理想气体状态方程..

合集下载

理想气体状态方程

理想气体状态方程

理想气体状态方程理想气体状态方程是研究理想气体行为的基本方程之一。

理想气体是物理学中的一个理想化模型,它假设气体分子与分子之间无相互作用和容积,其分子运动只受到压强和温度的影响。

这个理想化假设在实际气体中并不完全成立,但对于低密度、高温和适当的压力下的气体,可以近似认为是理想气体。

理想气体状态方程可以用来描述气体的物态变化。

在研究气体的性质时,我们需要研究气体的压强、体积和温度之间的关系。

根据理想气体状态方程,气体的压强P、体积V和温度T之间存在一个简单的关系式:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的物质的量,R为普适气体常数,T表示气体的温度。

这个方程被称为理想气体状态方程。

理想气体状态方程可以推导出一些重要的气体性质。

首先,根据理想气体状态方程,我们可以得到气体的压强与温度成正比关系。

当一定量的气体体积不变时,如果温度升高,气体的压强也会相应增加;如果温度降低,则气体的压强也会减少。

这个性质被称为气体的查理定律。

其次,根据理想气体状态方程,我们可以得到气体的压强与体积成反比关系。

当一定量的气体温度不变时,如果气体的体积增加,那么气体的压强会相应地减小;反之,如果气体的体积减小,气体的压强会增加。

这个性质被称为气体的波意定律。

此外,理想气体状态方程还可以用来计算气体的物质的量。

在一定的温度和压强下,我们可以根据理想气体状态方程中的物质的量的项n 来计算气体中分子的数量。

这个性质对于研究气体的化学反应和判断气体的纯度非常重要。

需要指出的是,理想气体状态方程是一种理论模型,它适用于低密度的气体和高温下的气体,对于高压下的气体和液体状态的物质则不适用。

在实际情况中,我们通常将气体近似地看作是理想气体,以简化问题的计算。

理想气体状态方程是研究气体物理性质的重要基础。

通过这个方程,我们可以研究气体的物态变化,计算气体的压强、体积和温度之间的关系。

这个方程的研究不仅对于理解气体行为和探索物质的性质有重要意义,而且在工程、化学等领域的应用也非常广泛。

气体的理想气体状态方程

气体的理想气体状态方程

气体的理想气体状态方程气体是一种物质的形态,它在我们的日常生活中无处不在。

无论是呼吸的空气,还是汽车尾气中的废气,都是气体的存在形式。

而气体的行为和性质可以通过理想气体状态方程来描述和解释。

理想气体状态方程是描述气体行为的基本方程,它建立了气体的压强、体积和温度之间的关系。

根据理想气体状态方程,气体的压强与体积成反比,与温度成正比。

理想气体状态方程可以用以下公式表示:PV = nRT其中,P代表气体的压强,V代表气体的体积,n代表气体的物质的量,R代表气体常数,T代表气体的温度。

这个方程是基于一些假设而得出的,即气体分子之间不存在相互作用力,气体分子的体积可以忽略不计。

虽然这些假设在现实中并不完全成立,但在一定的条件下,理想气体状态方程仍然可以很好地描述气体的行为。

理想气体状态方程的推导可以通过分析气体分子的运动和碰撞来解释。

根据动理学理论,气体分子的运动是无规则的,它们以高速在容器内自由运动,并与容器壁和其他分子发生碰撞。

这些碰撞产生的压力就是气体的压强。

当气体分子的数目一定时,气体的体积越大,分子之间的碰撞次数就越少,压强就越小。

而当气体的体积减小时,分子之间的碰撞次数增加,压强也随之增加。

另外,根据查理定律,气体的温度与分子的平均动能成正比。

分子的平均动能与分子的质量和速度的平方成正比,因此气体的温度越高,分子的速度越快,分子的动能越大。

理想气体状态方程的物质的量n是一个重要的参数,它表示气体中分子的数目。

根据热力学理论,气体的物质的量与分子数成正比,因此气体的压强和体积与物质的量成正比。

气体常数R是一个与气体性质有关的常数,它的数值取决于气体的种类。

不同的气体具有不同的气体常数,但在同一种气体的不同状态下,气体常数的数值是不变的。

理想气体状态方程的应用十分广泛。

在化学实验中,可以通过测量气体的压强、体积和温度来计算气体的物质的量。

在工业生产中,理想气体状态方程可以用来计算气体的压力和体积的变化,从而优化生产过程。

气体状态方程

气体状态方程

气体状态方程气体是一种具有一定体积的物质,其分子之间的距离相对较大,分子之间存在较弱的相互作用力。

为了研究气体的性质和行为,科学家们提出了气体状态方程,用来描述气体的状态和性质。

本文将介绍三种常见的气体状态方程:理想气体状态方程、范德瓦尔斯气体状态方程和普朗克气体状态方程。

一、理想理想气体状态方程是最简单也是最常用的气体状态方程。

根据理想气体状态方程,气体的体积、温度和压强之间有简单的数学关系,表达式为:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的物质的量,R表示气体常数,T表示气体的温度。

理想气体状态方程的推导基于以下两个假设:气体分子之间无相互作用力,气体分子的体积可以忽略不计。

在满足这两个假设的情况下,理想气体状态方程适用于大多数实际气体,在低压和高温下更加可靠。

二、范德瓦尔斯范德瓦尔斯气体状态方程是对理想气体状态方程的修正和拓展。

范德瓦尔斯方程考虑了气体分子之间的相互作用力和气体分子的体积,表达式为:(P + a * (n / V)^2) * (V - nb) = nRT,其中,P表示气体的压强,V表示气体的体积,n表示气体的物质的量,R表示气体常数,T表示气体的温度,a和b分别为范德瓦尔斯常数。

范德瓦尔斯方程中的a项代表吸引力,b项代表体积校正。

范德瓦尔斯方程更适用于高压和低温下的气体,可以更准确地预测实际气体的行为。

三、普朗克普朗克气体状态方程是对高度离子化的气体(如等离子体)状态的描述。

普朗克方程使用以下表达式:PV = aT^(3/2) * exp(b / T),其中,P表示气体的压强,V表示气体的体积,T表示气体的温度,a和b为普朗克常数。

普朗克方程适用于高温下离子化气体的状态描述,可以更好地解释等离子体的性质和行为。

小结气体状态方程是描述气体状态和性质的数学表达式。

理想气体状态方程是最常用的气体状态方程,适用于大多数实际气体。

范德瓦尔斯方程修正了理想气体状态方程的不足,并适用于高压和低温下的气体。

理想气体状态方程含义

理想气体状态方程含义

理想气体状态方程含义介绍如下:
理想气体状态方程,也称为理想气体定律,描述了在恒定温度下的气体状态。

它的数学表达式为:
PV = nRT
其中,P是气体的压力,V是气体的体积,n是气体的摩尔数,R是气体常数,T是气体的绝对温度。

这个方程表明,在恒定温度下,气体的压力、体积和摩尔数是相互关联的。

该方程的含义是,对于一个理想气体,在恒定温度下,当压力和体积发生变化时,摩尔数和气体常数也会发生变化。

其中,气体常数R是由分子的质量、数量和体积以及玻尔兹曼常数等物理参数决定的。

理想气体状态方程是热力学中最基本的方程之一,用于描述气体在不同温度、压力和体积下的行为。

它的应用范围非常广泛,例如在化学工程、物理学、工程学等领域中都有重要的应用。

理想气体状态方程

理想气体状态方程

理想气体状态方程理想气体状态方程(ideal gas,equation of state of),也称理想气体定律或克拉佩龙方程,描述理想气体状态变化规律的方程。

质量为m,,摩尔质量为M的理想气体,其状态参量压强p、体积V和绝对温度T之间的函数关系为pV=mRT/M=nRT 式中ρ和n分别是理想气体的摩尔质量和物质的量;R是气体常量。

对于混合理想气体,其压强p是各组成部分的分压强p1、p2、……之和,故pV=(p1+p2+……)V=(n1+n2+……)RT,式中n1、n2、……是各组成部分的摩尔数。

以上两式是理想气体和混合理想气体的状态方程,可由理想气体严格遵循的气体实验定律得出,也可根据理想气体的微观模型,由气体动理论导出。

在压强为几个大气压以下时,各种实际气体近似遵循理想气体状态方程,压强越低,符合越好,在压强趋于零的极限下,严格遵循。

pV=nRT(克拉伯龙方程[1])p为气体压强,单位Pa。

V为气体体积,单位m3。

n为气体的物质的量,单位mol,T为体系温度,单位K。

R为比例系数,数值不同状况下有所不同,单位是J/(mol·K)在摩尔表示的状态方程中,R为比例常数,对任意理想气体而言,R是一定的,约为8.31441±0.00026J/(mol·K)。

如果采用质量表示状态方程,pV=mrT,此时r是和气体种类有关系的,r=R/M,M为此气体的平均分子量.经验定律(1)玻意耳定律(玻—马定律)当n,T一定时V,p成反比,即V∝(1/p)①(2)查理定律当n,V一定时p,T成正比,即p∝T ②(3)盖-吕萨克定律当n,p一定时V,T成正比,即V∝T ③(4)阿伏伽德罗定律当T,p一定时V,n成正比,即V∝n ④由①②③④得V∝(nT/p)⑤将⑤加上比例系数R得V=(nRT)/p 即pV=nRT实际气体中的问题当理想气体状态方程运用于实际气体时会有所偏差,因为理想气体的基本假设在实际气体中并不成立。

理想气体的状态方程及图像分析

理想气体的状态方程及图像分析

理想气体的状态方程及图像分析理想气体是一个重要的物理模型,用于描述气体的宏观行为。

在许多情况下,理想气体的假设能够提供足够的准确度,并且简化了解题过程。

理想气体的状态方程是描述其状态的最基本的方程之一,同时,通过对状态方程的图像分析,我们可以更直观地理解理想气体的行为。

理想气体的状态方程理想气体的状态方程可以表示为:[ PV = nRT ]•( P ) 表示气体的压强,单位是帕斯卡(Pa);•( V ) 表示气体的体积,单位是立方米(m³);•( n ) 表示气体的物质的量,单位是摩尔(mol);•( R ) 表示理想气体常数,其值约为 ( 8.314 10^{-3} ) kPa·L/(mol·K);•( T ) 表示气体的绝对温度,单位是开尔文(K)。

这个方程表明,在恒定物质的量下,气体的压强和体积成反比,而与温度成正比。

状态方程的推导理想气体的状态方程可以从微观角度进行推导。

假设气体由大量微小的粒子组成,这些粒子之间没有相互作用力,体积可以忽略不计。

在这种情况下,气体的宏观量(如压强、体积和温度)可以看作是大量粒子微观行为的宏观表现。

根据动理论,气体的压强是由气体粒子与容器壁的碰撞产生的。

在宏观上,压强与单位面积上粒子碰撞的次数以及每次碰撞的力有关。

而气体的体积与气体粒子所能占据的空间有关。

在宏观上,气体的温度可以看作是气体粒子平均动能的度量。

综合以上因素,我们可以得到理想气体的状态方程:( PV = nRT )。

状态方程的图像分析通过对理想气体的状态方程进行图像分析,我们可以更直观地理解理想气体的行为。

等温过程在等温过程中,气体的温度保持不变。

根据状态方程,我们可以得到:[ P ]这是一个双曲线,表明在等温过程中,压强和体积成反比。

等压过程在等压过程中,气体的压强保持不变。

根据状态方程,我们可以得到:[ V T ]这是一个正比例关系,表明在等压过程中,体积和温度成正比。

热力学理想气体状态方程与热力学过程

热力学理想气体状态方程与热力学过程热力学是研究物质的能量转化和能量交换规律的学科。

理想气体是热力学中常用的模型,它的状态方程和热力学过程是热力学理论的基础。

本文将深入探讨热力学理想气体状态方程和热力学过程,并解释它们的概念和关系。

一、理想气体状态方程理想气体状态方程描述了理想气体在不同条件下的状态。

理想气体状态方程的公式为:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的物质量(摩尔数),R为气体常数,T表示气体的温度。

这个方程是根据实验结果和理论推导得出的,它表明在给定的条件下,理想气体的压强、体积和温度是互相关联的。

通过这个方程,我们可以计算理想气体在不同状态下的其他物理量,如摩尔质量、摩尔体积等。

二、热力学过程热力学过程是指气体在不同条件下发生的能量转化和能量交换过程。

常见的热力学过程包括等温过程、绝热过程、等容过程和等压过程。

1. 等温过程等温过程是指气体在恒定温度下发生的过程。

在等温过程中,气体的温度保持恒定,根据理想气体状态方程,可得:P1V1 = P2V2其中,P1和V1分别表示气体初始时的压强和体积,P2和V2分别表示气体最终时的压强和体积。

2. 绝热过程绝热过程是指气体在无热量交换的条件下发生的过程。

在绝热过程中,气体的内能发生变化,但温度不一定保持恒定。

根据绝热条件和理想气体状态方程,可以得到:P1V1^γ = P2V2^γ其中,γ为气体的绝热指数,对于单原子理想气体,γ=5/3;对于双原子理想气体,γ=7/5。

3. 等容过程等容过程是指气体在恒定体积下发生的过程。

在等容过程中,气体的体积保持恒定,根据理想气体状态方程,可得:P1/T1 = P2/T2其中,T1和T2分别表示气体初始时和最终时的温度。

4. 等压过程等压过程是指气体在恒定压强下发生的过程。

在等压过程中,气体的压强保持恒定,根据理想气体状态方程,可得:V1/T1 = V2/T2其中,T1和T2分别表示气体初始时和最终时的温度。

气体的理想气体状态方程

气体的理想气体状态方程气体的理想气体状态方程是描述气体性质的重要方程,它揭示了气体在不同条件下的关系以及对气体的变化进行定量描述。

理解和掌握理想气体状态方程对于研究气体行为和应用气体知识至关重要。

1. 理想气体模型理想气体状态方程基于理想气体模型,该模型假设气体为非常小的、无质量的粒子,它们之间没有相互作用力。

根据这个假设,理想气体的状态可以通过几个主要的参数来描述,包括压力(P)、体积(V)、温度(T)和物质的量(n)。

2. 理想气体状态方程理想气体状态方程可以用一个简洁的数学表达式表示为:PV = nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质的量,R为气体常数,T表示气体的绝对温度。

3. 理想气体状态方程的推导理想气体状态方程可以从三个基本定律推导而来,分别是波义耳定律、查理定律和盖-吕萨克定律。

波义耳定律表明在恒定温度下,气体体积与其压力呈线性关系;查理定律则指出在恒定压力下,气体体积与其温度成正比;盖-吕萨克定律表明在恒定体积下,气体的压力与其温度成正比。

通过这三个定律的关系,可以推导得到理想气体状态方程。

根据波义耳定律的关系式PV = k1,在恒定温度和恒定物质的量的情况下,压力和体积成反比。

再根据查理定律的关系式V/T = k2,在恒定压力和恒定物质的量的情况下,体积和温度成正比。

将这两个关系结合起来,可以得到PV/T = k3。

因为k1、k2和k3都是常数,所以可以简化为PV/T = R,其中R为气体常量。

4. 理想气体状态方程的应用理想气体状态方程在物理、化学和工程等领域都有广泛应用。

它可以描述气体在不同条件下的性质和变化情况。

对于理想气体的计算问题,可以使用理想气体状态方程进行定量分析。

例如,在研究气体在不同压力下的体积变化时,可以利用理想气体状态方程求解。

当温度和物质的量保持不变时,根据方程PV = nRT,可以通过改变气体的压力和体积来计算气体的状态。

此外,理想气体状态方程也可以用来计算气体的摩尔质量以及理想气体的密度等相关的气体性质。

理想气体状态方程

理想气体状态方程理想气体状态方程是物理学中描述理想气体性质的基本方程,它描述了理想气体的压力、体积和温度之间的关系。

理想气体状态方程可以用多种形式表示,包括皮亚诺定律、查理定律和博伊尔-马略特定律。

在本文中,我们将详细介绍这些方程及其应用。

1. 皮亚诺定律皮亚诺定律是理想气体状态方程的一种形式,它表示为P1V1 = P2V2,其中P1和V1分别是气体的初始压力和体积,P2和V2分别是气体的最终压力和体积。

这个方程描述了在温度不变的情况下,理想气体的体积和压力之间的关系。

根据此方程,当气体的体积增大时,其压力会减小,反之亦然。

2. 查理定律查理定律是另一种描述理想气体状态方程的形式,它表示为V1/T1 = V2/T2,其中V1和T1分别是气体的初始体积和温度,V2和T2分别是气体的最终体积和温度。

这个方程表明,在压力不变的情况下,理想气体的体积和温度之间存在线性关系。

当温度升高时,理想气体的体积也会增大。

查理定律揭示了气体在热胀冷缩过程中的性质。

3. 博伊尔-马略特定律博伊尔-马略特定律是理想气体状态方程的另一种形式,它表示为PV = nRT,其中P是气体的压力,V是气体的体积,n是气体的物质量(以摩尔为单位),R是气体常数,T是气体的绝对温度。

这个方程是理想气体状态方程的最一般形式,可以适用于各种情况。

根据此方程,气体的压力与体积成反比,与温度和物质量成正比。

应用实例:理想气体状态方程在很多实际问题中都有重要的应用。

以下是几个例子:1. 汽车轮胎气压汽车轮胎中的气体可以近似看作理想气体。

根据理想气体状态方程,当气温升高时,轮胎内气体的压强也会增加,这可能导致轮胎过度充气而对安全造成影响。

2. 饱和蒸汽压力饱和蒸汽的压力与温度之间存在着一定的关系,可以通过理想气体状态方程来进行计算。

这对于蒸汽发动机和蒸汽轮机等热力系统的设计和运行非常重要。

3. 气体的稀释和浓度计算在化学实验中,理想气体状态方程可以被用来计算气体的稀释和浓度。

各个状态下PV=nRT(气体体积、密度公式)

理想气体状态方程PV=nRTPV=nRT,理想气体状态方程(也称理想气体定律、克拉佩龙方程)的最常见表达方式,其中p代表状态参量压强,V是体积,n指气体物质的量,T为绝对温度,R为一约等于8.314的常数。

该方程是描述理想气体在处于平衡态时,压强、体积、物质的量、温度间关系的状态方程。

它建立在波义耳定律、查理定律、盖-吕萨克定律等经验定律上。

目录编辑本段1 克拉伯龙方程式克拉伯龙方程式通常用下式表示:PV=nRT……①P表示压强、V表示气体体积、n表示物质的量、T表示绝对温度、R表示气体常数。

所有气体R值均相同。

如果压强、温度和体积都采用国际单位(SI),R=8.314帕·米3/摩尔·K。

如果压强为大气压,体积为升,则R=0.0814大气压·升/摩尔·K。

R 为常数理想气体状态方程:pV=nRT已知标准状况下,1mol理想气体的体积约为22.4L把p=101325Pa,T=273.15K,n=1mol,V=22.4L代进去得到R约为8314 帕·升/摩尔·K玻尔兹曼常数的定义就是k=R/Na因为n=m/M、ρ=m/v(n—物质的量,m—物质的质量,M—物质的摩尔质量,数值上等于物质的分子量,ρ—气态物质的密度),所以克拉伯龙方程式也可写成以下两种形式:pv=mRT/M……②和pM=ρRT……③以A、B两种气体来进行讨论。

(1)在相同T、P、V时:根据①式:nA=nB(即阿佛加德罗定律)摩尔质量之比=分子量之比=密度之比=相对密度)。

若mA=mB则MA=MB。

(2)在相同T·P时:体积之比=摩尔质量的反比;两气体的物质的量之比=摩尔质量的反比)物质的量之比=气体密度的反比;两气体的体积之比=气体密度的反比)。

(3)在相同T·V时:摩尔质量的反比;两气体的压强之比=气体分子量的反比)。

编辑本段2 阿佛加德罗定律推论阿佛加德罗定律推论一、阿佛加德罗定律推论我们可以利用阿佛加德罗定律以及物质的量与分子数目、摩尔质量之间的关系得到以下有用的推论:(1)同温同压时:①V1:V2=n1:n2=N1:N2 ②ρ1:ρ2=M1:M2 ③同质量时:V1:V2=M2:M1(2)同温同体积时:④p1:p2=n1:n2=N1:N2 ⑤同质量时: p1:p2=M2:M1(3)同温同压同体积时: ⑥ρ1:ρ2=M1:M2=m1:m2具体的推导过程请大家自己推导一下,以帮助记忆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:(1)133cmHg (2)-5℃
【练习3】如图所示,一个质量可不计的活塞将一定量的 理想气体封闭在上端开口的直立圆筒形气缸内,活塞上 堆放着铁砂,最初活塞搁置在气缸内壁的固定卡环上, 气体柱的高度为H0=10cm,气体的温度T0=300K,压 强为大气压强p0。现对气体缓慢加热,当气体温度升高 到360K时,活塞(及铁砂)开始离开卡环而上升,此后在 维持温度不变的条件下缓慢取走铁砂。已知活塞的横截 面积是20cm2, 大气压强p0为1105 Pa,不计活塞与气 缸之间的摩擦。求:(1)最初活塞上堆放着的铁砂的 质量;(2)铁砂全部取走后活塞所能达到的高度H。
注:恒量C由理想气体的质量和种类决定,即由气体 的物质的量决定
三、克拉珀龙方程
pV nRT 或
pV m RT M
8.3 理想气体状态方程
阅读课文,回答以下问题:
1、什么是理想气体? 2、如何推导理想气体的状态方程?
一.理想气体
假设有这样一种气体,它在任何温度和任何压强 下都能严格地遵从气体实验定律,我们把这样的气体 叫做“理想气体”。
理想气体具有哪些特点呢?
1、理想气体是不存在的,是一种理想模型。
2、在温度不太低,压强不太大时实际气体都可看成 是理想气体。
PV=nRT 二是研究一定质量的理想气体在状态变化的过 程中,初状态和末状态的状态参量之间的关系的 理想气体状态方程
P1V1/T1=P2V2/T2
一、理想气体: 小结:
在任何温度和任何压强下都能严格地遵从气体实 验定律的气体
二、理想气体的状态方程
p1V1 p2V2 或 pV C
T1
T2
T
【练习1】内径均匀的L形直角细玻璃管, 一端封闭,一端开口竖直向上,用水银柱将一 定质量空气封存在封闭端内,空气柱长4cm, 水银柱高58cm,进入封闭端长2cm,如图所示, 温度是87℃,大气压强为75cmHg,求: (1)在图示位置空气柱的压强p1。 (2)在图示位置,要使空气柱的长度变为3cm,温度必须降低到多 少摄氏度?
3、从微观上说:分子间忽略除碰撞外其他的作 用力,忽略分子自身的大小,分子本身没有体积。
4、从能量上说:理想气体的微观本质是忽略了分 子力,没有分子势能,理想气体的内能只有分子 动能。
一定质量的理想气体的内能仅由温度决 定 ,与气体的体积无关。
如图所示,一定质量的某种理想气体从A到B经历了 一个等温过程,从B到C经历了一个等容过程。分别
【解析】(1)p1=p0+ph=(75+58)cmHg=133cmHg。 (2)对空气柱:初态:p1=133cmHg, V1=4S,T1=(273+87)K=360K。 末态:p2=p0+p'h=(75+57)cmHg=132cmHg,V2=3S。
由 p1V1 代p2V入2 数值, 解得T:1T2=2T62 8K=-5℃。
复习:
【问题1】三大气体实验定律内容是什么?
1、玻意耳定律: 公式: pV =C
2、査理定律:
公式: p C T
3、盖-吕萨克定律:公式: V C
T
【问题2】这些定律的适用范围是什么?
温度不太低,压强不太大。
【问题3】如果某种气体的三个状态参量(p、 V、T)都发生了变化,它们之间又遵从什么 规律呢?
即 2080S ( p 743) 75S
300
270
解得: p=762.2 mmHg
【总结提升】应用理想气体状态方程解题的一般步骤 (1)明确研究对象,即一定质量的理想气体。 (2)确定气体在始末状态的参量p1、V1、T1及p2、V2、 T2。 (3)由状态方程列式求解。 (4)讨论结果的合理性。
H
气体
H0 p0
三、克拉珀龙方程
pV nRT 或 pV m RT
M
克拉珀龙方程是任意质量的理想气体的状态方 程,它联系着某一确定状态下,各物理量的关 系。
对实际气体只要温度不太低,压强不太大就可 应用克拉珀龙方程解题.
对于理想气体,有两个基本方程:一是研究任意质 量的气体,在任意状态下,三个状态参量之间的关 系的克拉珀龙方程
用pA、VA、TA和pB、VB、TB以及pC、VC、TC表示气体在A、B、
C三个状态的状态参量,那么A、C状态的状态参量间 有何关系呢? p
A
C
TA=TB
B
0
V
推导过程
p A
从A→B为等温变化:由玻意耳定律
C
pAVA=pBVB
B
从B→C为等容变化:由查理定律
pB pC TB TC
0
V
又TA=TB VB=VC
即由理想气体的物质的量决定
3、使用条件: 一定质量的某种理想气体.
例题1: 一水银气压计中混进了空气,因而
在27℃,外界大气压为758mmHg时,这个水 银气压计的读数为738mmHg,此时管中水银 面距管顶80mm,当温度降至-3℃时,这个 气压计的读数为743mmHg,求此时的实际大 气压值为多少毫米汞柱?
解:以混进水银气压计的空气为研究对象
初状态:
p1=758-738=20mmHg V1=80Smm3 T1=273+27=300 K 末状态:
p2=p-743mmHg V2=(738+80)=270K
由理想气体状态方程得: p1V1 p2V2
T1
T2
解得: pAVA pCVC
TA
TC
二、理想气体的状态方程
1、内容:一定质量的某种理想气体在从一个状态变
化到另一个状态时,尽管p、V、T都可能改变,但是
压强跟体积的乘积与热力学温度的比值保持不变。
2、公式: p1V1 p2V2 或 T1 T2
pV C T
注:恒量C由理想气体的质量和种类决定,
相关文档
最新文档