初中数学测试题含答案

合集下载

初中数学--《不等式》测试题(含答案)

初中数学--《不等式》测试题(含答案)

初中数学--《不等式》测试题(含答案)姓名:__________ 班级:__________考号:__________一、选择题(共40题)1、已知方程组的解x、y满足2x+y≥0,则m的取值范围是()A. B. C. D.2、已知且,则的取值范围为A.B.C.D.3、关于不等式的解集如图所示,的值是()A.0 B.2 C.-2 D.-4 4、若,则下列式子错误的是()A. B.C. D.5、如果 x>y,那么下列各式一定成立的是()A.ax>ay B.a2x>a2y C.x2>y2 D.a2+x>a2+y6、方程,当时,m的取值范围是()A、 B、 C、 D、7、不等式的负整数解有()A.1个 B.2个 C.3个 D.无数个8、若方程组的解,满足,则的取值范围是()A.B.C.D.9、不等式的解集是().A. B. C. D.10、若方程的解是负数,则的取值范围是()A. B. C. D.11、在数学表达式① -3<0 ② 4x+3y>0 ③ x=3 ④ x 2 +xy+y 2 ⑤x ≠ 5⑥x+2>y+3 中,是不等式的有 ( ) 个 .A . 1B . 2C . 3D . 412、不等式的解集在数轴上表示为()13、下列说法不一定成立的是()A .若,则B .若,则C .若,则D .若,则14、已知四个实数 a , b , c , d ,若 a>b , c>d ,则()A . a+c>b+dB . a-c>b-dC . ac>bdD .15、二次函数的图象过四个点,下列说法一定正确的是()A .若,则B .若,则C .若,则D .若,则16、下列式子:( 1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7 中,不等式的个数有()A . 2 个B . 3 个C . 4 个D . 5 个17、若三角形的三边长分别为3,4,x-1,则x的取值范围是()A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<6 18、 x 与 3 的和的一半是负数,用不等式表示为 ( )A .x + 3 > 0B .x + 3 < 0C .( x + 3 )< 0D .( x + 3 )> 019、下面列出的不等式中,正确的是()A .“m 不是正数” 表示为 m<0B .“m 不大于3” 表示为 m<3C .“n 与 4 的差是负数” 表示为 n﹣4<0D .“n 不等于6” 表示为 n>620、下列说法错误的是 ( ).A .不等式 x-3>2 的解集是 x>5B .不等式 x<3 的整数解有无数个C . x=0 是不等式 2x<3 的一个解D .不等式 x+3<3 的整数解是 021、若 m>n ,则下列不等式正确的是()A . m﹣2<n﹣2B .C . 6m<6nD .﹣8m>﹣8n22、如果,那么下列不等式成立的是()A .B .C .D .23、不等式( 2a-1)x<2(2a-1 )的解集是 x>2 ,则 a 的取值范围是()A . a<0B . a<C . a<D . a>24、实数 a 、 b 、 c 满足 a > b 且 ac < bc ,它们在数轴上的对应点的位置可以是()A. B .C .D .25、以下所给的数值中,为不等式-2x + 3<0的解的是().A.-2 B.-1 C. D.226、如果a<0,ab<0,则|b-a+4|-|a-b-6|化简的结果为…………………………()(A)2 (B)-10 (C)-2 (D)2b-2a-227、若关于 x 的不等式的解集为,则 a 的取值范围是()A .B .C .D .28、下列说法正确的是()A . x =﹣ 3 是不等式 x >﹣ 2 的一个解B . x =﹣ 1 是不等式 x >﹣ 2 的一个解C .不等式 x >﹣ 2 的解是 x =﹣ 3D .不等式 x >﹣ 2 的解是 x =﹣ 129、已知 a>b ,则下列不等式中,正确的是 ( )A . -3a>-3bB .>C . 3-a>3-bD . a-3>b-330、下面说法正确的是 ( )A . x=3 是不等式 2x>3 的一个解B . x=3 是不等式 2x>3 的解集C . x=3 是不等式 2x>3 的唯一解D . x=3 不是不等式 2x>3 的解31、不等式 x<-2的解集在数轴上表示为( )A .B .C .D .32、如果a >b ,下列各式中正确的是()A .﹣2021 a >﹣ 2021 bB .2021 a < 2021 bC .a ﹣ 2021 >b ﹣ 2021D .2021 ﹣a > 2021 ﹣b33、已知三角形的三边长分别为 1,2,x ,则 x 的取值范围在数轴上表示为 ( )A .B .C .D .34、下列变形中,错误的是 ( )A .若 3a > 6 ,则 a > 2B .若-x > 1 ,则 x <-C .若- x < 5 ,则 x >- 5D .若x < 1 ,则 x < 335、下列说法中,错误的是 ( )A .不等式 x < 5 的整数解有无数多个B .不等式 x >- 5 的负整数解集有有限个C .不等式- 2x < 8 的解集是 x <- 4D .- 40 是不等式 2x <- 8 的一个解36、以下说法中正确的是()A .若 a>|b| ,则 a 2 > b 2B .若 a>b ,则<C .若 a>b ,则 ac 2 >bc 2D .若 a>b,c>d ,则 a﹣c>b﹣d37、已知,则下列不等式变形正确的是A .B .C .D .38、已知, 则下列不等式成立的是()A .B .C .D .39、若,且,则应满足的条件是()A. B. C. D.40、若 m - n < 0 ,则下列各式中正确的是 ( )A . m + p > n + pB . m - p > n - pC . p - m < p - nD . p - m >- n + p============参考答案============一、选择题1、 A2、 D3、 A4、 B5、 D6、 C7、 A8、A9、 A;10、 A11、 D【解析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠” 等不等号表示不相等关系的式子是不等式,依次判断 6 个式子即可.【详解】根据不等式的定义 , 依次分析可得:−3<0,4x+3y>0,x≠5,x+2>y+3,4 个式子符合定义,是不等式,而 x=3 是等式,x 2 +xy+y 2 是代数式 .故答案为: D.【点睛】本题考查了不等式的定义,熟练掌握该知识点是本题解题的关键 .12、 C13、 C【详解】A .在不等式的两边同时加上 c ,不等式仍成立,即,故本选项错误;B .在不等式的两边同时减去 c ,不等式仍成立,即,故本选项错误;C .当c=0 时,若,则不等式不成立,故本选项正确;D .在不等式的两边同时除以不为 0 的,该不等式仍成立,即,故本选项错误.故选 C .14、 A【解析】根据不等式的性质及反例的应用逐项分析即可 .【详解】A. ∵ a>b , c>d ,∴ a+c>b+d ,正确;B. 如 a=3,b=1,c=2 , d=-5 时, a-c=1 , b-d =6 ,此时 a-c<b-d ,故不正确;C. 如 a=3,b=1,c=-2 , d=-5 时, ac=-6 , bd =-5 ,此时 ac<bd ,故不正确;D. 如 a=4,b=2,c=-1 , d=-2 时,,,此时,故不正确;故选 A.【点睛】本题考查了不等式的性质及举反例的应用,举反例是解选择题常用的一种方法,要熟练掌握 .15、 C【分析】求出抛物线的对称轴,根据抛物线的开口方向和增减性,根据横坐标的值,可判断出各点纵坐标值的大小关系,从而可以求解.【详解】解:二次函数的对称轴为:,且开口向上,距离对称轴越近,函数值越小,,A ,若,则不一定成立,故选项错误,不符合题意;B, 若,则不一定成立,故选项错误,不符合题意;C ,若,所以,则一定成立,故选项正确,符合题意;D ,若,则不一定成立,故选项错误,不符合题意;故选: C .【点睛】本题考查了二次函数的图象与性质及不等式,解题的关键是:根据二次函数的对称轴及开口方向,确定各点纵坐标值的大小关系,再进行分论讨论判断即可.16、 C【解析】根据不等式的定义,只要有不等符号的式子就是不等式,所以①②④⑥为不等式,共有 4 个,故选 C.17、 B18、 C【解析】“ 与 3 的和的一半是负数”用不等式表示为:.故选 C.19、 C【解析】根据各个选项的表示列出不等式,与选项中所表示的不等式对比即可 .【详解】A. “m 不是正数” 表示为故错误 .B. “m 不大于3” 表示为故错误 .C. “n 与 4 的差是负数” 表示为 n﹣4<0, 正确 .D. “n 不等于6” 表示为, 故错误 .故选 :C.【点睛】考查列不等式,解决本题的关键是理解负数是小于 0 的数,非负数是大于或等于 0 的数,不大于用数学符号表示是“≤”.20、 D【解析】解:A.不等式 x-3>2 的解集是 x>5 ,正确;B.不等式 x<3 的整数解有无数个,正确;C. x=0 是不等式 2x<3 的一个解,正确;D.不等式 x+3<3 的解集是 x<0 ,故 D 选项错误.故选 D.21、 B【分析】将原不等式两边分别都减 2 、都除以 4 、都乘以 6 、都乘以﹣ 8 ,根据不等式得基本性质逐一判断即可得.【详解】A 、将 m>n 两边都减 2 得: m﹣2>n﹣2 ,此选项错误;B 、将 m>n 两边都除以 4 得:,此选项正确;C 、将 m>n 两边都乘以 6 得: 6m>6n ,此选项错误;D 、将 m>n 两边都乘以﹣ 8 ,得:﹣ 8m<﹣8n ,此选项错误,故选 B.【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.22、 D根据不等式的性质即可求出答案.【详解】解:∵ ,∴ ,∵ ,∴ ,故选 D .【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.23、 B【解析】仔细观察,( 2a-1)x<2(2a-1 ),要想求得解集,需把( 2a-1 )这个整体看作 x 的系数,然后运用不等式的性质求出,给出的解集是 x>2 ,不等号的方向已改变,说明运用的是不等式的性质 3 ,运用性质 3 的前提是两边都乘以( • 或除以)同一个负数,从而求出 a 的范围.【详解】∵不等式( 2a-1)x<2(2a-1 )的解集是 x>2,∴不等式的方向改变了,∴ 2a-1<0,∴ a<,故选 B.【点睛】本题考查了利用不等式的性质解含有字母系数的不等式,解题的关键是根据原不等式和给出的解集的情况确定字母系数的取值范围,为此需熟练掌握不等式的基本性质,也是正确解一元一次不等式的基础.24、 A根据不等式的性质,先判断 c 的正负.再确定符合条件的对应点的大致位置.【详解】解:因为 a > b 且 ac < bc ,所以 c < 0 .选项 A 符合 a > b , c < 0 条件,故满足条件的对应点位置可以是 A .选项 B 不满足 a > b ,选项 C 、 D 不满足 c < 0 ,故满足条件的对应点位置不可以是 B 、 C 、 D .故选 A .【点睛】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断 c 的正负.25、 D26、由a<0,ab<0,得b>0,∴b-a+4>0,a-b-6<0,∴原式=(b-a+4)-(6+b-a)=-2.【答案】C.27、 B【解析】根据不等式的性质,不等式两边都除以同一个负数,不等号方向改变,得出 a - 3<0,求出即可 .【详解】∵ (a - 3 )x > 2的解集为 x <,∴不等式两边同时除以 (a - 3 ) 时,不等号的方向改变,∴ a - 3<0,∴ a < 3 . 故答案选 B.【点睛】本题主要考查了不等式的性质,要逆向思维,从不等式的变号推出 (a - 3 ) < 0是本题的解题关键 .28、 B【分析】根据不等式解集和解的概念求解可得【详解】解: A . x =﹣ 3 不是不等式 x >﹣ 2 的一个解,此选项错误;B . x =﹣ 1 是不等式 x >﹣ 2 的一个解,此选项正确;C .不等式 x >﹣ 2 的解有无数个,此选项错误;D .不等式 x >﹣ 2 的解有无数个,此选项错误;故选: B .【点睛】本题主要考查不等式的解集,不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示,不等式的每一个解都在它的解集的范围内 .29、 D【解析】由题意可知,根据不等式的性质,看各不等式是加(减)什么数或乘(除)以哪个数得到的,用不用变号即可求解 .【详解】A.a>b,-3a<-3b ,故 A 错误;B.a>b,<,故 B 错误;C.a>b,3-a<3-b ,故 C 错误;D. a>b,a-3>b-3 ,故 D 正确;故答案为: D.【点睛】本题考查了不等式的性质,熟练掌握该知识点是本题解题的关键 .30、 A【解析】先解出不等式的解集,判断各个选项是否在解集内就可以进行判断.【详解】解不等式 2x>3 的解集是 x>,A. x=3 是不等式 2x>3 的一个解正确;B. x=3 不是不等式 2x>3 的全部解,因此不是不等式的解集,故错误;C. 错误;不等式的解有无数个;D. 错误 .故答案为 A.【点睛】本题考查了不等式的解集,熟练掌握该知识点是本题解题的关键 .31、 D【解析】A 选项中,数轴上表达的解集是:,所以不能选 A;B 选项中,数轴上表达的解集是:,所以不能选 B;C 选项中,数轴上表达的解集是:,所以不能选 C;D 选项中,数轴上表达的解集是:,所以可以选 D.故选 D.32、 C根据不等式的性质即可求出答案.【详解】解:A 、∵ a >b ,∴−2021 a <−2021 b ,故A 错误;B 、∵ a >b ,∴2021 a > 2021 b ,故B 错误;C 、∵ a >b ,∴ a ﹣ 2021 >b ﹣ 2021 ,故C 正确;D 、∵ a >b ,∴2021 ﹣a < 2021 ﹣b ,故D 错误;故选: D .【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.33、 A【解析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得: 1<x<3 ,然后在数轴上表示出来即可.【详解】∵ 三角形的三边长分别是 1,2,x,∴x 的取值范围是 1<x<3.故选 A.【点睛】本题考查三角形三边关系,在数轴上表示不等式的解集 , 解题的关键是熟练掌握三角形三边关系34、 B根据不等式的性质即可判断 .【详解】若 3a > 6 ,则 a > 2 ,故正确;若-x > 1 ,则 x <-,故错误;若- x < 5 ,则 x >- 5 ,故正确;若x < 1 ,则 x < 3 ,故正确,故选 B.【点睛】此题主要考查不等式的性质,解题的关键是熟知不等式的性质 .35、 C【解析】对于 A 、 B 选项,可分别写出满足题意的不等式的解,从而判断 A 、 B 的正误;对于 C 、 D ,首先分别求出不等式的解集,再与给出的解集或解进行比较,从而判断 C 、D 的正误 .【详解】A. 由 x < 5 ,可知该不等式的整数解有 4 , 3 , 2 , 1 , -1 , -2 , -3 , -4 等,有无数个,所以 A 选项正确,不符合题意;B. 不等式 x>−5 的负整数解集有−4 ,−3 ,−2 ,−1. 故正确 , 不符合题意;C. 不等式−2x<8 的解集是 x>−4, 故错误 .D. 不等式 2x<−8 的解集是 x<−4 包括−40 ,故正确 , 不符合题意;故选 :C.【点睛】本题是一道关于不等式的题目,需结合不等式的解集的知识求解;【解析】分析:根据实数的特点,可确定 a、|b|、a 2 、 b 2 均为非负数,然后根据不等式的基本性质或特例解答即可 .详解: A、若a>|b|,则a 2 > b 2 ,正确;B、若a>b,当a=1,b=﹣2时,则>,错误;C、若a>b,当c 2 =0时,则ac 2 =bc 2 ,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选 A.点睛:此题主要考查了不等式的性质,利用数的特点,结合不等式的性质进行判断即可,关键是注意不等式性质应用时乘以或除以的是否为负数或 0.37、 D【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】解: A 、已知如果 c>0, 则,如果 c=0, 则,如果 c < 0, 则,故 A 错误;B 、已知,不等式的两边都乘以 -2 ,不等号的方向改变,故 B 错误;C 、已知,不等式的两边都乘以 -1 ,不等号的方向改变,故 C 错误;D 、已知,不等式的两边都减去 2 ,不等号的方向不改变,故 D 正确;故选 D .【点睛】本题考查了不等式的基本性质,能在变换得时,把握不等式符号方向的变换,是解答此题的关键.【分析】根据不等式的性质逐项分析 .【详解】A 在不等式的两边同时减去 1 ,不等号的方向不变,故 A 错误;B 在不等式的两边同时乘以 3 ,不等号的方向不变,故 B 错误;C 在不等式的两边同时乘以 -1 ,不等号的方向改变,故 C 正确;D 在不等式的两边同时乘以,不等号的方向不变,故 D 错误 .【点睛】本题主要考查不等式的性质,( 1 )在不等式的两边同时加上或减去同一个数,不等号的方向不变;( 2 )在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变;( 3 )在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变 .39、 C40、 D【解析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 两边都加 (n+p) ,不等号的方向不变,故 A 错误;B. 两边都加 (n−p) ,不等号的方向不变,故 B 错误;C. 两边都加 (n−p) ,都乘以−1 ,不等号的方向改变,故 C 错误;D. 两边都加 (n−p) ,都乘以−1 ,不等号的方向改变,故 D 正确;故选: D.【点睛】考查不等式的基本性质,熟练掌握不等式的 3 个基本性质是解题的关键 .。

2023年初中数学试题及答案

2023年初中数学试题及答案

2023年初中数学试题及答案
一、选择题(共10题,每题2分)
1. 已知a=2,b=3,c=4,那么a的一半是多少?
A. 1
B. 2
C. 3
D. 4
2. 以下哪个数字是质数?
A. 12
B. 15
C. 17
D. 20
...
(以下省略若干选择题)
二、填空题(共5题,每题3分)
1. 200 ÷ 25 = __________.
2. 小明有2袋糖果,每袋里有8颗,他一共有多少颗糖果?
答:__________颗。

(以下省略若干填空题)
三、解答题(共3题,每题10分)
1. 用两个数字组成一个两位数,如果这个两位数可以被3整除,那么这两个数字最多可能是多少?
答:两个数字最多为__________。

2. 一个正方形的边长是5 cm,计算它的周长。

答:周长为__________cm。

(以下省略若干解答题)
四、应用题(共2题,每题15分)
1. 小明的书包里有5本数学书、4本英语书和3本科学书,他打算从中选出2本不同的书来整理,问有多少种不同选择的方法?
答:共有__________种不同选择的方法。

2. 一辆汽车从市中心出发,以每小时60公里的速度行驶,行驶了4个小时后,在距离市中心180公里的地方停车休息。

请问,汽车停下来休息前所行驶的距离是多少公里?
答:汽车停下来休息前所行驶的距离是__________公里。

(以下省略若干应用题)。

初中数学统计与概率测试题(含答案)

初中数学统计与概率测试题(含答案)

初中数学统计与概率测试题(含答案)初中数学统计与概率测试题(含答案)题目1. 某班级中共有32名学生,其中有20名男生和12名女生。

请回答以下问题:a) 男生的比例是多少?b) 女生的比例是多少?答案:a) 男生的比例 = (男生人数 / 总人数) × 100% = (20 / 32) × 100% =62.5%b) 女生的比例 = (女生人数 / 总人数) × 100% = (12 / 32) × 100% =37.5%题目2. 某小组有8名成员,其中有3名男生和5名女生。

请回答以下问题:a) 随机选择一个成员,男生的概率是多少?b) 随机选择一个成员,女生的概率是多少?答案:a) 男生的概率 = 男生人数 / 总人数 = 3 / 8 = 0.375b) 女生的概率 = 女生人数 / 总人数 = 5 / 8 = 0.625题目3. 根据某城市的气象数据,统计了过去一周的天气情况,得到如下表格:| 天气 | 晴天 | 雨天 | 多云 || ------- | ---- | ---- | ---- || 出现次数 | 3次 | 2次 | 2次 |请回答以下问题:a) 晴天的概率是多少?b) 下雨的概率是多少?c) 多云的概率是多少?答案:a) 晴天的概率 = 晴天出现次数 / 总天数= 3 / 7 ≈ 0.429b) 下雨的概率 = 雨天出现次数 / 总天数= 2 / 7 ≈ 0.286c) 多云的概率 = 多云出现次数 / 总天数= 2 / 7 ≈ 0.286题目4. 某班级有35名学生,其中10名学生喜欢阅读科幻小说,15名学生喜欢阅读推理小说,其中有5名学生两者都喜欢,问:a) 喜欢阅读科幻小说或者推理小说的学生有多少人?b) 不喜欢阅读科幻小说和推理小说的学生有多少人?答案:a) 喜欢阅读科幻小说或者推理小说的学生 = 喜欢阅读科幻小说的学生 + 喜欢阅读推理小说的学生 - 两者都喜欢的学生 = 10 + 15 - 5 = 20人b) 不喜欢阅读科幻小说和推理小说的学生 = 总人数 - 喜欢阅读科幻小说或者推理小说的学生 = 35 - 20 = 15人题目5. 某次抽奖活动中,共有100人参与抽奖,其中只有5名幸运儿中奖。

初中数学七年级。测试题(含答案)

初中数学七年级。测试题(含答案)

初中数学七年级。

测试题(含答案) 七年级数学试卷满分:110分,考试时间:100分钟一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,哪一个是圆锥的侧面展开图?A。

B。

C。

D。

2.下列计算正确的是:A。

3a^2 + a = 4a^2B。

-2(a-b) = -a+bC。

5a-4a=1D。

a^2b-2ba^2 = -a^2b3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖4 400 000 000人,这个数用科学记数法表示为:A。

44×10^8B。

4.4×10^9C。

4.4×10^8D。

4.4×10^104.一元一次方程3x+6=2x-8移项后正确的是:A。

3x-2x=6-8B。

3x-2x=-8+6C。

3x-2x=8-6D。

3x-2x=-6-85.在-(-8),(-1),2007,-3,-2/53,π中,负有理数共有:A。

4个B。

3个C。

2个D。

1个6.下列说法中正确的是:A。

过一点有且仅有一条直线与已知直线平行B。

若AC=BC,则点C是线段AB的中点C。

两点之间的所有连线中,线段最短D。

相等的角是对顶角7.如图,小亮用6个相同的小正方体搭成立体图形研究几何体的三视图变化情况,若由图①变到图②,不改变的是:A。

主视图B。

主视图和左视图C。

主视图和俯视图D。

左视图和俯视图8.某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了:A。

7.5折B。

7折C。

5.5折D。

5折9.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,则线段AQ的长度是:A。

5cmB。

9cmC。

5cm或9cmD。

3cm或5cm10.如图,这些图案均是长度相同的火柴按一定的规律拼搭而成。

第1个图案需7根火柴,第2个图案需13根火柴,….依此规律,第11个图案所需火柴的数量是:二、填空题(本大题共8小题,每小题2分,共16分)11.代数式3xmy与﹣4x3y的和是一个单项式,则m= -212.已知∠α=76°36′,则∠α的补角为13°24′13.若a2﹣3b=4,则3b﹣a2+2018= 201114.已知关于x的方程(k-1)xk-1 = 0是一元一次方程,则k的值为 215.长方体的主视图与俯视图如图所示,则这个长方体的体积是 3616.已知∠AOB=24°,自∠AOB的顶点O引射线OC,若∠AOC:∠BOC=7:5,则∠AOC的度数是 42°17.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以0.7为例进行说明:设0.7=x,由0.7=0.7777…可知,无限循环小数0.7= 7/9.写成分数的形式是l0x=7.7777…,所以l0x﹣x=7,解方程,得x= 7/9.得0.7将0.7表示的等式为7/9=0.7777…18.下面是一种利用图形计算正整数乘法的方法,请根据图1﹣图4四个算图所示的规律,可知图5.无法确定图5.三、解答题(本大题共9小题,共64分)19.(本题满分6分,每小题3分)计算:(1)-2-(-3)-|(-4)| = -12)-2+3×(-1)2+2016-9÷(-3) = -200720.(本题满分8分,每小题4分)解方程:(1)5x+3x=2+6x+12-3x8x+12=2+6x+122x=-2x=-12)6x-3x+2=63x=4x=4/321.(本题满分6分)先化简,后求值:3(a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a +1|+(2﹣b)2= 0.化简得:a2-10ab-2a-4b因为|a+1|>=0,所以(2-b)2=0,即b=2代入得:a2-14a-4解得:a=7-3√5或a=7+3√5代入得:-10√5或10√5答案为±10√522.(本题满分7分)利用网格画图:1)过点C画AB的平行线;如图2)过点C画AB的垂线,垂足为E;如图3)连接CA、CB,在线段CA、CB、CE中,线段最短,理由:三角形CEB的斜边最短4)点C到直线AB的距离是线段CD的长度;如图答案:223.(本题满分6分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件。

初中数学 矩形、菱形与正方形测试题含答案

初中数学 矩形、菱形与正方形测试题含答案

矩形、菱形与正方形测试题一、选择题1.能判定四边形ABCD为平行四边形的题设是().(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;(C)AB=CD,AD=BC; (D)AB=AD,CB=CD2.在给定的条件中,能画出平行四边形的是().(A)以60cm为一条对角线,20cm、34cm为两条邻边;(B)以6cm、10cm为对角线,8cm为一边;(C)以20cm、36cm为对角线,22cm为一边;(D)以6cm为一条对角线,3cm、10cm为两条邻边3.正方形具有而菱形不一定具有的性质是()(A)对角线互相平分; (B)对角线相等;(C)对角线平分一组对角; (D)对角线互相垂直4.在下列说法中不正确的是()(A)两条对角线互相垂直的矩形是正方形;(B)两条对角线相等的菱形是正方形;(C)两条对角线垂直且相等的平行四边形是正方形;(D)两条对角线垂直且相等的四边形是正方形5.下列说法不正确的是()(A)对角线相等且互相平分的四边形是矩形;(B)对角线互相垂直平分的四边形是菱形;(C)一组对边平行且不等的四边形是梯形;(D)一边上的两角相等的梯形是等腰梯形6.不能判定四边形ABCD为平行四边形的题设是()(A)AB=CD,AD=BC (B)AB//CD(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC7.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的题设是()(A)AO=CO,BO=DO; (B)AO=CO=BO=DO;(C)AO=CO,BO=DO,AC⊥BD; (D)AO=BO=CO=DO,AC⊥BD8.下列说法不正确的是()(A)只有一组对边平行的四边形是梯形;(B)只有一组对边相等的梯形是等腰梯形;(C)等腰梯形的对角线相等且互相平分;(D)在直角梯形中有且只有两个角是直角9.如图1,在□ABCD中,MN分别是AB、CD的中点,BD分别交AN、CM于点P、Q,在结论:①DP=PQ=QB ②AP=CQ ③CQ=2MQ ④S △ADP=14S ABCD中,正确的个数为().(A)1 (B)2 (C)3 (D)4(1) (2) (3)10.如图2,在梯形ABCD中,AD∥CB,AD=2,BC=8,AC=6,BD=8,则梯形ABCD的面积为().(A)24 (B)20 (C)16 (D)12二、填空题11.在□ABCD中,AC与BD交于O,则其中共有_____对全等的三角形.12.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为_______,矩形的面积为________.13.一个菱形的两条对角线长分别为6cm,8cm,这个菱形的边长为_______,•面积S=______.14.如果一个四边形的四个角的比是3:5:5:7,则这个四边形是_____形.15.如图3,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.16.如图4,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_______.(4) (5) (6)17.在长为1.6m,宽为1.2m的矩形铅板上,剪切如图5所示的直角梯形零件(•尺寸单位为mm),则这块铅板最多能剪出______个这样的零件.18.如图6,ABCD中,过对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,则四边形CDFE周长为________.19.已知等腰梯形的一个锐角等于60•°,•它两底分别为15cm,•49cm,•则腰长为_______.20.已知等腰梯形ABCD中AD∥BC,BD平分∠ABC,BD•⊥DC,•且梯形ABCD•的周长为30cm,则AD=_____.三、计算题21.如图,已知等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,AD=3cm,BC=7cm,•DE•⊥BC 于E,试求DE的长.四、证明题22.如图,已知四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是菱形.23.已知如图,梯形ABCD中,AD∥BC,AM=MB,DN=NC.求证:MN∥BC,MN=12(BC+AD).答案:1.(C) 2.(C) 3.(B) 4.(D) 5.(D)6.(C) 7.(D) 8.(C) 9.(C) 10.(A)11.4 12.40cm 4003cm213.5cm 24cm2 14.直角梯形15.15 16.15° •17.12 18.8.6cm 19.34cm20.如图,作AE⊥BC于E,DF⊥BC于F,∴AD=EF,设BE=x.则AB=2x,DC=2x,FC=x,∴BD平分∠ABC,∴∠DBC=30°.∴DC=12BC,∴BC=4x.∴EF=2x=AD.又∵AB+BC+CD+AD=30,∴4x+6x=30,x=3,∴AD=6(cm).21.过D点作DF∥AC,交BC的延长线于点F,则四边形ACFD为平行四边形,•所以AC=DF,AD=CF.因为四边形ABCD为等腰梯形,所以AC=BD,所以BD=DF,又已知AC⊥BD,DF∥AC,•所以BD⊥DF,则△BDF为等腰直角三角形.又因为DF⊥BC,所以DE=12BF=12(BC+CF)=12(BC+AD)=12(7+3)=5(cm).22.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=12AC,HG=12AC,FG=12BD,EH=12BD.∴EF=HG=12AC,FG=EH=12BD.又∵AC=BD,∴EF=HG=FG=EH.∴四边形EFGH是菱形.23.证明:如图,连接AN并延长,交BC的延长线于点E.∵DN=NC,∠1=∠2,∠D=∠3,∴△ADN≌△ECN,∴AN=EN,AD=EC.又AM=MB,∴MN是△ABE的中位线.∴MN∥BC,MN=12BE(三角形中位线定理)∵BE=BC+CE=BC+AD,∴MN=12(BC+AD).。

初中数学测试题及答案

初中数学测试题及答案

初中数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个表达式的结果为负数?A. 3 - 2B. -3 + 2C. 4 × 2D. 5 ÷ 2答案:B3. 一个长方形的长是6厘米,宽是4厘米,那么它的面积是多少平方厘米?A. 12B. 18C. 24D. 30答案:C4. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的周长是多少厘米?A. 31.4B. 62.8C. 15.7D. 31.8答案:B7. 以下哪个方程的解是x=2?A. x + 2 = 4B. 2x - 4 = 0C. 3x = 6D. x - 3 = 1答案:A8. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C9. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 一个数的立方是-8,那么这个数是多少?A. 2B. -2C. 8D. -8答案:B二、填空题(每题2分,共20分)11. 一个数的相反数是-7,那么这个数是______。

答案:712. 计算2的平方根是______。

答案:√213. 一个等腰三角形的底角是45度,那么顶角是______度。

答案:9014. 一个数的立方等于8,那么这个数是______。

答案:215. 一个数除以-2等于-3,那么这个数是______。

答案:616. 一个圆的半径是5厘米,那么它的面积是______平方厘米。

答案:78.517. 一个数的绝对值是3,那么这个数可能是______或______。

答案:3,-318. 一个数的平方等于16,那么这个数是______或______。

(易错题精选)初中数学有理数经典测试题含答案解析

(易错题精选)初中数学有理数经典测试题含答案解析

(易错题精选)初中数学有理数经典测试题含答案解析一、选择题1.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C .绝对值最小的数是0;D .任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在2.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.3.下列说法中,正确的是( )A .在数轴上表示-a 的点一定在原点的左边B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A 、如果a<0,那么在数轴上表示-a 的点在原点的右边,故选项错误;B 、只有当a≠0时,有理数a 才有倒数,故选项错误;C 、负数的相反数大于这个数,故选项错误;D 、如果a a =-,那么a 是负数或零是正确.故选D.【点睛】 本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.下列四个数中,是正整数的是( ) A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C .【点睛】 考查正整数概念,解题主要把握既是正数还是整数两个特点.5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.6.和数轴上的点一一对应的是( )A .整数B .实数C .有理数D .无理数【答案】B【解析】∵实数与数轴上的点是一一对应的,∴和数轴上的点一一对应的是实数.故选B.7.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A 【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.8.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C.﹣a>﹣b,故本选项错误;D.|b+c|=b+c,故本选项正确.故选D.【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a<b<0<c,|b|<|a|,|b|<|c|,用了数形结合思想.9.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.10.如图数轴所示,下列结论正确的是()A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a为正,b为负,且a距0点的位置较近,根据这些特点,判定求解【详解】∵a在原点右侧,∴a>0,A正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大11.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.12.下列各组数中,互为相反数的组是( )A .2-()22-B .2-38-C .12-与2D .2-2 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2()22-=2,符合相反数的定义,故选项正确;B 、-238-不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.13.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的14.2019的倒数的相反数是()A.-2019 B.12019-C.12019D.2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.15.7-的绝对值是()A.17-B.17C.7D.7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.16.- 14的绝对值是( ) A .-4B .14C .4D .0.4【答案】B【解析】【分析】 直接用绝对值的意义求解. 【详解】 −14的绝对值是14. 故选B .【点睛】 此题是绝对值题,掌握绝对值的意义是解本题的关键.17.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.18.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b+-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.19.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a=-+=--+=-,656363a a=-+=--+=-,767374a a=-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a=-,故选:D.【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.20.在数轴上,与原点的距离是2个单位长度的点所表示的数是()A.2 B.2-C.2±D.1 2±【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.。

初中生数学测试题及答案

初中生数学测试题及答案

初中生数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 计算下列算式的结果:2x + 3 = 11A. x = 4B. x = 5C. x = 6D. x = 7答案:B4. 下列哪个图形是轴对称图形?A. 圆B. 正方形C. 长方形D. 所有选项答案:D5. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对答案:C6. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 1D. -1答案:B7. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不对答案:C8. 计算下列算式的值:(3x - 2) / (x + 1) = 4A. x = 1B. x = 2C. x = 3D. x = 4答案:B9. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1/9答案:A10. 一个数的平方根是4,那么这个数是:A. 16B. 4C. -4D. 以上都不对答案:A二、填空题(每题3分,共30分)1. 一个数的立方等于它本身,这个数可以是______。

答案:0, 1, -12. 如果一个角的补角是120°,那么这个角是______。

答案:60°3. 一个数的绝对值是8,这个数可以是______。

答案:8或-84. 一个数的平方根是3,这个数是______。

答案:95. 如果一个三角形的两边长分别是3和4,那么第三边的长度可以是______。

答案:大于1且小于7的任何数6. 一个数的倒数是2,这个数是______。

答案:1/27. 一个数的平方是16,这个数可以是______。

答案:4或-48. 一个数的立方是27,这个数是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线测试题、精心选一选,慧眼识金!(每小题3分,共24分)6 .某人在广场上练习驾驶汽车,两次拐弯后, 行驶方向与原来相同,这两次拐弯的角度可能是C. 7.如图所示是“福娃欢欢”的五幅图案,②、 到(A .'② 8. (2009 . A.80°如图AB// CD 可以得至U)2. A . 7 1=7 2 B如图所示,7 1和72是对顶角的是( )D2C. 7 1=7 4 D A. B . C.D. .7 3=74 如图, 同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行 两直线平行,同位角相等 给出了过直线外一点作已知直线的平行线的方法,其依据是( 4 . (2007 •北京)如图,Rt △ ABC中, 若7 BCE=3&则7A 的度数为( A . 35B . 45C 55 D5 . (2009 .重庆)如图,直线 则7D 等于()A. 70°B. 80°37ACB=90,DE 过点C 且平行于AB,) .65AB CD 相交于点 E, DF// AB.若7 AEC=1O0, AC. 90°D. 100°sBD第一次左拐30°,第二次右拐30° B .第一次右拐50°,第二次左拐130°第一次右拐50°,第二次右拐130° 笔.③占.④D四川遂宁)如图,已知7仁7 2,7 3=80°,则7 4=()B. 70 °C. 60 °D. 50 °锤定音!(每小题3分,共24分)二、耐心填一填, 9 . (2009 .上海)如图,已知a / b ,7 1=40°,那么7 2的度数等于 10 .如图,计划把河水引到水池 A 中,先引AB 丄CD ------------------D .第一次向左拐50°,第二次向左拐130°③、④、⑤哪一个图案可以通过平移图案①得垂足为B,然后沿AB开渠,能使所开的渠道最短, 这样设计的依据是18. (8分)如图,直线 AB 、CD 相交于O, OD 平分/ AOF OE !CD 于点O,/仁50°,求 /COB 、/ BOF 勺度数.11. 如图,直线 AB 、CD 相交于点O ,/ 1-Z 2=64 °,则/ AOC= _____ .12. 如图,一张宽度相等的纸条,折叠后,若/ ABC = 110°,则/ 1的度数为 _________ .DC13. 把命题 锐角的补角是钝角”改写成 如果……,那么……”的形式是:三、用心做一做,马到成功!(本大题共52分)17. (8 分)如图所示,AD // BC ,/ 1=78° , / 2=40° ,求/ ADC 的度数.19 西111 为什么?D /(8分 )如图14 , A、B之间是一座山,一条高速公路要通过A、B两点,在A地测得公路走向是北偏2'。

如果A、B两地同时开工,那么在B地按北偏东多少度施工,才能使公路在山腹中准确接通?o北A20. (8分)如图,BD是/ ABC的平分线,ED// BC, / FED=Z BDE>则EF也是/ AED的平分线。

完成下列推理过程:证明::BD是/ ABC勺平分线••• / ABD=/DBC (••• ED // BC (已知)••• / BDE=/ DBC (量代换)又•••/ FED W BDE (已知)// —L••• / AEFK ABD (••• / AEFK DEF (等量代换)••• EF是/ AED的平分线((3)/ 1 + Z 2+Z 3+Z 4 =;(2分)E22. (11 分)已知AD 与AB、CD 交于A、D 两点,EC、BF 与AB、CD 交于E、C、B、F,且/ 仁/ 2, / B= / C(女口图).(1) 你能得出CE II BF这一结论吗?(2) 你能得出/ B= / 3和/ A= / D这两个结论吗?若能,写出你得出结论的过程.x a4,a乩c r抵ZMWSNODh AfJ^CO. /it) A!i ijCD.T* 4 cTn,■ 1飒农,它初址^HAC^^UAD. ZCHA ・WD.提示;勒嘲aAHCQAABU”打提菲:泌明3U*轻△片EV①儿旳I盒提不:证明理△QFC(D图中垦堆过耀点人離轿^^ADF ffi M・(2) £JE±DF・ MK■丄DF,覩示i Jg Ift HK 3t DF 于G.由AABE竺有 fiF DF. = "DF.乂NAEH - ^DEG t片AUE±DF tu.答累不难一.Min:柬河貳A拽可雀冒ite上选礙-个可比按剑达片和占的扁C* itrn AC#^KPJD, fit CD^CA・理植BC列延隹到E*使CE^ CB h透挂DE.血么址曲DE的怏・就赴為* B的廈歸七年级数学第一章测试卷一、选择题:(每题2分,共30分)1. 下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数a0 b一b 0 1a4. 在数轴上,原点及原点右边的点表示的数是() A.正数 B. 负数 C.非正数 D. 非负数5. 如果一个有理数的绝对值是正数,那么这个数必定是() A.是正数B.不是0 C.是负数D.以上都不对6. 下列各组数中,不是互为相反意义的量的是() A.收入200元与支出20元B.上升10米和下降7米 C.超过0.05mm 与不足0.03mD.增大2岁与减少2升7. 下列说法正确的是()8. 如果一个数的平方等于它的倒数,那么这个数一定是()9. 如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数() A.互为相反数但不等于零;B.互为倒数; C.有一个等于零;D.都等于零10. 若0<m<1,m m 、1的大小关系是()mA21 (2)1^1 2^ 12A.mvmv —;B.m <mJ ;C. <m<mD. <m<mmmmm11.4604608取近似值,保留三个有效数字,结果是()2.1的相反数的绝对值是()2A.- 1B.2C.-2D.23. 有理数a 、b 在数轴上的位置如图 1 21-1所示,那么下列式子中成立的是A.a>b B.a<b C.ab>0 D.A.-a 一定是负数;B. a 丨一定是正数;C.一定不是负数;D.-a 丨一定是负数A.0B.1C.-1 D. ±16 6 6A.4.60 X 10B.4600000;C.4.61 X 10D.4.605 X 1012.下列各项判断正确的是()A.a+b 一疋大于a-b;B.右-ab<0,则a、b异号;C.若a3=b3,贝卩a=b;D.若a2=b2,贝H a=b13.下列运算正确的是()A.-2 2-(-2) 2=1;B.1 3 27C. -5 -■ -。

- -253 51 3D. 3 (;.25)—6 3.25—32.54 414. 若a=-2 x 32,b=(-2 x 3);c=-(2 x 3)2,则下列大小关系中正确的是()A.a>b>0B.b>c>a;C.b>a>cD.c>a>b15. 若丨x | =2, | y | =3,则丨x+y丨的值为()A.5B.-5C.5 或1D. 以上都不对二、填空题:(每空2分,共30分)16. 某地气温不稳定,开始是6C , 一会儿升高4C ,再过一会儿又下降11 C ,这时气温是__ .17. 一个数的相反数的倒数是-1丄,这个数是________ .318. 数轴上到原点的距离是3个单位长度的点表示的数是_______ .19. -2的4次幕是_______ ,144是___________ 的平方数.20. 若 | -a | =5,则a= ______ .21. 若ab>0,bc<0,则ac ______ 0.22. 绝对值小于5的所有的整数的和________ .23. 用科学记数法表示13040000应记作__________________________ 若保留3个有效数字,则近似值为___________ .24. 若 | x-1 | +(y+2)2=0, 贝卩x-y= ______________ ;25•(- 5) x .电=(5)4+冬(_12)寺6—(£)2+24+(—3)2卜(—5); 5 3(6)1+3+5+…+ 99- (2+4+6+…+98).27. -6^-3-x 5= .5 8 -------------------------28._22 xj —-]+8斗(一2)2 =I 2丿 」 ------------三、解答题:(共60分)29. 列式计算(每题5分,共10分)(1)-4 、-5、+7三个数的和比这三个数绝对值的和小多少 ?(2)从-1中减去吕4三的和,所得的差是多少?30. 计算题(每题5分,共30分) (1)(- 12) -4X(-6) +2;523「8 T 一 °25(一5)°);-3b 七;1⑷(-3)匕厂4 -221;26. 3731. 若丨a | =2,b=-3,c是最大的负整数,求a+b-c的值.(10分)32. 检修组乘汽车, 沿公路检修线路, 约定向东为正, 向西为负, 某天自A 地出发,到收工时,行走记录为(单位:千米):+8 、-9 、+4、+7、-2 、-10 、+18、-3 、+7、+5回答下列问题:(每题5分, 共10分)(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?答案:1.C2.D3.A4.D5.B6.D7.C8.B9.A 10.B 11.A 12. C13.D 14.C 15.C16. 评析:负数的意义, 升高和降低是一对意义相反的量, 借助数轴可以准确无误地得出正确结果-1C ,数无数不形象,形无数难入微,数形结合是数学的基本思想在新课标中有重要体现,是中考命题的重要指导思想,多以综合高档题出现,占分比例较大.17. 评析:利用逆向思维可知本题应填?.418. 评析:绝对值的几何意义.在数轴上绝对值的代名词就是距离,绝对值是一个“一学就会一做就错”的难点概念,其原因是没有把握好绝对值的几何意义.19.1620. 评析:可以设计两个问题理解本题.①什么数的绝对值等于5,学生可顺利得出正确结论士 5.②什么数的相反数等于士5,学生也可顺利得出正确结论-5和5, 在解题的过程中学生自然会概括出丨-a | = | a | ,把一个问题转化成两个简单的问题,这种方法和思想是数学学习的核心思想,这一思想在历届中考中都有体现.21. <22.023.用科学记数法表示一个数,要把它写成科学记数的标准形式a x 10n,这里的a必须满足1< a<10条件,n是整数,n的确定是正确解决问题的关键,在这里n是一个比位数小1的数,因为原数是一个8位数,所以可以确定n=7,所以13040000=1.304x 107,对这个数按要求取近似值,显然不能改变其位数,只能对其中的a取近似值,保留3个有效数字为1.30 x 107,而不能误认为1.30,通过这类问题,学生可概括出较大的数取近似值的基本模式应是:先用科学记数法将其表示为a x 10n(1 < a<10,n是整数),然后按要求对a取近似值,而n的值不变.24.3 25.21 26. -127. -2528.45 229.本题根据题意可列式子(5)汉(一12)汉 1一9 +|24 +9 汉(一5)4 —4 —9 +|33 江(-5)= -9 — (1)(-4 -5 7 )-(-4-5+7)=18.2530.(1) 属同一级运算,计算这个题按题的自然顺序进行 (-12) -4X(-6) -2=(-12) X 1 x(-6) X 2=9.42是一个含有乘方的混合运算I 5(M 0.25(_5)(_4)3一8 16-。

相关文档
最新文档