x=10,答:这块麦田一共有10公顷.【总结升华】此题主要考查了一元一次方程的应用,正确表示出两次剩余小麦的亩数是解题关键.举一反三:【变式】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .()130%80%2080x +⨯= B . 30%80%2080x ⋅⋅= C . 208030%80%x ⨯⨯= D . 30%208080%x ⋅=⨯【答案】成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .类型二、二元一次方程组及其应用3.(2015春•宁波期中)解下列方程组. (1)(2).【思路点拨】代入消元法或加减消元法均可. 【答案与解析】 解:(1),将②代入①得:2(﹣2y+3)+3y=7, 去括号得:﹣4y+6+3y=7, 解得:y=﹣1,将y=﹣1代入②得:x=2+3=5, 则方程组的解;(2),①×4+②×3得:17m=34, 解得:m=2,将m=2代入①得:4+3n=13, 解得:n=3, 则方程组的解为.【总结升华】解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度.举一反三:① ②【变式1解方程组【答案】方程②化为,再用加减法解,答案:【高清课程名称:一次方程及方程组 高清ID 号: 404191 关联的位置名称(播放点名称):例3 】 【变式2】解方程组⎩⎨⎧=++=.36,5:4:3::c b a c b a【答案】a=9,b=12,c=15.4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?【思路点拨】根据题意找出等量关系式,列出方程或方程组解题. 【答案与解析】(1)地面总面积为:(6x +2y +18)m 2; (2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). 【总结升华】注意不要丢掉题中的单位. 举一反三:【变式】利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【答案】设桌子高度为acm,木块竖放为bcm,木块横放为ccm.则80,a=7570a b ca c b+-=⎧⎨+-=⎩解得.故选C.类型三、一次方程(组)的综合运用5.某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解.【答案与解析】方法一:设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程 1000x+(60–x)(1000+2000)=100000,解得:x=40,∴60-x =60-40=20答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.方法二:设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x,y人,根据题意列出方程组:601000(10002000)100000 x yx y+=⎧⎨++=⎩解得:2040 yx=⎧⎨=⎩答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.【总结升华】本题考查理解题意的能力,关键是找到人数和钱数作为等量关系.举一反三:【变式】某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上票价 10元/人 8元/人 5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 【答案】设甲班有x 人,乙班有y 人,由题意得:8109205()515x y x y +=⎧⎨+=⎩ 解得:5548x y =⎧⎨=⎩. 答:甲班有55人,乙班有48人.6.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”; 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少? 【思路点拨】根据甲、乙、丙三位同学提供的信息找出等量关系列出方程组求解. 【答案与解析】设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. 【总结升华】通过甲、乙、丙三位同学调查结果找到车流量的等量关系式是解题的关键.。

专题07 一元一次方程篇(解析版)

专题07 一元一次方程考点一:一元一次方程之概念1. 方程的概念:含有未知数的等式叫做方程。

2. 一元一次方程的概念:只含有一个未知数,且未知数次数是1的整式方程是一元一次方程。

一般形式为:()00≠=+abax。

必须同时满足三个条件:①只含有一个未知数。

②未知数的次数是1。

③是整式方程。

3. 方程的解与一元一次方程的解:是方程(一元一次方程)左右两边成立的未知数的值叫做方程(一元一次方程)的解。

1.(2022•贵阳)“方程””.如:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则表示的方程是 x+2y=32 .【分析】认真审题,读懂图中的意思,仿照图写出答案.【解答】解:根据题知:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,一个竖线表示一个,一条横线表示一十,所以该图表示的方程是:x+2y=32.考点二:一元一次方程之等式的性质1. 等式的性质:性质1:等式的左右两边同时加上(减去)同一个数(或式子),等式仍然成立。

即:cb c a b a ±=±=,则性质2:等式的两边同时乘上(或除以)同一个(不为0的)数,等式仍然成立。

即:()()0≠÷=÷==c c b c a bc ac b a ,则。

2.(2022•青海)根据等式的性质,下列各式变形正确的是( )A .若c b c a =则a =bB .若ac =b c ,则a =bC .若a 2=b 2,则a =bD .若﹣31x =6,则x =﹣2【分析】根据等式的性质,进行计算逐一判断即可解答.【解答】解:A 、若=,则a =b ,故A 符合题意;B 、若ac =bc (c ≠0),则a =b ,故B 不符合题意;C 、若a 2=b 2,则a =±b ,故C 不符合题意;D 、﹣x =6,则x =﹣18,故D 不符合题意;故选:A .3.(2022•滨州)在物理学中,导体中的电流I 跟导体两端的电压U 、导体的电阻R 之间有以下关系:I =RU ,去分母得IR =U ,那么其变形的依据是( )A .等式的性质1B .等式的性质2C .分式的基本性质D .不等式的性质2【分析】根据等式的性质,对原式进行分析即可.【解答】解:将等式I =,去分母得IR =U ,实质上是在等式的两边同时乘R ,用到的是等式的基本性质2.故选:B.考点三:一元一次方程之解一元一次方程1. 解一元一次方程的步骤:①去分母——等式左右两边同时乘分母的最小公倍数。

中考数学总复习三:一元一次方程(含答案)

中考数学总复习三:一元一次方程一、知识点复习1.一元一次方程:只含有一个,并且未知数的次数的方程.2.方程的解:能使方程的未知数的值叫做方程的解.求的过程叫做解方程.3.等式的性质:性质1 等式两边都加上(或减去),所得结果仍是等式.性质2 等式两边都乘(或除以),所得结果仍是等式.4.移项:方程中的某些项后,可以从方程的一边移到另一边,这样的变形叫做移项.移项口诀:.5.去括号法则:括号前面是“+”号,把括号和它前面是去掉,括号里各项的符号.括号前面是“-”号,把括号和它前面是去掉,括号里各项的符号.口诀:.6.去分母:等式的两边同时乘以分母的.7.解方程的一般步骤:.二自我检测、(一)、选择题1. 一球鞋厂,现打折促销售卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )A. 10%x=330B. (1−10%)x=330C. (1−10%)2x=330D. (1+10%)x=3302. x=−2是方程2a+3x=4的解,则a的值是( )A. 5B. −5C. −1D. 13. 下列给出的x的值,是方程x−6=2x+5的解的是( )A. x=−13B. x=−1 C. x=−11 D. x=1134. 下列方程中,解为x=−2的方程是( )A. 2x+5=1−xB. 3−2(x−1)=7−xC. x−2=−2−xD. 1−14x=14x5. 数轴上的点A到原点的距离是6,则点A表示的数为( )A. 6或−6B. 6C. −6D. 3或−36. 下列利用等式的性质,错误的是( )A. 由a=b,得到5−2a=5−2bB. 由ac =bc,得到a=bC. 由a=b,得到ac=bcD. 由a=b,得到ac =bc7. 如图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为( )A. 22元B. 23元C. 24元D. 26元8. 小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得( )A. 4+3x=25B. 12+x=25C. 3(4+x)=25D. 3(4−x)=259. 下列方程是一元一次方程的是( )A. 2x+5=1x B. 3x−2y=6 C. x2=5−x D. x2+2x=010. 解方程2(x−3)−3(x−4)=5时,下列去括号正确的是( )A. 2x−3−3x+4=5B. 2x−6−3x−4=5C. 2x−3−3x−12=5D. 2x−6−3x+12=511. 已知x<0,且2x+∣x∣+3=0,则x等于( )A. −1B. −2C. −32D. −312. 如果m表示有理数,那么∣m∣+m的值( )A. 可能是负数B. 不可能是负数C. 必定是正数D. 可能是负数也可能是正数13. 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的盈亏是( )A. 盈利8元B. 亏损8元C. 盈利6元D. 不盈不亏14. 下列变形正确的是( )A. 4x−5=3x+2变形得4x−3x=−2+5B. 3x=2变形得x=32C. 3(x−1)=2(x+3)变形得3x−1=2x+6D. 23x−1=12x+3变形得4x−6=3x+18(二)、填空题1. 一元一次方程:在一个方程中,只含有未知数,而且方程中的代数式都是,未知数的指数都是,这样的方程叫做一元一次方程.2. 在数轴上与2距离为3个单位的点所表示的数是.3. 等式的基本性质(1)等式两边同时加(或减)同一个代数式,所得的结果仍是等式,即若a=b,则a±c=.(2)等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式,即若a=b,则ac=,ac=(c≠0).4. 当x=时,4x−4与3x−10互为相反数.5. 当x=时,代数式3+x与x−1的值相等.36. 未知数x的2倍减去7的差,得36,列方程为.7. 一件商品按成本价九折销售,售价为270元.这件商品的成本价是多少?设这件商品的成本价为x元,则可以列出方程.8. 已知关于x的方程2x−3a=−1的解为x=−1,则a的值等于.9. 若x=2是关于x的方程ax+6=2ax的解,则a=.10. 一项工程,甲单独做10天可以完成,乙单独做15天可以完成,甲队先做两天,余下的工程由两队合做x天可以完成,则由题意可列出的方程是.11. 已知方程2a−5=x+a的解是x=−6,那么a=.12 长方形的周长是18cm,长比宽多3cm,那么长方形的长是cm.13. 若2∣x−1∣=4,则x的值为.(三)、解答题1. 在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入左侧圆圈中,属于一次方程的序号填入右侧圆圈中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①3x+5=9;②x2+4x+4=0;③2x+3y=5;④x2+y=0;⑤x−y+z=8;⑥xy=−1.2. 解方程:(1)2(x−1)=4x;(2)4x−36=1−2−5x3.3. 用等式的性质解方程:(1)−12x=4;(2)2x=5x−6.4. 某地下管道由甲队单独铺设需要3天完成,由乙队单独铺设需要5天完成,甲队铺设了15工作量后,为了加快速度,乙队加入,从另一端铺设,则管道铺好时,乙队做了多少天?5. 甲仓库存煤200t,乙仓库存煤70t,若甲仓库每天运出15t煤,乙仓库每天运进25t煤,多少天后乙仓库存煤比甲仓库多1倍?(请用方程描述此实际问题中数量之间的相等关系)6. 解下列方程:(1)8y−3=3(2)2x−19=7x+6(3)x−2=13x+43(4)2x+3=11−6x7. 解下列方程:(1)7(2x−1)−3(4x−1)=4(3x+2)−2;(2)23[32(x−4)−6]=2x+1.8. 利用等式的性质解下列方程:(1)−0.3x+7=1;(2)−y2−3=9;(3)512x−13=14.9. 某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则这种商品的定价是多少?答案第一部分1. D2. A3. C4. B5. A6. D7. C8. C9. C 10. D11. D 【解析】已知x<0,则2x+∣x∣+3=2x−x+3=0,解得x=−3.12 B 13. B 14. D第二部分1. 一个,整式,12. 5或−13. b±c,bc,bc4. 25. 66. 2x−7=367. 0.9x=2708. −139. 310. 110×2+(110+115)x=111. −112. 613. 3或−1【解析】∵2∣x−1∣=4,∴∣x−1∣=2.当x−1=2,得x=3;当x−1=−2,得x=−1.第三部分1. (1)一元方程,①3x+5=9②x2+4x+4=0;(2)一次方程①3x+5=9⑤x−y+z=8③2x+3y=5;(3)既属于一元方程又属于一次方程的是①3x+5=9.2. (1)2x−2=4x,−2x=2,解得x=−1.(2)4x−3=6−4+10x,−6x=5,解得:x=−56.3. (1)−12x=4,−2×(−12x)=4×(−2),x=−8.(2)2x=5x−6, 2x−5x=5x−5x−6,−3x=−6,x=2.4. 设乙队做了x天.根据题意,得15+(13+15)x=1.解得x=32.经检验:x=32是所列方程的解,且符合实际意义.答:乙队做了32天.5. 设x天后乙仓库存煤比甲仓库多1倍,由题意得:2(200−15x)=70+25x.6. (1)移项,得8y=3+3.合并同类项,得8y=6.系数化为1,得y=34.(2)移项,得2x−7x=6+19.合并同类项,得−5x=25.系数化为1,得x=−5.(3)移项,得x−13x=2+43.合并同类项,得23x=103.系数化为1,得x=5.(4)移项,得2x+6x=11−3.合并同类项,得8x=8.系数化为1,得x=1.7. (1)去括号,得14x−7−12x+3=12x+8−2,移项,得14x−12x−12x=8−2+7−3,合并同类项,得−10x=10,方程两边同时除以−10,得x=−1.(2)去括号,得23×32(x−4)−23×6=2x+1,得x−4−4=2x+1,移项,得x−2x=1+4+4,合并同类项,得−x=9,方程两边同时除以−1,得x=−9.8. (1)方程两边同时减去7,得−0.3x+7−7=1−7.于是,得−0.3x=−6.方程两边同时除以−0.3,得−0.3x÷(−0.3)=−6÷(−0.3)于是,得x=20.(2)方程两边同时加上3,得−y2−3+3=9+3.于是,得−y2=12.方程两边同时乘以−2,得y=−24.(3)方程两边同时乘以12,得5x−4=3.方程两边同时加上4,得5x−4+4=3+4.于是,得5x=7.方程两边同时除以5,得x=75.9. 设商品的定价为x元.根据题意,得0.75x+25=0.9x−20,解得x=300.答:这种商品的定价是300元.。

第09讲-用一元一次方程解决问题(12种题型)(解析版)精选全文

第09讲用一元一次方程解决问题(12种题型)一、配套问题配套问题在考试中十分常见,比如合理安排工人生产、按比例选取工程材料、调剂人数或货物等。

解决配套问题的关键是要认识清楚部分量、总量以及两者之间的关系。

每套所需各零件的比与生产各零件总数量成反比.二、工程问题工程问题的基本量有:工作量、工作效率、工作时间。

关系式为:①工作量=工作效率×工作时间;②工作时间=,③工作效率=。

工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。

还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。

三. 销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。

(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打6折出售,即按原标价的60%出售.四、比赛积分问题①.获取信息(找出胜、平、负的场数和积分,胜、平、负1场的积分,该队的总积分)②.能用字母表示数(常设胜/平/负的场数为x)③.寻找等量关系胜场数×胜1场的积分+平局场数×平1场的积分+负场数×负1场的积分=这个队的总积分五、方案选择问题1.借助方程先求出相等的情况。

2.再考虑什么情况下一种方案比另一种方案好,从而进行决策。

六、数字问题1、多位数的表示方法:①若一个两位数的个位上的数字为a,十位上的数字为b,则这个两位数是10b+a②若一个三位数的个位上的数字为a,十位上的数字为b,百位上的数字为c,则这个三位数是100c+10b+a③四、五…位数依此类推。

2、连续数的表示方法:①三个连续整数为:n-1,n,n+1(n为整数)②三个连续偶数为:n-2,n,n+2(n为偶数)或2n-2,2n,2n+2(n为整数)③三个连续奇数为:n-2,n,n+2(n为奇数)或2n-1,2n+1,2n+3(n为整数)七、几何问题1.将几何图形赋予了代数元素,便产生了一类新问题,2.解决这类问题时,通常要用到图形的性质以及几何量之间的关系.八、和差倍分问题1.和、差关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2.倍、分关系:通过关键词语“是几倍、增加几倍、增加到几倍、增加百分之几、增长率……”来体现.3.比例问题:全部数量=各种成分的数量之和.此类题目通常把一份设为x.解题的关键是弄清“倍、分”关系及“和、差”关系.九、分段计费问题分段计费问题解题思路1.明确分段区间2.明确不同区间的计费标准3.分区间讨论计算十. 行程问题1.行程问题中有三个基本量:路程、时间、速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。

】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例 3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?对应训练2.(2016•黄石)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有()A.1种B.11种C.6种D.9种2.C3.(2016•永州)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二.个人所得税纳税税率如下表所示:考点三:一元一次方程组的应用例4 (2016•宜宾)2013年4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?思路分析:设规定时间为x天,生产任务是y顶帐篷,根据不提速在规定时间内只能完成任务的90%,即提速后刚好提前一天完成任务,可得出方程组,解出即可.解:设规定时间为x天,生产任务是y顶帐篷,由题意得,12090%160(1)x yx y=⎧⎨-=⎩,解得:6800xy=⎧⎨=⎩.答:规定时间是6天,生产任务是800顶帐篷.例5 (2016•嘉兴)某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?思路分析:(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可.解:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,由他提议,得1200020162012000152015x y x y+=⨯⎧⎨+=⨯⎩, 解得:20050x y =⎧⎨=⎩。

答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意,得12000+25×200=20×25z ,解得:z=34则50-34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.点评:本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键.对应训练 4.(2016•苏州)苏州某旅行社组织甲乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团个有多少人?4.解:设甲、乙两个旅游团个有x 人、y 人,由题意得:2555x y x y =-⎧⎨+=⎩,解得3520x y =⎧⎨=⎩。

答:甲、乙两个旅游团个有35人、20人.5.(2016•长沙)为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线,2号线每千米的平均造价分别是多少亿元?A.等式的性质1 B.等式的性质2C.分式的基本性质D.不等式的性质12.(2016•淄博)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为()A.70cm B.65cm C.35cm D.35cm或65cm3.(2016•济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.60元B.80元C.120元D.180元4.(2016•潍坊)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.222.5%0.5%10000x yx y-=⎧⎨⨯+⨯=⎩B.22100002.5%0.5%x yx y-=⎧⎪⎨+=⎪⎩C.100002.5%0.5%10000x yx y+=⎧⎨⨯-⨯=⎩D.10000100002.5%0.5%x yx y+=⎧⎪⎨-=⎪⎩5.(2016•济宁)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有盏灯.6.(2016•淄博)解方程组23322x yx y-=⎧⎨+=-⎩①②.7.(2016•聊城)夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?8.(2016•临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?【备考真题过关】一、选择题1.(2013•株洲)一元一次方程2x=4的解是()A.x=1 B.x=2 C.x=3 D.x=42.(2013•凉山州)已知方程组2535x yx y+=⎧⎨+=⎩,则x+y的值为()A.-1 B.0 C.2 D.3A.0 B.-1 C.1 D.5A.23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩5.(2016•太原)王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25x)=338256.(2016•宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A.4150048000x yx y+=⎧⎨+=⎩B.4150068000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500 648000 x yx y+=⎧⎨+=⎩7.(2016•随州)我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是()A.80元B.95元C.135元D.270元8.(2016•黑龙江)今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有()A.3种B.4种C.5种D.6种9.(2016•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15A.①②B.②③C.②③④D.①③④二、填空题12.(2013•泉州)方程组31x yx y+=⎧⎨-=⎩的解是.三、解答题20.(2016•广东)解方程组128 x yx y=+⎧⎨+=⎩.21.(2016•梅州)解方程组251x yx y+=⎧⎨-=⎩.,22.(2016•邵阳)解方程组:312236x yx y+=⎧⎨-=⎩①②.23.(2016•扬州)已知关于x、y的方程组52111823128x y ax y a+=+⎧⎨-=-⎩①②的解满足x>0,y>0,求实数a的取值范围.24.(2016•曲靖)某种仪器由1种A部件和1个B部件配套构成.每个工人每天可以加工A 部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?25.(2016•凉山州)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?26.(2016•宜昌)[背景资料]一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时.[问题解决](1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇佣的人数是张家的2倍,张家雇人手工采摘,王家所雇的人中有23的人自带彩棉机采摘,13的人手工采摘,两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元,王家这次采摘棉花的总重量是多少?26.解:(1)∵一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,∴一个人手工采摘棉花的效率为:35÷3.5=10(公斤/时),∵雇工每天工作8小时,∴一个雇工手工采摘棉花,一天能采摘棉花:10×8=80(公斤);(2)由题意,得80×7.5a=900,解得a=32;(3)设张家雇佣x人采摘棉花,则王家雇佣2x人采摘棉花,其中王家所雇的人中有43x的人自带彩棉机采摘,23x的人手工采摘.∵张家雇佣的x人全部手工采摘棉花,且采摘完毕后,张家付给雇工工钱总额为14400元,∴采摘的天数为:144001203802xx=⨯=120x,∴王家这次采摘棉花的总重量是:(35×8×43x+80×23x)×120x=51200(公斤).27.(2016•湖州)为激励教师爱岗敬业,某市开展了“我最喜爱的老师”评选活动.某中学确定如下评选方案:有学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).学生投票结果统计表候选教师王老师赵老师李老师陈老师得票数200 300(1)若共有25位教师代表参加投票,则李老师得到的教师票数是多少?请补全条形统计图.(画在答案卷相对应的图上)(2)王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,求王老师与李老师得到的学生票数分别是多少?(3)在(1)、(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是两位老师?为什么?27.解:(1)李老师得到的教师票数是:25-(7+6+8)=4,如图所示:(2)设王老师与李老师得到的学生票数分别是x和y,由题意得出:500320 x yx y+=⎧⎨=+⎩,解得:380120 xy=⎧⎨=⎩,答:王老师与李老师得到的学生票数分别是380和120;(3)总得票数情况如下:王老师:380+5×7=415,赵老师:200+5×6=230,李老师:120+5×4=140,陈老师:300+5×8=340,推选到市里的是王老师和陈老师.小学语文汉字专项练习课堂练习:一.根据笔画名称填写笔画。

相关文档
最新文档