北师大版初中数学七年级上册练习1.1生活中的立体图形练习题

合集下载

北师大版数学七年级上册《生活中的立体图形》同步精品练习题

北师大版数学七年级上册《生活中的立体图形》同步精品练习题

1.1 生活中的立体图形填空题1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.2.图形是由________,__________,____________构成的.3.物体的形状似于圆柱的有________________;类似于圆锥的有______________;类似于球的有_________________.4.围成几何体的侧面中,至少有一个是曲面的是______________.5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________.6.圆柱,圆锥,球的共同点是_____________________________.7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________.8.圆可以分割成_____个扇形,每个扇形都是由___________.9.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形.二、选择题10. 从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成( )个三角形A. 10B. 9C. 8D. 711. 图1-1是由( )图形饶虚线旋转一周形成的13.图1-2绕虚线旋转一周形成的图形是( )14.图1-3这个美丽的图案是由我们所熟悉的( )图形组成A.三角形和扇形B圆和四边形C.圆和三角形D圆和扇形15.下面全由圆形组成的图案是( )三、解答题16.请观察丰富多彩的生活世界,有哪些物体的形状与下列几何体类似?(1)六面体(2)圆柱(3)圆锥(4)棱锥17.请写出下列几何体的名称( ) ( ) ( )( ) ( )18.请说出生活中至少4个规则的物体,并说出和它们类似的立体图形?19.动手做一做.将一个长方体切去一部分,看一看剩余的部分是几面体呢?四.开放创新提高题20.如图1-4,一长方体土地,用两条直线把它分成形状相同,大小相等的四块,你能做到吗,能用不同的方法完成这个任务吗?21.一个圆绕着它的直径的直线旋转一周就形成球体,那么现有一个长方形(如图1-5)你有几种方法使它类似于圆柱的几何体?请你画出这些立体圆形励志名言:1、学习从来无捷径,循序渐进登高峰。

北师大版2024新版七年级数学上册提升练:1.1 生活中的立体图形

北师大版2024新版七年级数学上册提升练:1.1 生活中的立体图形

《1.1 生活中的立体图形》提升练1.下面图形中,以直线为轴旋转一周,可以得到圆柱体的是()A. B.C. D.2.(概念应用题)下列说法中,正确的个数是()①柱体的两个底面一样大②圆柱、圆锥的底面都是圆③棱柱的底面是四边形④长方体一定是柱体⑤棱柱的侧面是三角形.A.2个B.3个C.4个D.5个3.在一个棱柱中,一共有八个面,则这个棱柱棱的条数有()A.18条B.15条C.12条D.21条4.已知长方体ABCD-EFGH如图所示,那么下列各条棱中与棱GC平行的是()A.棱EAB.棱ABC.棱GHD.棱GF5.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变6.给出下列结论:①圆柱由三个面围成,这三个面都是平的;②圆锥由两个面围成,这两个面中,一个面是平的,一个面是曲的;③球仅由一个面围成,这个面是曲的;④长方体由六个面围成,这六个面都是平的,其中正确的是______(填序号).7.如图所示是正方体切去一个小角后的立体图形,如果照这样切去正方体的八个角(相邻两个角之间还有一段原来的棱),则新的几何体有________条棱,有________个面,有________个顶点.8.如图是一个正八棱柱,它的底面边长为3cm,高为6cm.(1)这个棱柱共有多少个面?计算出它的侧面积.(2)这个棱柱共有多少条棱?(3)这个棱柱共有多少个顶点?9.(素养提升题)小明学习了“面动成体”之后,他用一个边长为6cm,8cm 和10cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.请计算几何体的体积.(锥体体积13底面积×高)易错必究 规避陷阱易错点:从棱柱的面、棱、顶点把握棱柱的特征.【案例】下列说法不正确的是( )A.四棱柱是长方体B.八棱柱有10个面C.六棱柱有12个顶点D.经过棱柱的每个顶点有3条棱参考答案1.C2.B3.A4.A5.B6.②③④7.36 14 248.【解析】(1)有8个侧面,2个底面,共有8+2=10个面,它的侧面积为:2368144()cm ⨯⨯=;(2)这个棱柱共有棱:8+8×2=24条;(3)这个棱柱共有8×2=16个顶点.9.【解析】以8cm 为轴,得如图1,其体积为2316896()3cm ππ⨯⨯⨯=,以6cm 为轴,得如图2,其体积为23186128()3cm ππ⨯⨯⨯=,以10cm 为轴,得如图3,其体积为23124()1076.8()35cm ππ⨯⨯=. 故几何体的体积为:396cm π或3128cm π或376.8cm π. 易错必究 规避陷阱 易错点【案例】A。

1.1生活中的立体图形同步练习2024—2025学年北师大版数学七年级上册

1.1生活中的立体图形同步练习2024—2025学年北师大版数学七年级上册

1.1生活中的立体图形同步练习一、单选题1.下列几何体中,不属于多面体的是()A.B.C.D.2.如图是一个直六棱柱,它的棱共有多少条().A.6B.8C.12D.18 3.以AB为轴旋转一周后得到的立体图形是()A.B.C.D.4.如图,将直角三角形绕其斜边旋转一周,得到的几何体为()A.B.C.D.5.夜晚时,我们看到的流星划过属于()A.点动成线B.线动成面C.面动成体D.以上答案都不对6.中国扇文化有着深厚的文化底蕴;历来中国有“制扇王国”之称.如图,打开折扇时,随着扇骨的移动形成一个扇面,这种现象可以用数学原理解释为()A.点动成线B.线动成面C.面动成体D.两点确定一条直线7.下列物体中,给我们以“圆柱”形象的是()A.B.C.D.8.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面且侧面为长方形D.棱柱的底面都是多边形9.将一个等腰三角形绕它的底边旋转一周得到的几何体为()A.B.C.D.10.下列说法不正确的是()A.长方体是四棱柱B.八棱柱有8个面C.六棱柱有12个顶点D.经过棱柱的每个顶点有3条棱二、填空题11.分针旋转一周时,形成一个圆面,用数学知识可以理解为.12.若一个棱柱有9个面,则它是棱柱.13.用32个棱长1cm的白色小正方体与32个棱长1cm的蓝色小正方体拼成一个大正方体.如果使蓝色的面向外露的面积最大,那么这个大正方体的6个面上有( )2cm是蓝色的.14.将如图所示的直角三角形线直线l旋转一周,得到的立体图形是,以上过程可以说明的数学知识是;15.如图,请在每个几何体右边写出它们的名称:(1);(2);(3);(4);(5);(6);(7);(8).16.图中的大长方形长10厘米、宽8厘米,小长方形长4厘米、宽3厘米,以长边中点连线(图中的虚线)为轴,将图中的阴影部分旋转一周得到的几何体的表面积为平方厘米.三、解答题17.如图,已知一个直四棱柱的底面边长都是1cm,高为2cm,请求出:(1)四棱柱有______条棱,______个面;(2)四棱柱所有棱长的和;(3)四棱柱的侧面积总和.18.一个正n棱柱,它有24条棱,一条侧棱长为12cm,一条底面边长为5cm.(1)试判断它是几棱柱?(2)求此棱柱的侧面积是多少?19.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f)顶点数(v)棱数(e)图1图2图3(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2013个,棱数4023条,试求出它的面数. 20.把下列物体与其对应的立体图形连接起来:21.我们知道,将一个长方形绕它的一条边所在的直线旋转一周,得到的几何体是圆柱.现有一个长为6cm,宽为4cm的长方形,将这个长方形绕某条边所在直线旋转一周,求所得圆柱的体积是多少?(结果保留 )22.如图是一张长方形纸片,长方形的长为8cm,宽为4cm.(1)若将此长方形纸片绕它的一边所在直线旋转一周,形成的几何体是什么?(2)求将此长方形纸片绕它的一边所在直线旋转一周形成的几何体的体积.(结果保留π)。

1.1 生活中的立体图形 提高练习 2021-2022学年北师大版数学七年级上册

1.1 生活中的立体图形 提高练习 2021-2022学年北师大版数学七年级上册

1.1 生活中的立体图形提高练习一、选择题1.如图,含有曲面的几何体编号是()A.①②B.①③C.②③D.②④2.如图,CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是().A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转3.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于()A.圆柱体B.球体C.圆D.圆锥体4.围成下列这些立体图形的各个面中,都是平的面为()A.B.C.D.5.如图,一个正方体有盖盒子(可密封)里装入六分之一高度的水,改变正方体盒子的放置方式,下列选项中不是盒子里的水能形成的几何体是()A.正方体B.长方体C.三棱柱D.三棱锥6.从棱长为a的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.6a2+3B.6a2C.6a2﹣3D.6a2﹣17.如图所示,过长方体的一个顶点,截掉长方体的一个角,则新几何体的棱数为()A.11B.12C.13D.148.下边的立体图形是由哪个平面图形绕轴旋转一周得到的()A.B.C.D.9.下列几何体中,是圆柱的为A.B.C.D.10.六棱柱中,棱的条数有()A.6条B.10条C.12条D.18条二、填空题11.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为_____个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个_____面体.12.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).13.一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____.14.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30 cm,容器内的水深为8 cm.现把一块长,宽,高分别为15 cm,10 cm,10 cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高________cm.15.一个棱柱有12个面,它有__________个顶点,___________条棱.16.这是一个_______体,它的长是_______ cm,宽是_______ cm,高是_______ cm.棱长总和是_______cm.17.“枪打一条线,棍打一大片”这个现象用数学知识解释说明:___________.18.如图,把一个长方体的礼盒用丝带打上包装,蝴蝶结部分需丝带42cm,那么打好整个包装所用丝带总长为________cm.19.请同学们手拿一枚硬币,将其立在桌面上用力一转,它形成的是一个______体,由此说明______________.20.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说______.三、解答题21.如图,把下列物体和与其相似的图形连接起来.22.如图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体.用线连一连.23.如图是一张长方形纸片,AB长为3cm,BC长为4cm.(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是______;(2)若将这个长方形纸片绕AB边所在直线旋转一周,则形成的几何体的体积是____3cm(结果保留 );(3)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的表面积(结果保留 ).24.十八世纪瑞士数学家欧拉证明了简单多面体中项点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列儿种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现项点数(V)、面数(F)、棱数(F)之间存在的关系式是______________________.(2)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是;(3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y的值.参考答案一、选择题1--10CBABA BDAAD二、填空题11.12.12.12.).13.814.315或115.20 3016.长方25 12 18 22017.点动成线,线动成面18.14019.球面动成体20.线动成面三、解答题21..22.. 23.(1)圆柱;(2)48π;(3)240cm π或233cm π. 24.(1)V+F -E=2;(2) 20;(3)26。

北师大版七年级数学上册 1 1 生活中的立体图形同步练习(含答案)

北师大版七年级数学上册 1 1 生活中的立体图形同步练习(含答案)

北师大版七上 1.1 生活中的立体图形一、选择题(共8小题)1. 下列几何体中,属于棱柱的是( )A. ①③B. ①C. ①③⑥D. ①⑥2. 在①球体;②柱体;③圆锥;④棱柱;⑤棱锥中,必是多面体(指由四个或四个以上多边形所围成的立体图形)的是( )A. ①∼⑤都是B. ②和③C. 仅④D. 仅④和⑤3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥4. 下面的说法中,正确的有( )①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④棱柱的侧面一定是长方形(包括正方形);⑤长方体一定是柱体;⑥长方体的面不可能是正方形.A. 2个B. 3个C. 4个D. 5个5. 将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )A. B.C. D.6. 已知长方体ABCD−EFGH如图所示,那么下列直线中与直线AB不平行也不垂直的直线是( )A. EAB. GHC. HCD. EF7. 如图是一个放置在水平试验台上的锥形瓶,从上往下看该立体图形得到的平面图形是( )A. B.C. D.8. 如图为正方体的一种展开图,各面都标有数字,则数字为−2的面与其对面上的数字之积是( )A. −12B. 0C. −8D. −10二、填空题(共5小题)9. 请完善本课时的知识结构图.10. 已知长方体的长、宽、高之比是5:4:3,如果用一根长为48厘米的铁丝全部用于制作这个长方体模型框架,正好用完,那么此长方体的体积是立方厘米.11. 一个棱柱有18条棱,则它有个面.12. 把下面立体图形的标号写在相对应的括号里:长方体:;棱柱体:;圆柱体:;球体:;圆锥体:.13. 有一些具体物体,分别是:①三棱镜、②方砖、③笔筒、④铅锤、⑤粮囤,它们的形状如图1所示;图2中是一些立体图形.请将图1中物体形状对应的序号填入图2中与之类似的立体图形下面的括号内.三、解答题(共7小题)14. 如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?15. 将实物与相应的几何体用线连接起来.16. 如图,上面一行是一些具体的实物图形,下面一行是一些立体图形,试用线连接立体图形和类似的实物图形.17. 请根据要求完成下表:18. 你能否将下列几何体进行分类?并说出分类的依据.19. 如图所示的图形是我们常见的一些几何体,请你把每个几何体的名称写在它的下面.;;;;;;.20. 如图,上面一行是一些具体的实物图形,下面一行是一些立体图形,试用线连接立体图形和类似的实物图形.答案1. C2. D3. C 【解析】侧面是三角形,说明它是棱锥,底面是三角形,说明它是三棱锥,故选:C.4. B5. C【解析】图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.6. C7. B8. A9. 8,12,3,相等,6,长方形,3,形状,大小10. 6011. 812. ②⑤⑧,②④⑤⑧,①⑥,⑦⑨,③⑩13. ③,④,②,①,⑤14. (1)正方体;(2)圆锥;(3)三棱柱;(4)四棱柱;(5)球体;(6)五棱柱;(7)圆柱;(8)长方体;(9)长方体;(10)四棱锥;(2)(5)(7)可以由平面图形旋转得到.15.16. 如图所示:17.名称三棱锥长方体三棱柱圆柱圆锥球包含的平面图形三角形长方形三角形、长方形圆圆/18. 答案不唯一,如按柱体、锥体、球分,柱体有:①③④⑤⑥⑧,锥体有:②,球有:⑦.19. 长方体;球;圆柱;圆锥;三棱柱;正方体;四棱柱20. 如图所示:。

北师大数学七年级上册第一单元《丰富的图形世界1.生活中的立体图形(一) - 同步练习

北师大数学七年级上册第一单元《丰富的图形世界1.生活中的立体图形(一) - 同步练习

1.生活中的立体图形(一)陈锦辉一、学习目标1经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩。

2在具体的情境中,认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征。

二、同步练习:活动一:从现实世界中抽象出图形1、下列几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱。

其中属于立体图形的是()A、③⑤⑥B、①②③C、③⑥D、④⑤2、在下列物体的几何图形中,是四棱锥是()3、下列图形中不是棱柱的是()A、B、C、D、4、(2008年湖北宜昌中考题)下列物体的形状类似于球的是()A、茶杯B、羽毛球C、乒乓球D、白炽灯泡6.长方体属于( )A.棱锥B.棱柱C.圆柱D.以上都不对7下列几何体中(如图)属于棱锥的是( )(1) (2) (3) (4) (5) (6)A.(1)(5)B.(1)C.(1)(5)(6)D.(5)(6)7.下列所讲述的物体,_______与圆锥的形状类似( )A.香烟盒B.铅笔C.西瓜D.烟囱帽8.机器零件中的六角螺母,圆筒形的易拉罐、足球、火柴盒、铅垂体中,•类似于棱柱的物体有________,•类似于球体的物体有_________,••类似于圆锥的物体有________,类似于圆柱的物体有__________.9下列图形中,是柱体的有。

(填序号)①②③④⑤活动二:认识棱柱及其他几何体的特征1、如果一个物体有七个顶点七个面,那么这个物体一定是()A、五棱锥B、五棱柱C、六棱锥D、七棱锥2、(2008年广东肇庆中考题)一个正方体的面共有()A、1个B、2个C、4个D、6个3、如图,下列图形()是柱体.4、把下列图形的名称填在括号内:5、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形类似的图形。

6、判断题:(每题2分)1.柱体的上、下两个面一样大...........................()2.圆柱的侧面展开图是长方形.......................... ()3.球体不是多面体....................................()4.圆锥是多面体.......................................()5.长方体是多面体.....................................()6.柱体都是多面体.....................................()击中考1(2008年湖北宜昌中考题)下列物体的形状类似于球的是()A、茶杯B、羽毛球C、乒乓球D、白炽灯泡2、(2008年广东肇庆中考题)一个正方体的面共有()A、1个B、2个C、4个D、6个3(2009年浙江杭州中考题)直四棱柱,长方体和正方体之间的包含关系是()。

北师大版七年级上册第一章《生活中的立体图形》测评练习含答案

北师大版七年级上册第一章《生活中的立体图形》测评练习班级:___________姓名:___________一.选择题。

1.下列几何体中与其余三个不属于同一类几何体的是()A.B.C.D.2.如图,是一个五棱柱形的几何体,下列关于该几何体的叙述正确的是()A.有4条侧棱B.有5个面C.有10条棱D.有10个顶点3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个4.下列几何体中,属于柱体的有()A.1个B.2个C.3个D.4个5.下列几何体中,面的个数最少的是()A.B.C.D.6.一个六棱柱的顶点个数、棱的条数、面的个数分别是()A.6、12、6B.12、18、8C.18、12、6D.18、18、24 7.下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤正棱柱的侧面一定是长方形.A.2个B.3个C.4个D.5个8.下列说法中,正确的是()A.棱柱的侧面可以是正方形,也可以是三角形B.一个几何体的表面不可能只由曲面组成C.棱柱的各个面面积都相等D.圆锥是由平面和曲面组成的几何体二.填空题。

9.五棱柱有条棱.10.一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是cm.11.用一段长30cm的铁丝恰好做一个长方体的框架,长、宽、高的比是3:2:1.则这个框架的长比高多厘米.12.如图,圆柱的侧面是由一张长16πcm、宽3cm的长方形纸条围成(接缝处重叠部分忽略不计),那么该圆柱的体积是cm3.13.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱n 等分,如果得到各面都没有涂色的小正方体125个,那么n的值为.参考答案一.选择题1.【解答】解:正方体,圆柱和四棱柱都是柱体,只有C选项是锥体.故选:C.2.【解答】解:图中几何体是正五棱柱,五棱柱有7个面,10个顶点,5条侧棱,15条棱.故选:D.3.【解答】解:第一、二、四、七个几何体是棱柱共4个,故选:C.4.【解答】解:第一个图是圆锥;第二个图是三棱锥;第三个图是正方体,也是四棱柱;第四个图是球;第五个图是圆柱;其中柱体有2个,即第三个和第五个,故选:B.5.【解答】解:三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥,故选:C.6.【解答】解:一个六棱柱的顶点个数是12,棱的条数是18,面的个数是8.故选:B.7.【解答】解:①柱体包括圆柱、棱柱;∴柱体的两个底面一样大;故此选项正确,②圆柱、圆锥的底面都是圆,正确;③棱柱的底面可以为任意多边形,错误;④长方体符合柱体的条件,一定是柱体,正确;⑤正棱柱的侧面一定是长方形,正确;∴正确有①②④⑤共4个.故选:C.8.【解答】解:A、棱柱的侧面是矩形,故选项A原说法错误;B、球的表面是曲面,故选项B原说法错误;C、棱柱的侧棱都相等,侧棱与底棱不一定相等,故选项C原说法错误;D、圆锥的侧面是曲面,底面是平面,故选项D原说法正确;故选:D.二.填空题9.【解答】解:五棱柱有侧棱5条,底面上的棱5×2=10条,所以,共有5+10=15条.故答案为:15.10.【解答】解:根据以上分析一个棱柱有12个顶点,所以它是六棱柱,即有6条侧棱,又因为所有侧棱长的和是48cm,所以每条侧棱长是48÷6=8cm.故答案为8.11.【解答】解:一条长、宽、高的和:30÷4=(厘米),总份数:3+2+1=6,长:×=(厘米),高:×=(厘米),所以这个框架的长比高多:﹣==2.5(厘米).故答案为:2.5.12.【解答】解:16π÷(2×π)=8(cm)π×82×3=192π(cm3)故该圆柱的体积是192πcm3.故答案为:192π.13.【解答】解:由已知规律可推断:正方体的棱n等分时,有(n﹣2)3个是各个面都没有涂色的,即(n﹣2)3=125,n﹣2=5,n=7,故答案为7。

北师大版七年级数学上册全册课时作业(共109页,附答案)

北师大版七年级数学上册全册课堂练习(共109页,附答案)1.1生活中的立体图形1. 下面几何体中,全是由曲面围成的是()A. 圆柱B. 圆锥C. 球D. 正方体2. 下列说法错误的是()A. 长方体、正方体都是棱柱B. 三棱柱的侧面是三角形C. 直六棱柱有六个侧面、侧面为长方形D. 球体的三种视图均为同样大小的图形3. 如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有()A. 1个B. 2个C. 3个D. 无数个4. 如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为()A. ③④①②B. ①②③④C. ③②④①D. ④③②①5. 在下列几何体中,由三个面围成的有____,由四个面围成的有____.(填序号)6. 如图,在直六棱柱中,棱AB与棱CD的位置关系为____,大小关系是_____.7. 用五个面围成的几何体可能是_______.8. 若一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,则这个直棱柱的所有棱长的和是___cm.9. 由一个平面图形绕着它的一条边所在的直线旋转一周形成的几何体,叫做旋转体.如果有一个几何体,围成它的各个面都是多边形,那么这个几何体叫做________.在你所熟悉的立体图形中,旋转体有________,多面体有________.(要求各举两个例子)10. 一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有__种爬行路线.11. 探究:将一个正方体表面全部涂上颜色,试回答:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为x i,那么x3=____,x2=____,x1=____,x0=____;(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,与(1)同样的记法,则x3=____,x2=____,x l=____,x0=____;(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,与(1)同样的记法,则x3=____,x2=____,x1=____,x0=____.答案1. C2. B3. D4. A5.(2)(6)6.平行相等7.四棱锥或三棱柱8. 169. 多面体圆柱、圆锥六棱柱、三棱锥10. 611.(1) 8 12 6 1(2) 8 24 24 8(3) 8 12(n﹣2) 6(n﹣2)2(n﹣2)3.(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1.(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8.(3)由以上可发现规律:三面涂色8个,两面涂色12(n ﹣2)个,一面涂色6(n﹣2)2个,各面均不涂色(n﹣2)3个.1.2展开与折叠一、选择题1. 如图是一个长方体包装盒,则它的平面展开图是A. B.C. D.2. 圆锥的侧面展开图是A. 扇形B. 等腰三角形C. 圆D. 矩形3. 下列图形中,能通过折叠围成一个三棱柱的是( )A. B. C. D.4. 图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是( )A. 梦B. 水C. 城D. 美5. 将一边长为的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是( )A. B. C. D.7. 如图,点,,是正方体三条相邻的棱的中点,沿着,,三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是( )A. B.C. D.8. 右图中是左面正方体的展开图的是( )A. B. C. D.9. 图1是一个正方体的展开图,该正方体从图 2 所示的位置依次翻到第格、第格、第格、第格、第格,此时这个正方体朝上一面的字是( )A. 我B. 的C. 梦D. 中10. 如图 1 是一个小正方体的侧面展开图,小正方体从图 2 所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是( )A. 北B. 京C. 精D. 神二、填空题11. 小明在正方体盒子的每个面上都写了一个字,其平面展开图如下图所示,那么在该正方体盒子的表面,与“祝”相对的面上所写的字应是.12.图 1 是边长为的正方形纸板,裁掉阴影部分后将其折叠成如图 2 所示的长方体盒子,已知该长方体的宽是高的倍,则它的体积是.13. 若下图是某几何体的表面展开图,则这个几何体是.14. 立方体木块的六个面分别标有数字,,,,,,下图是从不同方向观察这个立方体木块看到的数字情况,数字和对面的数字的和是.15. 以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.16. 印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为页,再对折一次为页,连续对折三次为页,;然后再排页码.如果想设计一本页的毕业纪念册,请你按图 1、图 2 、图 3 (图中的,表示页码)的方法折叠,在图 4 中填上按这种折叠方法得到的各页在该面相应位置上的页码 .17. 马小虎准备制作一个封闭的正方体盒子,他先用 个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示) .18. 有一个正方体的六个面上分别标有数字 ,,,,,,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字 的面所对面上的数字记为 , 的面所对面上数字记为 ,那么的值为 .19. 如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的 .(填写字母)三、解答题20. 把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:体,如图所示.问:长方体的下底面共有多少朵花?21. 如图所示,一个长方体的长、宽、高分别是,,,有一只蚂蚁从点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到点时,最多爬行多远?并把蚂蚁所爬行的路线用字母按顺序表示出来.22. 如图所示是一个底面为正方形的长方体,把它的侧面展开后,恰好是一个边长为的正方形,求这个长方体的体积.答案1. A2. A3. C4. A5. C 7. D 8. D 9. A 10. A11. “成”12.【答案】13. 圆柱14. 715. (1)(3)16.17.18. 719. 、、20.解:因为长方体是由大小相同,颜色、花朵分布也完全相同的四个正方体拼成的,所以根据图中与红色的面相邻的有紫、白、蓝、黄色的面,可以确定出每个小正方体红色面对绿色面,与黄色面相邻的有白、蓝、红、绿色的面,所以黄色面对紫色面,与蓝色面相邻的有黄、红、绿、紫色的面,所以蓝色面对白色面,所以可知长方体下底面从左到右依次是紫色、黄色、绿色、白色,再由表格中花的朵数可知共有(朵).21.解:由于不能重复且最后回到点处,那么经过的棱数便等于经过的顶点数,当走的路线最长时必过所有顶点,则选择合理的路线时尽可能多地经过长为的棱即可.,所以最多爬行.路线举例:.22.解:答:这个长方体的体积是.1.3 截一个几何体1. 如图,用一个平面去截长方体,则截面形状为( )A. B. C. D.2. 棱长是1 cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )A. 36 cm2B. 33 cm2C. 30 cm2D. 27 cm23. 如图中几何体的截面是( )A. B. C. D.4. 如图所示,用平面截圆锥,所得的截面形状是( )A. B. C. D.5. 用一个平面去截圆柱得到的图形不可能是( )A. B. C. D.6. 在医学诊断上,有一种医学影像诊断技术叫CT,它的工作原理是______________.7. 用一个平面截一个正方体,所得截面是一个三角形,则留下的较大的一块几何体一定有________个面.8. 如图中几何体是一个圆锥被一平面截下的,由________个面围成,面与面的交线有________条,其中直线有____条.底面形状是________.9. 下面几何体的截面分别是什么?__________ ____________ __________ ________10. 如图给出一个圆锥,用一个平面去截这个圆锥,若要得到下列图形,应怎样去截?11. 把一个边长为2 cm的立方体截成八个边长为1 cm的小立方体,至少需要截___次.12.如图,截一个正方体,可以得到三角形,但要得到一个最大的等边三角形,你会切吗?你能说出你的切法吗?13. 将图①的正方体切去一块,不同的切法可以得到图②~⑤的几何体,它们各有多少个面?多少条棱?多少个顶点?答案1. B2. A3. B4. D5. D6. 利用射线截几何体,图象重建原理7. 78.【答案】 (1). 3 (2). 4 (3). 3 (4). 有可能是半圆,有可能是弓形,但不可能是扇形9. (1). 长方形 (2). 圆 (3). 长方形 (4). 圆10. 解:如图所示.11. 312.解:如图所示.沿着对角线切即可.13. 解:1.4从三个方向看物体的形状一、选择题1. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )A. B. C. D.2. 如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A. B. C. D.3. 如图是一个螺母的示意图,它的俯视图是( )A. B. C. D.4. 下面是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )A. B. C. D.5. 如图是由正方体和圆锥组成的几何体,他的俯视图是( )A. B. C. D.6. 如图,这个几何体的主视图是( )A. B. C. D.7. 如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6B.4C. 3D. 28. 如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A. 3个或4个或5个B.4个或5个C. 5个或6个D. 6个或7个二、填空题9. 观察图1中的几何体,指出图2的三幅图分别是从哪个方向看到的.甲是从__________看到的,乙是从____________看到的,丙是从____________看到的.10. 如图所示是一个包装盒的三视图,则这个包装盒的体积是________________.11. 如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是(_______)12. 如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________________个小立方块.三、解答题13. 如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.14. 图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.15. 从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16. 用小立方块搭一个几何体,使它从正面和从上面看的形状图如图所示.从上面看的形状图中,小方形中的字母表示该位置小立方块的个数,试回答下列问题.(1)x,z各表示多少?(2)y可能是多少?这个几何体最少由几个小立方块搭成?最多呢?答案1. C2. D3. B4. A5. D6. A7. A8. A9. (1). 上面 (2). 正面 (3). 左面10.11. 7212.【答案】5413. 解:如图所示,14.解: 如图所示:15.解:16.解:(1),.(2)可能是或,, .这个几何体最少由个立方体搭成,最多由个立方体搭成.2.1有理数1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A. 支出20元B. 收入20元C. 支出80元D. 收入80元2. 下列说法错误的是()A. 负整数和负分数统称为负有理数B. 正整数、0、负整数统称为整数C. 正有理数与负有理数组成全体有理数D. 3.14是小数,也是分数3. 在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A. 1B. 2C. 3D. 44. 下列选项,具有相反意义的量是()A. 增加20个与减少30个B. 6个老师和7个学生C. 走了100米和跑了100米D. 向东行30米和向北行30米5. 吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6. 在有理数中,是整数而不是正数的是_________,是负数而不是分数的是______ .7. 某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8. 把有理数-3,2 017,0,37,-237填入它所属的集合内(如图).9. 一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10. 将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?答案1.C2.C3.C4.A5.+9196.负整数负整数7.既不是正数也不是负数的数(答案不唯一)8.解:如图所示,9. (1)守门员回到了守门的位置;(2)守门员离开守门的位置最远是12 m.10. (1)在A处的数是正数;(2)负数排在B和D的位置;(3)第2 018个数是正数,排在对应于C的位置.2.2数轴一.选择题1. 下列所画的数轴中正确的是()A. B.C. D.2. 在数轴上表示数-3,0,5,2,的点中,在原点右边的有()A. 0个B. 1个C. 2个D. 3个3. 在数轴上原点以及原点左边的点表示的数是()A. 正数B. 负数C. 零和正数D. 零和负数4. 下列说法正确的是()A. -4是相反数B. -与互为相反数C. -5是5的相反数D. -是2的相反数5. 如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. b>a>0>cB. a<b<0<cC. b<a<0<cD. a<b<c<06. 比较-2,-,0,0.02的大小,正确的是()A. -2<-<0<0.02B. -<-2<0<0.02C. -2<-<0.02<0D. 0<-<-2<0.02二.填空题7. 数轴上表示-3的点在原点____侧,距原点的距离是______;+7.3在原点的_____侧,距原点的距离是_____。

北师大版七年级上册 1.1 生活中的立体图形 周练卷(无答案)

丰富的图形世界(周卷)一、选择题1.下面各正多面体的每个面是同一种图形的是()①正四面体;②正六面体;③正八面体;④正十二面体;⑤正二十面体.A.①②③B.①③④C.①③⑤2.下列图形中()可以折成正方体.3.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()4.下面图形不能围成一个长方体的是()5.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A.正方体B.长方体C.三棱柱D.四棱锥6.有一个正方体木块,每一块的各面都写上不同的数字,三块的写法完全相同,现把它们摆放成如图所示的位置.请你判断数字4对面的数字是()A.6 B.3 C.2 D.17.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.8.若一个棱柱有10个顶点,则下列说法正确的是()A.这个棱柱有4个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱9.下列几何体中,直棱柱有()A.5个B.4个C.3个D.2个10.用一张长20cm,宽8cm的纸片围成一个高为8cm的圆柱,则该圆柱的底面半径是()A.10cm B.cm C.20cm D.cm11.如图所示绕直线m旋转一周所形成的几何体是()A.B.C.D.二、填空题1.用一个宽2 cm,长3 cm的矩形卷成一个圆柱,则此圆柱的侧面积为.2.如果圆柱的侧面展开图是相邻两边长分别为8,20π的长方形,那么这个圆柱的体积等于.3.一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是.4.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,如滚动第1次后,骰子朝上一面的点数是5,则滚动第2017次后,骰子朝上一面的点数是 .5.如图,是一个物体的展开图(单位:cm ), 那么这个物体的体积为 .6.有一个正方体,A ,B ,C 的对面分别是x ,y ,z 三个字母,如图所示,将这个正方体从现有位置依此翻到第1,2,3,4,5,6格,当正方体翻到第3格时正方体向上一面的字母是 .7.一个几何体的面数为12,棱数为30,它的顶点数为 .8.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),则可以得到一个立体图形球.这个现象我们可以说成 (请你用点线面体间的关系解释)9.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了 .10.生活中的立体图形主要有 、 、 .其中柱体包括 和 ,锥体包括 和 . 11.用一个长3cm 宽2cm 的长方形纸卷一个圆柱,则圆柱的侧面积为 ,底面周长为 . 12.一个棱柱共有12个顶点,所有的侧棱长的和是120cm ,则每条侧棱长为 cm . 13.将下列几何体分类,柱体有:,锥体有(填序号).14.长方体是由 个面围成,圆柱是由 个面围成,圆锥是由 个面围成. 15.薄薄的硬币在桌面上转动时,看上去像球,这说明了 . 16.一位美术老师在课堂上进行立体模型素描教学时, 把14个棱长为1分米的正方体摆成如图所示的形式,然后把露出的表面涂上不同的颜色,则被涂上颜色部分的面积为 分米2.三、解答题1.如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题: (1)如果A 面在长方体的底部,那么哪一个面会在上面?(2)如果F 面在前面,B 面在左面,那么哪一个面会在上面?(字母朝外) (3)如果C 面在右面,D 面在后面,那么哪一个面会在上面?(字母朝外)2.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了 条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm ,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm ,求这个长方体纸盒的体积.3.如图,是一个正方体纸盒的两个表面展开图,请把-8,5,8,-2,-5,2分别填入六个正方形中,使得折成正方体后,相对面上的两数互为相反数.4.如图是一个三棱柱,观察这个三棱柱,请回答下列问题:(1)这个三棱柱共有多少个面?(2)这个三棱柱一共有多少条棱? (3)这个三棱柱共有多少顶点?(4)通过对棱柱的观察,请你说出n 棱柱的面数、顶点数及棱的条数.5.已知一个长方体的长为4cm ,宽为3cm ,高为5cm ,请求出: (1)长方体所有棱长的和. (2)长方体的表面积.。

数学北师大版七年级上册1.1《生活中的立体图形》同步训练(含解析)

20212021数学北师大版七年级上册1.1《生活中的立体图形》同步训练一、选择题1.下面几何体中,全是由曲面围成的是()A.圆柱B.圆锥C.球D.正方体2.下列说法错误的是()A. 长方体、正方体都是棱柱B. 三棱柱的侧面是三角形C. 直六棱柱有六个侧面、侧面为矩形D. 球体的三种视图均为同样大小的图形3.下列立体图形中,有五个面的是()A. 四棱锥B. 五棱锥C. 四棱柱D. 五棱柱4.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.5.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A. 3B. 9C. 12D. 18二、填空题6.一个直棱柱有12条棱,则它是________棱柱.7.一个几何体的面数为12,棱数为30,它的顶点数为________.8.如图,在长方体ABCDEFGH中,与平面ADHE垂直的棱共有________条.9.两个完全相同的长方体的长.宽.高分别为5cm.4cm.3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是________cm3,最大表面积是________cm2.10.一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有________种爬行路线.三、解答题11.从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图的零件,求:(1)这个零件的表面积(包括底面);(2)这个零件的体积.12.有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)13.现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,得到的几何体的体积是多少?14.已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)15.观察图形,回答下列问题:(1)图 是由几个面组成的,这些面有什么特征?(2)图②是由几个面组成的,这些面有什么特征?(3)图①中共形成了多少条线?这些线都是直的吗?图②呢?(4)图①和图②中各有几个顶点?答案解析部分一、选择题1.【答案】C【考点】几何体的表面积【解析】【解答】解:A、圆柱由上下两个平面和侧面一个曲面组成,不符合题意;B、圆锥由侧面一个曲面和底面一个平面组成,不符合题意;C、球只有一个曲面组成,符合题意;D、正方体是由六个平面组成,不符合题意.故答案为:C.【分析】圆锥两个面围成,一个曲面,一个平面;圆柱三个面围成,一个曲面,两个平面;正方体由6个面围成,六个面都是平面;球球只有一个曲面组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生活中的立体图形
班级:___________姓名:___________得分:__________
一.选择题(每小题5分,共35分)
1.下列图形中,属于立体图形的是()
A.B.C.D.
2.下列说法正确的是()
①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.
A.①②B.①③C.①②③D.②③
3.从下列物体抽象出来的几何体可以看成圆柱的是()
A.B. C.D.
4.下面的几何体中,属于棱柱的有()
A.1个B.2个C.3个D.4个
5.下列图形中,()不是多面体.
A.(2)(4)(5)B.(1)(2)(4)C.(2)(5)(6)D.(1)(3)(6)6.一个三棱柱的侧面数、顶点数分别为()
A.3,6 B.4,10 C.5,15 D.6,15
7.三棱柱的顶点个数是()
A.3 B.4 C.5 D.6
二.填空题(每小题5分,共20分)
1.认识下面常见的几何体:
2.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.
3.若一直棱柱有10个顶点,那么它共有条棱.
4.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有.
三.解答题(每小题15分,共45分)
1.将下列几何体与它的名称连接起来.
2.下列图形中哪些是柱体?如何来区分它们呢?
3.如图,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).
参考答案
一.选择题(每小题5分,共35分)
1.C
【解析】A、角是平面图形,故A错误;
B、圆是平面图形,故B错误;
C、圆锥是立体图形,故C正确;
D、三角形是平面图形,故D错误.
故选:C.
2.D
【解析】∵教科书是一个空间实物体,是长方体
∴不能说它是一个长方形,
∵有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱
∴它是棱柱.
教科书的表面是一个长方形.
故选D.
3.B
【解析】易拉罐抽象出来的几何体可以看成圆柱,
故选:B.
4.C
【解析】从左到右依次是长方体,圆柱,棱柱,棱锥,圆锥,棱柱.
故选:C.
5.A
【解答】(1)有6个面,故是多面体;
(2)圆锥有2个面,一个曲面,一个平面,不是多面体;
(3)四棱锥有5个面,故是多面体.
有4个面,故是多面体;
(4)球有1个曲面,不是多面体;
(5)圆柱有3个面,一个曲面两个平面,不是多面体;
(6)三棱柱有5个面,故是多面体.
故选:A.
6.A
【解析】根据棱柱的概念和特性:n棱柱有n个侧面,有2n个顶点数,即可得出答案.
一个三棱柱的侧面数数是3个,顶点数是6个,
故选A.
7.D
【解析】一个直三棱柱由两个三边形的底面和3个长方形的侧面组成,根据其特征及欧拉公式V+F﹣E=2可知,
它有6个顶点,
故选:D.
二.填空题(每小题5分,共20分)
1.圆柱,圆锥,正方体,长方体,三棱柱,球.
【解析】如图:
2.4,三棱锥或四面体
【解析】要使搭的个数最多,就要搭成三棱锥,
这时最多可以搭4个一样的三角形.图形如下:
故答案为:4,三棱锥或四面体.
3.15
【解析】有10个顶点的直棱柱是五棱柱,所以它有15个棱.
故答案是:15.
4.乒乓球、足球.
【解析】由球体的主要特点可知,在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有乒乓球、足球.
故答案为:乒乓球、足球.
三.解答题(每小题15分,共45分)
1.
【解析】如图所示:
2.A,B是柱体,
判断的依据为:柱体的两个底面互相平行且大小相等.
【解析】A是圆柱,B是四棱柱,
C、D不是柱体,
判断的依据为:柱体的两个底面互相平行且大小相等.
3.埃及金字塔﹣﹣(2)
西瓜﹣﹣(3)
水杯﹣﹣(1)
房屋﹣﹣(5).
【解析】埃及金字塔﹣﹣(2)
西瓜﹣﹣(3)
水杯﹣﹣(1)
房屋﹣﹣(5).。

相关文档
最新文档