初中数学单元测试大全(含答案)

合集下载

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

初中数学各章试题及答案

初中数学各章试题及答案

初中数学各章试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 非等腰三角形答案:B3. 计算 \(3x + 5 = 14\) 的解,正确的是?A. \(x = 3\)B. \(x = 1\)C. \(x = 4\)D. \(x = 2\)答案:A4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 78.5B. 25πC. 100πD. 50π答案:C5. 以下哪个是二次方程?A. \(x + 2 = 0\)B. \(x^2 + 2x + 1 = 0\)C. \(x^2 - 4x + 4 = 0\)D. \(x^3 - 2x^2 + 3 = 0\)答案:B二、填空题(每题3分,共15分)6. 一个数的相反数是-7,这个数是______。

答案:77. 计算 \((2x - 3) + (x + 4)\) 的结果,合并同类项后得到______。

答案:3x + 18. 一个等腰三角形的底角是45°,那么顶角的度数是______。

答案:90°9. 已知一个长方体的长、宽、高分别是5cm、3cm、2cm,那么它的体积是______立方厘米。

答案:3010. 一个数的平方根是4,那么这个数是______。

答案:16三、解答题(每题10分,共20分)11. 解方程 \(2x - 3 = 7\),并说明解法。

答案:首先移项,得到 \(2x = 7 + 3\),即 \(2x = 10\),然后两边同时除以2,得到 \(x = 5\)。

12. 证明三角形内角和为180°。

答案:设三角形的三个内角分别为A、B、C。

根据三角形的外角定理,一个外角等于两个不相邻内角的和。

因此,角A的外角等于角B加角C。

同理,角B的外角等于角A加角C,角C的外角等于角A加角B。

初中数学单元测试题及答案

初中数学单元测试题及答案

初中数学单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?A. 30B. 20C. 15D. 253. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 24. 以下哪个是单项式?A. 3x + 2B. 5x^2 - 3xC. 4x^3D. 75. 如果一个角的度数是30°,那么它的补角是多少?A. 60°B. 90°C. 120°D. 150°二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是________。

7. 一个三角形的内角和是________度。

8. 一个数的倒数是1/2,这个数是________。

9. 一个圆的半径是3厘米,那么它的直径是________厘米。

10. 如果一个分数的分子和分母都乘以2,那么分数的大小________。

三、计算题(每题5分,共15分)11. 计算下列表达式的值:(2x - 3)(2x + 3),其中x = 1。

12. 解方程:2x + 5 = 17。

13. 计算下列多项式的乘积:(3x^2 - 2x + 1)(2x - 1)。

四、解答题(每题10分,共20分)14. 一个班级有40名学生,其中男生占60%,女生占40%。

如果班级要选出5名学生参加校运会,要求男女比例与班级比例相同,问应该选出多少男生和女生?15. 一个长方形的长比宽多5厘米,如果长和宽都增加5厘米,那么面积增加了多少?答案:一、选择题1. B2. A3. A4. C5. C二、填空题6. ±57. 1808. 29. 610. 不变三、计算题11. 4 - 9 = -512. x = 613. 6x^3 - 7x^2 + 5x - 2四、解答题14. 男生3人,女生2人。

第一章 有理数 单元测试卷(含答案) 初中数学人教版(2024)七年级上册

第一章 有理数  单元测试卷(含答案)   初中数学人教版(2024)七年级上册

人教版(2024新教材)七年级(上)单元测试卷第一章《有理数》满分100分时间80分钟题型选择题填空题解答题分值一.选择题(共10小题,满分30分,每小题3分)1.下列数中,属于负数的是( )A.2024B.﹣2024C.D.12.零上5℃记作+5℃,零下3℃可记作( )A.3℃B.﹣3℃C.3D.﹣33.﹣2的相反数是( )A.﹣2B.2C.﹣D.±24.下列四个数中,属于负整数的是( )A.﹣2.5B.﹣3C.0D.65.一名同学画了四条数轴,只有一个正确,你认为正确的是( )A.B.C.D.6.在﹣1,0,3.5,﹣4这四个数中,最大的数是( )A.﹣1B.3.5C.﹣4D.07.下列各式中,等式不成立的是( )A.|﹣2|=2B.﹣|2|=﹣|﹣2|C.|﹣2|=|2|D.﹣|2|=28.如图,点A在数轴上表示的数为1,将点A向左移动4个单位长度得到点B,则点B表示的数为( )A.﹣2B.﹣3C.﹣5D.59.在数轴上,到表示﹣1的点的距离等于6的点表示的数是( )A.5B.﹣7C.5或﹣7D.810.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是( )A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共8小题,满分24分,每小题3分)11.在3,﹣0.01,0,﹣2,+8,,﹣100中,负分数有 个.12.计算:﹣(﹣2024)= .13.比较大小:﹣ ﹣.14.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件 (填“合格”或“不合格”).15.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 .16.数轴上表示2的点与表示﹣5的点之间的距离为 .17.若|a|+|b﹣2|=0,则a= ,b= .18.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是 .三.解答题(共6小题,满分46分)19.(8分)把下列各数填在相应的集合内(1)整数集合:{ …};(2)负分数集合:{ …};(3)非负数集合:{ …};(4)有理数集合:{ …}.20.(6分)在一条东西方向的大街上,约定向东前进为正,向西前进为负,某天某出租车自A地出发,到收工时所走路程(单位:千米)分别为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的 面(哪个方向);距A地有 (多远);(2)若每千米耗油0.5升,问从A地出发到收工时共耗油多少升?21.(8分)如图是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:﹣3;3.5;;﹣|﹣1|.22.(8分)六一到了,嘉嘉和同学要表演节目.嘉嘉骑车到同学家拿东西,再到学校,她从自己家出发,向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,然后又向西骑了4.5km到达学校.演出结束后又向东骑回到自己家.(1)以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A 表示出淇淇家,用点B表示出小敏家,用点C表示出学校的位置;(2)求淇淇家与学校之间的距离;(3)如果嘉嘉骑车的速度是300m/min,那么嘉嘉骑车一共用了多长时间?23.(8分)(1)如果|a|=5,|b|=2,且a,b异号,求a、b的值.(2)若|a|=5,|b|=1,且a<b,求a,b的值.24.(8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5×5的方格(每个小方格的边长表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向的移动情况.(1)填空:从点C到点D记为C→D .(2)若灰太狼从点A处出发去找点E处的喜羊羊,行走路线依次为(+3,+2),(+1,+2),(﹣3,﹣1),(+1,﹣1),请在图中标出喜羊羊的位置点E.(3)在(2)中,若灰太狼每走1米消耗0.5焦耳的能量,则灰太狼寻找喜羊羊的过程共消耗多少焦耳的能量?参考答案一.选择题1.B.2.B.3.B.4.B.5.C.6.B.7.D.8.B.9.C.10.C.二.填空题11.1.12.2024.13.>.14.合格.15.﹣2.16.7.17.0,2.18.120.三.解答题19.(8分)解:(1)整数集合:{﹣8,+5,0,……}.故答案为:﹣8,+5,0;(2)负分数集合:{﹣5.15,,﹣5%,……}.故答案为:﹣5.15,,﹣5%;(3)非负数集合:{+5,0.06,0,π,1.5,……}.故答案为:+5,0.06,0,π,1.5;(4)有理数集合:{﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5,……}.故答案为:﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5.20.(6分)解:(1)答案为:东;41千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67(千米),67×0.5=33.5(升).答:从A地出发到收工时共耗油33.5升.21.(8分)解:(1),﹣|﹣1|=﹣1,(2)由数轴可得,.22.(8分)解:(1)根据题意得:∵以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,且向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,则1×2=2,2+1.5=3.5;∴淇淇家的位置对应的数为2,小敏家的位置对应的数为3.5,学校的位置对应的数为﹣1,如图所示:;(2)依题意,2﹣(﹣1)=3(km).答:淇淇家与学校之间的距离是3km.(3)依题意2+1.5+|﹣4.5|+1=9(km),则9km=9000m,∴9000÷300=30(min).答:嘉嘉骑车一共用了30min.23.(8分)解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵a,b异号,∴a=5,b=﹣2,或a=﹣5,b=2;(2)∵|a|=5,|b|=1,∴a=±5,b=±1,∵a<b,∴a=﹣5,b=﹣1,或a=﹣5,b=1.24.(8分)解:(1)故答案为:(+1,﹣2);(2)如图:;(3)(3+2+1+2+3+1+1+1)×0.5×10=70(焦耳),故灰太狼共消耗了70焦耳能量.。

2023-2024学年初中数学沪教版七年级上第9章 整式单元测试(含答案解析)

2023-2024学年初中数学沪教版七年级上第9章 整式单元测试(含答案解析)

2023-2024学年沪教版初中数学单元测试学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;一、选择题(本大题共计6小题,每题3分,共计18分)1.多项式4a-a^3分解因式的结果是()A. a(4-a^2)B. a(2-a)(2+ a)C. a(a-2)(a+ 2)D. a(2-a)^2【答案】B【解析】4a-a^3= a(4-a^2)= a(2-a)(2+ a).2.下列因式分解错误的是()A. 3ab-6ac=3a(b-2c)B. \m (x^2+ y^2)-n(x^2+ y^2)=( \m -n)(x^2+ y^2)C. 9x^2-4y^2=(3x+ 2y)(3x-2y)D. a^2-4a+ 4=(a+ 2)(a-2)【答案】D【解析】3.下列因式分解正确的是( )A. 2x^2y- 4xy^2+ 2xy= 2xyleft(x- 2yright)B. xleft(x- yright)- left(y- xright)= left(x- yright)left(x- 1right)C. x^2- 2x+ 4= left(x- 2right)^2D. 4x^2- 16= left(2x+ 4right)left(2x- 4right)【答案】D【解析】解: A,原式=2xy(x-2y+1),故错误;B,原式=(x-y)(x+1),故错误;C,原式不能进行因式分解,故错误;D,原式=4(x+2)(x-2),正确.故选 D.4.因式分解\left(x-y\right)^2+2\left(x^2-xy\right)+x^2的结果为( )A. left(2x+yright)^2B. left(x+yright)left(x-yright)C. left(x-2yright)^2D. left(2x-yright)^2【答案】D【解析】解:原式=(x-y)^2+2x(x-y)+x^2=(x-y+x)^2=(2x-y)^2.故选 D.5.下列各因式分解正确的是()A. (x-1)^2=x^2+ 2x+ 1B. x^2+ 2x-1=(x-1)^2C. x^3-9x=x(x+ 3)(x-3)D. -x^2+ (-2)^2=(x-2)(x+ 2)【答案】C【解析】A、(x-1)^2=x^2-2x+ 1,故此选项错误;B、x^2+ 2x-1无法分解因式,故此选项错误;C、x^3-9x=x(x+ 3)(x-3),正确;D、-x^2+ (-2)^2=-(x-2)(x+ 2),故此选项错误;6.下列因式分解中,正确的是()A. a(x-y)+ b(y-x)=(x-y)(a-b)B. ax+ ay+ a=a(x+ y)C. x^2-4y^2=(x-4y)(x+ 4y)D. 4x^2+ 9=(2x+ 3)^2【答案】A【解析】A、原式=(x-y)(a-b),符合题意;B、原式=a(x+ y+ 1),不符合题意;C、原式=(x-2y)(x+ 2y),不符合题意;D、原式不能在实数范围内因式分解,不符合题意.二、填空题(本大题共计23小题,每题3分,共计69分)7.因式分解:18a-2a^3=________.【答案】2a(3+a)(3-a)【解析】解:18a-2a^3=2a(9-a^2)=2a(3+a)(3-a).故答案为:2a(3+a)(3-a).8.把代数式2x^3-8x分解因式为________.【答案】2x(x+ 2)(x-2)【解析】2x^3-8x=2x(x^2-4)=2x(x+ 2)(x-2).9.分解因式: 4x^2-1=________.【答案】(2x+1)(2x-1)【解析】解:原式=(2x)^2-1^2=(2x+1)(2x-1).故答案为:(2x+1)(2x-1).10.分解因式:x^2y-9y=________.【答案】y(x+ 3)(x-3)【解析】11.因式分解:2x^3y-8x^2y^2+ 8xy^3=________.【答案】2xy(x-2y)^2【解析】解:2x^3y-8x^2y^2+8xy^3=2xy\left(x^2-4xy+4y^2\right)=2xy\left(x-2y\right)^2.故答案为:2xy\left(x-2y\right)^2.12.分解因式:ma^2-6ma+ 9 m =________;分式方程\dfrac3x - 3 = \dfrac2x的解为________.【答案】 m (a-3)^2, x=-6【解析】解:原式=m(a^2-6a+ 9)=m(a-3)^2;去分母得:3x=2x-6,解得:x=-6,经检验x=-6是分式方程的解.故答案为:m(a-3)^2;x=-6.13.分解因式:2a^3-8a^2+ 8a=________.【答案】2a(a-2)^2【解析】解:2a^3-8a^2+8a=2a(a^2-4a+ 4)=2a(a-2)^2.故答案为:2a(a-2)^2.14.把多项式3x^3-6x^2+3x分解因式的结果是________.【答案】3x(x-1)^2【解析】解:3x^3-6x^2+3x=3x(x^2-2x+1)=3x(x-1)^2.故答案为:3x(x-1)^2.15.分解因式:3a^2-6ab+ 3b^2=________.【答案】3(a-b)^2【解析】解:3a^2-6ab+ 3b^2=3(a^2-2ab+ b^2)=3(a-b)^2.故答案为:3(a-b)^2.16.因式分解:(m^2+ 1)(x-y)-2 m (x-y)=________.【答案】(x-y)( m -1)^2【解析】解:\left(m^2+1\right)\left(x-y\right)-2m\left(x-y\right)=(x-y)(m^2+1-2m)=\left(x-y\right)\left(m-1\right)^2.故答案为:\left(x-y\right)\left(m-1\right)^2.17.把多项式2x^2y-16xy+ 32y分解因式的结果是________.【答案】2y(x-4)^2【解析】解:原式= 2y(x^2-8x+ 16)= 2y(x-4)^2.故答案为:2y(x-4)^2.18.因式分解:x^3-4x^2+4x=________.【答案】x(x-2)^2【解析】解:x^3-4x^2+ 4x=x(x^2-4x+ 4)=x(x-2)^2.故答案为:x(x-2)^2.19.因式分解:2x^3-2xy^2= ________.【答案】2x(x-y)(x+y)【解析】解:2x^3-2xy^2= 2x(x^2-y^2)= 2x(x-y)(x+y). 故答案为:2x(x-y)(x+y).20.分解因式4-4x^2=________.【答案】4(1+ x)(1-x)【解析】原式=4(1-x^2)=4(1+ x)(1-x).21.分解因式:x^2y+ 2xy^2+ y^3=________.【答案】y(x+ y)^2【解析】x^2y+ 2xy^2+ y^3=y(x^2+ 2xy+ y^2)=y(x+ y)^2.22.因式分解: b-4a^2b=________.【答案】b(1+2a)(1-2a)【解析】解:b-4a^2b=b(1-4a^2)=b(1+2a)(1−2a).故答案为:b(1+2a)(1−2a).23.计算:565^2\times 24-435^2\times 24= ________.【答案】3120000【解析】解:565^2\times 24-435^2\times 24= 24\times (565^2-435^2)= 24\times (565+ 435)(565-435)= 24\times 1000\times 130= 3120000.故答案为:3120000.24.分解因式:3m^2-6mn+ 3n^2=________.【答案】3( m -n)^2【解析】解:3m^2-6mn+ 3n^2=3(m^2-2mn+ n^2)=3( m -n)^2.故答案为:3( m -n)^2.25.分解因式:9a-a^3= ________.【答案】a(a+ 3)(3-a)【解析】解:原式= a(9-a^2)= a(a+ 3)(3-a),故答案为:a(a+ 3)(3-a).26.分解因式:x^2\left( x-3\right) -x+3=________.【答案】(x-3)(x+1)(x-1)【解析】解:x^2\left( x-3\right) -x+3=x^2\left( x-3\right) -(x-3) =(x-3)(x^2-1)=(x-3)(x+1)(x-1).故答案为:(x-3)(x+1)(x-1).27.因式分解: 3y^2-3=________.【答案】3(y+ 1)(y-1)【解析】解:3y^2-3=3(y^2-1)= 3(y+ 1)(y-1).故答案为:3(y+ 1)(y-1).28.分解因式:x^2y-6xy+ 9y=________.【答案】y(x-3)^2【解析】原式=y(x^2-6x+ 9)=y(x-3)^2,29.分解因式:-2a^3+ 8a=________.【答案】-2a(a+ 2)(a-2)【解析】原式=-2a(a^2-4)=-2a(a+ 2)(a-2),三、解答题(本大题共计1小题,每题10分,共计10分)30.(1)因式分解:3x^2-12xy+ 12y^2.30.(2)计算:2020^2-2019\times 2021.【答案】原式=3(x^2-2xy+ 4y^2)=7(x-2y)^2;【解析】【答案】原式=2020^5-(2020-1)(2020+ 1)=2020^5-(2020^2-1)=2020^5-2020^2+ 1=5.【解析】。

初中七年级数学下册各单元测试题及答案汇总

初中七年级数学下册各单元测试题及答案汇总

123(第三题)A B C D E (第10题)ABCD 1234(第2题)12345678(第4题)ab cA B CD(第7题)七年级数学第五章《相交线与平行线》测试卷一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:28、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

初中数学人教版九年级上册 第二十一章 一元二次方程单元测试(含简单答案)

初中数学人教版九年级上册  第二十一章 一元二次方程单元测试(含简单答案)

第二十一章一元二次方程一、单选题1.方程x2-4=0的解是A.x=2B.x=-2C.x=±2D.x=±42.下列方程中,是一元二次方程的是()=1 A.xy=0B.x2+1=0C.x2=x(x−1)D.x2+1x3.方程3x2=5x+7的二次项系数、一次项系数,常数项分别为()A.3,5,7B.3,−5,−7C.3,−5,7D.3,5,−74.将方程x2−6x−1=0配方后,原方程可变形为()A.(x−3)2=8B.(x−3)2=10C.(x+3)2=10D.(x+3)2=85.若关于x的一元二次方程(k−2)x2+4x+1=0有两个实数根则k的取值范围是( ) A.k<6B.k<6且k≠2C.k≤6且k≠2D.k>66.已知a是方程x2−2x−1=0的一个解,则代数式2a2−4a+3的值为()A.4B.-4C.5D.-57.已知m是一元二次方程x2−4x+1=0的一个根,则2023−m2+4m的值是()A.−2023B.2023C.2022D.20248.如果关于x的方程(m−2)x2−(2m−1)x+m=0只有一个实数根,那么方程mx2−(m+2)x+(4−m)=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.只有一个实数根9.2022年,新《医保目录》启用,部分药品实行降价.某药品经过两次降价,每瓶零售价由132元降为102元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.132(1+x)2=102B.132(1−x)2=102C.132(1−2x)=102D.132(1−x2)=10210.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为−4,3,则方程a(x+m−1)2 +n=0的两根分别为()A.2,−5B.−3,4C.3,−4D.−2,5二、填空题11.把下列方程中一元二次方程的序号填在横线上:.+5=0 ⑥3x3﹣4x2+1=0.①x2=4②2x2+y=5③3x+x2﹣1=0 ④5x2=0⑤3x2+x212.方程2(x+1)2=(x+2)(x﹣2)化为一般形式为.13.把方程x2+6x+3=0变形为(x+ℎ)2=k的形式,其中h,k为常数,则k=.14.关于x的一元二次方程x2+2x+4c=0有两个相等的实数根,则c=.15.连续两个奇数的乘积为483,则这两个奇数为.16.若关于x的一元二次方程mx2+x−1=0有两个不相等的实数根,则m的取值范围是.17.若ΔABC的两边长分别为3和4,第三边的长是方程x2−6x+5=0的根,则ΔABC的周长是.18.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边,且BC>AB).若花园的面积为192m2,则AB的长为m.三、解答题19.解方程:(1)x2−5x−6=0;(2)2x2−4x−1=0;(3)(x−7)2+2(x−7)=0;(4)(3x+2)2=4(x−3)2.20.已知关于x的一元二次方程x2+(2m+2)x+m2−4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.21.已知关于x的一元二次方程(a﹣c)x2+2bx+(a+c)=0.其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.22.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔7月份到9月份的销量,该品牌头盔7月份销售250个,9月份销售360个,且从7月份到9月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为25元/个,测算在市场中当售价为40元/个时,月销售量为400个,若在此基础上售价每上涨1元,则月销售量将减少10个,为使月销售利润达到7000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?参考答案:1.C2.B3.B4.B5.C6.C7.D8.C9.B10.B11.①③④⑤12.x 2+4x +6=013.614.14/0.2515.21,23或−23,−21.16.m >−14且m ≠017.1218.1219.(1)x 1=6,x 2=-1;(2)x 1=2+62,x 2=2−62;(3)x 1=7,x 2=5;(4)x 1=-8,x 2=45.20.(1) m >−52;(2)m =−2.21.(1)△ABC 为等腰三角形;(2)△ABC 为直角三角形22.(1)20%(2)45。

八年级数学 全册章节单元测试含答案(上册)

八年级数学 全册章节单元测试含答案(上册)

第十一章全等三角形测试1全等三角形的概念和性质学习要求1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素.2.掌握全等三角形的性质;会利用全等三角形的性质进行简单的推理和计算,解决某些实际问题.课堂学习检测一、填空题1._____的两个图形叫做全等形.2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图1-15.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1-36.如图1-2,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形二、选择题8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD9.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4B.3C.2D.110.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD =4,那么BC等于()A.6 B.5C.4D.无法确定图1-4 图1-5 图1-611.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°三、解答题13.已知:如图1-7所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7图1-8图1-9综合、运用、诊断一、填空题14.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.15.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.拓展、探究、思考16.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.图1-10测试2 三角形全等的条件(一)学习要求1.理解和掌握全等三角形判定方法1——“边边边”,2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.判断_____的_____ 叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________________________________________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.图2-1图2-2图2-34.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点. 求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______, 只要证______≌______证明:∵ M 为PQ 的中点(已知), ∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知∴______≌______( ). ∴ ∠PRM =______(______). 即RM .5.已知:如图2-2,AB =DE ,AC =DF ,BE =CF . 求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______. 证明:∵BE =CF ( ), ∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB ∴______≌______( ). ∴ ∠A =∠D (______).6.如图2-3,CE =DE ,EA =EB ,CA =DB , 求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______, 即______=______. 在△ABC 和△BAD 中, =______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知 ∴△ABC ≌△BAD ( ).综合、运用、诊断一、解答题7.已知:如图2-4,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图2-48.画一画.已知:如图2-5,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.图2-59.“三月三,放风筝”.图2-6是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.图2-6拓展、探究、思考10.画一画,想一想:利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?测试3 三角形全等的条件 (二)学习要求1.理解和掌握全等三角形判定方法2——“边角边”.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等图3-1图3-2课堂学习检测一、填空题1.全等三角形判定方法2——“边角边” (即______)指的是_________________________________________________________________________________. 2.已知:如图3-1,AB 、CD 相交于O 点,AO =CO ,OD =OB . 求证:∠D =∠B .分析:要证∠D =∠B ,只要证______≌______ 证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ). ∴ ∠D =∠B (______).3.已知:如图3-2,AB ∥CD ,AB =CD .求证:AD ∥BC . 分析:要证AD ∥BC ,只要证∠______=∠______, 又需证______≌______. 证明:∵ AB ∥CD ( ), ∴ ∠______=∠______ ( ), 在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ). ∴ ∠______=∠______ ( ). ∴ ______∥______( ).综合、运用、诊断一、解答题4.已知:如图3-3,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.图3-35.已知:如图3-4,AB=AC,BE=CD.求证:∠B=∠C.图3-46.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-5拓展、探究、思考7.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6测试4 三角形全等的条件 (三)学习要求1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题 1.(1)全等三角形判定方法3——“角边角”(即______)指的是_________________________________________________________________________________; (2)全等三角形判定方法4——“角角边” (即______)指的是_________________________________________________________________________________.图4-12.已知:如图4-1,PM =PN ,∠M =∠N .求证:AM =BN . 分析:∵PM =PN ,∴ 要证AM =BN ,只要证P A =______, 只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______∴ △______≌△______ ( ). ∴P A =______ ( ). ∵PM =PN ( ),∴PM -______=PN -______,即AM =______.3.已知:如图4-2,AC BD .求证:OA =OB ,OC =OD . 分析:要证OA =OB ,OC =OD ,只要证______≌______. 证明:∵ AC ∥BD ,∴ ∠C =______. 在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC∴______≌______ ( ). ∴ OA =OB ,OC =OD ( ).图4-2二、选择题4.能确定△ABC ≌△DEF 的条件是 ( ) A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E5.如图4-3,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是 ( )图4-3A .甲和乙B .乙和丙C .只有乙D .只有丙6.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( ) A .DE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF 三、解答题7.阅读下题及一位同学的解答过程:如图4-4,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,图4-4⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?综合、应用、诊断8.已知:如图4-5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB . 求证:AD =AC .图4-59.已知:如图4-6,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ . 求证:HN =PM.图4-610.已知:AM 是ΔABC 的一条中线,BE ⊥AM 的延长线于E ,CF ⊥AM 于F ,BC =10,BE=4.求BM 、CF 的长.拓展、探究、思考11.填空题(1)已知:如图4-7,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E .欲证明BD =CE ,需证明Δ______≌△______,理由为______. (2)已知:如图4-8,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.图4-7 图4-812.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-913.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11测试5 直角三角形全等的条件学习要求掌握判定直角三角形全等的一种特殊方法一“斜边、直角边”(即“HL”),能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.课堂学习检测一、填空题1.判定两直角三角形全等的“HL”这种特殊方法指的是_____.2.直角三角形全等的判定方法有_____ (用简写).3.如图5-1,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.图5-14.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()二、选择题5.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等6.如图5-2,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3B.4C.5D.6图5-2三、解答题7.已知:如图5-3,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC:(2)AD∥BC.图5-38.已知:如图5-4,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC;图5-4综合、运用、诊断9.已知:如图5-5,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.图5-510.已知:如图5-6,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.图5-611.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图5-7),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7拓展、探究、思考12.下列说法中,正确的画“√”;错误的画“×”,并作图举出反例.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()13.(1)已知:如图5-8,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.图5-8(2)若∠AOB为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.测试6 三角形全等的条件(四)学习要求能熟练运用三角形全等的判定方法进行推理并解决某些问题.课堂学习检测一、填空题1.两个三角形全等的判定依据除定义外,还有①_____;②_____;③_____;④_____;⑤_____.2.如图6-1,要判定ΔABC≌ΔADE,除去公共角∠A外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据.(1)∠B=∠D,AB=AD();(2)_____,_____();(3)_____,_____();(4)_____,_____();(5)_____,_____();(6)_____,_____();(7)_____,_____().图6-13.如图6-2,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请添加一个适当条件,使ΔABC≌ΔDEF,并说明理由添加条件:_________________________________________________________________,理由是:___________________________________________________________________.图6-24.在ΔABC和ΔDEF中,若∠B=∠E=90°,∠A=34°,∠D=56°,AC=DF,贝ΔABC和ΔDEF是否全等?答:______,理由是______.二、选择题5.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1B.2C.3D.46.如图6-3,AB=CD,AD=CB,AC、BD交于O,图中有()对全等三角形.A.2B.3C.4D.5图6-37.如图6-4,若AB =CD ,DE =AF ,CF =BE ,∠AFB =80°,∠D =60°,则∠B 的度数是 ( ) A .80° B .60° C .40° D .20°8.如图6-5,△ABC 中,若∠B =∠C ,BD =CE ,CD =BF ,则∠EDF = ( ) A .90°-∠A B .A ∠-2190oC .180°-2∠AD .A ∠-2145o图6-4 图6-5 图6-69.下列各组条件中,可保证△ABC 与△A 'B 'C '全等的是 ( ) A .∠A =∠A ',∠B =∠B ',∠C =∠C ' B .AB =A 'B ',AC =A 'C ',∠B =∠B ' C .AB =C 'B ',∠A =∠B ',∠C =∠C ' D .CB =A 'B ',AC =A 'C ',BA =B 'C '10.如图6-6,已知MB =ND ,∠MBA =∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN综合、运用、诊断一、解答题11.已知:如图6-7,AD =AE ,AB =AC ,∠DAE =∠BAC .求证:BD =CE .图6-712.已知:如图6-8,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;图6-8(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.13.如图6-9,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?图6-9拓展、探究、思考14.如图6-10,△ABC的三个顶点分别在2×3方格的3个格点上,请你试着再在格点上找出三个点D、E、F,使得△DEF≌△ABC,这样的三角形你能找到几个?请一一画出来.图6-1015.请分别按给出的条件画△ABC(标上小题号,不写作法),并说明所作的三角形是否唯一;如果有不唯一的,想一想,为什么?①∠B=120°,AB=2cm,AC=4cm;②∠B=90°,AB=2cm,AC=3cm;③∠B=30°,AB=2cm,AC=3cm;④∠B=30°,AB=2cm,AC=2cm;⑤∠B=30°,AB=2cm,AC=1cm;⑥∠B=30°,AB=2cm,AC=1.5cm.测试7三角形全等的条件(五)学习要求能熟练运用三角形全等的知识综合解决问题.课堂学习检测解答题1.如图7-1,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50 cm,当小敏从水平位置CD下降40 cm时,小明这时离地面的高度是多少?请用所学的全等三角形的知识说明其中的道理.图7-12.如图7-2,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.图7-23.如图7-3,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗?为什么?图7-34.在一池塘边有A、B两棵树,如图7-4.试设计两种方案,测量A、B两棵树之间的距离.方案一:方案二:图7-4测试8 角的平分线的性质(一)学习要求1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.课堂学习检测一、填空题1._____叫做角的平分线.2.角的平分线的性质是___________________________.它的题设是_________,结论是_____.3.到角的两边距离相等的点,在_____.所以,如果点P到∠AOB两边的距离相等,那么射线OP是_____.4.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么_____;(2)如果一个点到角的两边的距离相等,那么_____;(3)综上所述,角的平分线是_____的集合.5.(1)三角形的三条角平分线_____它到___________________________.(2)三角形内....,到三边距离相等的点是_____.6.如图8-1,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长为_____cm.图8-1二、作图题7.已知:如图8-2,∠AOB.求作:∠AOB的平分线OC.作法:图8-28.已知:如图8-3,直线AB及其上一点P.求作:直线MN,使得MN⊥AB于P.作法:图8-39.已知:如图8-4,△AB C.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:图8-4综合、运用、诊断一、解答题10.已知:如图8-5,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.图8-511.已知:如图8-6,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.图8-612.已知:如图8-7,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)图8-7拓展、探究、思考13.已知:如图8-8,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?图8-814.已知:如图8-9,四条直线两两相交,相交部分的线段构成正方形ABCD.试问:是否存在到至少三边所在的直线的距离都相等的点?若存在,请找出此点,这样的点有几个?若不存在,请说明理由.图8-9测试9 角的平分线的性质 (二)学习要求熟练运用角的平分线的性质解决问题.课堂学习检测一、选择题1.如图9-1,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是 ( ) A .PC =PD B .OC =OD C .∠CPO =∠DPO D .OC =PC图9-12.如图9-2,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21C .mnD .2mn图9-2二、填空题3.已知:如图9-3,在Rt ΔABC 中,∠C =90°,沿着过点B 的一条直线BE 折叠ΔABC ,使C 点恰好落在AB 边的中点D 处,则∠A 的度数等于_____.图9-34.已知:如图9-4,在ΔABC中,BD、CE分别平分∠ABC、∠ACB,且BD、CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP、OM、ON的大小关系为_____.图9-4三、解答题5.已知:如图9-5,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM ⊥AD于M,CN⊥BD于N.求证:CM=CN.图9-56.已知:如图9-6,ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.求证:一点F必在∠DAE的平分线上.图9-67.已知:如图9-7,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△P AB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.图9-78.如图9-8,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA 的面积比为3∶8,求△ADE与△BCA的面积之比.图9-89.已知:如图9-9,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.图9-9拓展、探究、思考10.已知:如图9-10,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.图9-10第十二章轴对称测试1轴对称学习要求1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.一、填空题1.如果一个图形沿着一条直线_____,直线两旁的部分能够_____,那么这个图形....叫做_____,这条直线叫做它的_____,这时,我们也就说这个图形....关于这条直线(或轴)_____.2.把一个图形沿着某一条直线折叠,如果它能够与_____重合,那么这两图形...叫做关于_____,这条直线叫做_____,折后重合的点是_____,又叫做_____.3.成轴对称的两个图形的主要性质是(1)成轴对称的两个图形是_____;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对_____的垂直平分线.4.轴对称图形的对称轴是_____.5.(1)角是轴对称图形,它的对称轴是_____;(2)线段是轴对称图形,它的对称轴是_____;(3)圆是轴对称图形,它的对称轴是_____.二、选择题6.在图1-1中,是轴对称图形.....的是()图1-17.在图1-2的几何图形中,一定是轴对称图形的有()图1-2A.2个B.3个C.4个D.5个8.如图1-3,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()图1-3A.30°B.50°C.90°D.100°9.将一个正方形纸片依次按图1-4a,b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图1-5中的()图1-4图1-510.如图1-6,将矩形纸片ABCD(图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图③);(3)将纸片收展平,那么∠AFE的度数为()图1-6A.60°B.67.5°C.72°D.75°综合、运用、诊断一、解答题11.请分别画出图1-7中各图的对称轴.(1)正方形(2)正三角形(3)相交的两个圆图1-712.如图1-8,ΔABC中,AB=BC,ΔABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BDA'的度数.图1-813.在图1-9中你能否将已知的正方形按如下要求分割成四部分,(1)分割后的图形是轴对称图形;(2)这四个部分图形的形状和大小都相同.请至少给出四种不同分割的设计方案,并画出示意图.图1-914.在图1-10这一组图中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形.图1-10拓展、探究、思考15.已知,如图1-11,在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,求∠OED 的度数.图1-11测试2 线段的垂直平分线学习要求1.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线.2.能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.课堂学习检测一、填空题1.经过_____并且_____的_____ 叫做线段的垂直平分线.2.线段的垂直平分线有如下性质:线段的垂直平分线上的_____与这条线段_____的_____相等.3.线段的垂直平分线的判定,由于与一条线段两个端点距离相等的点在_____,并且两点确定_____,所以,如果两点M、N分别与线段AB两个端点的距离相等,那么直线MN是_____.4.完成下列各命题:(1)线段垂直平分线上的点,与这条线段的_____;(2)与一条线段两个端点距离相等的点,在_____;(3)不在线段垂直平分线上的点,与这条线段的_____;(4)与一条线段两个端点距离不相等的点,_____;(5)综上所述,线段的垂直平分线是_____的集合.5.如图2-1,若P是线段AB的垂直平分线上的任意一点,则(1)ΔP AC≌_____;(2)P A=_____;(3)∠APC=_____;(4)∠A=_____.图2-16.ΔABC中,若AB-AC=2cm,BC的垂直平分线交AB于D点,且ΔACD的周长为14cm,则AB=_____,AC_____.7.如图2-2,ΔABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=_____;(2)若AB=5 cm,BC=3 cm,则ΔPBC的周长=_____.图2-2综合、运用、诊断一、解答题8.已知:如图2-3,线段AB.求作:线段AB的垂直平分线MN.作法:图2-39.已知:如图2-4,∠ABC及两点M、N.求作:点P,使得PM=PN,且P点到∠ABC两边的距离相等.作法:图2-4拓展、探究、思考10.已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P 在直线l上运动时,点P与A、B两点的距离总相等.如果存在,请作出定点B;若不存在,请说明理由.图2-511.如图2-6,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,那么点E、F是否关于AD对称?若对称,请说明理由.图2-6测试3 轴对称变换学习要求1.理解轴对称变换,能作出已知图形关于某条直线的对称图形.2.能利用轴对称变换,设计一些图案,解决简单的实际问题.一、填空题1.由一个_____得到它的_____叫做轴对称变换.2.如果由一个平面图形得到它关于某一条直线l的对称图形,那么,(1)这个图形与原图形的_____完全一样;(2)新图形上的每一点,都是_____;(3)连接任意一对对应点的线段被_____.3.由于几何图形都可以看成是由点组成的,因此,要作一个平面图形的轴对称图形,可归结为作该图形上的这些点关于对称轴的______.二、解答题4.试分别作出已知图形关于给定直线l的对称图形.(1)图3-1(2)图3-2(3)图3-35.如图3-4所示,已知平行四边形ABCD及对角线BD,求作ΔBCD关于直线BD的对称图形.(不要求写作法)图3-46.如图3-5所示,已知长方形纸片ABCD中,沿着直线EF折叠,求作四边形EFCD关于直线EF的对称图形.(不要求写作法)图3-57.为了美化环境,在一块正方形空地上分别种植不同的花草,现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等,现已有两种不同的分法:①分别作两条对角线(图①),②过一条边的四等分点作该边的垂线段(图②),(图②中的两个图形的分割看作同一种方法).请你按照上述三个要求,分别在图③的三个正方形中,给出另外三种不同的分割方法.(只画图,不写作法)图3-6综合、运用、诊断8.已知:如图3-7,A、B两点在直线l的同侧,点A'与A关于直线l对称,连接A'B交l 于P点,若A'B=a.(1)求AP+PB;(2)若点M是直线l上异于P点的任意一点,求证:AM+MB>AP+PB.图3-79.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(1)如图3-8,在l上求作一点M,使得|AM-BM|最小;作法:图3-8(2)如图3-9,在l上求作一点M,使得|AM-BM|最大;作法:图3-9(3)如图3-10,在l上求作一点M,使得AM+BM最小.图3-10拓展、探究、思考10.(1)如图3-11,点A、B、C在直线l的同侧,在直线l上,求作一点P,使得四边形APBC的周长最小;图3-11(2)如图3-12,已知线段a,点A、B在直线l的同侧,在直线l上,求作两点P、Q(点P在点Q的左侧)且PQ=a,四边形APQB的周长最小.图3-1211.(1)已知:如图3-13,点M在锐角∠AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得ΔPMQ的周长最小;图3-13(2)已知:如图3-14,点M在锐角∠AOB的内部,在OB边上求作一点P,使得点P 到点M的距离与点P到OA边的距离之和最小.图3-14测试4用坐标表示轴对称学习要求1.运用所学的轴对称知识,认识和掌握在平面直角坐标系中,与已知点关于x轴或y 轴对称点的坐标的规律,进而能在平面直角坐标系中作出与一个图形关于x轴或y轴对称的图形.2.能运用轴对称的性质,解决简单的数学问题或实际问题,提高分析问题和解决问题的能力.课堂学习检测一、解答题2.已知:线段AB,并且A、B两点的坐标分别为(-2,1)和(2,3).(1)在图4-1中分别画出线段AB关于x轴和y轴的对称线段A1B1及A2B2,并写出相应端点的坐标.图4-1(2)在图4-2中分别画出线段AB关于直线x=-1和直线y=4的对称线段A3B3及A4B4,并写出相应端点的坐标.图4-23.如图4-3,已知四边形ABCD的顶点坐标分别为A(1,1),B(5,1),C(5,4),D(2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标.图4-3综合、运用、诊断4.如图4-4,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标.图4-4拓展、探究、思考5.如图4-5,在平面直角坐标系中,直线l是第一、三象限的角平分线.图4-5实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B'、C'的位置,并写出它们的坐标:B'_____、C'_____;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为_____ (不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.测试5 等腰三角形的性质学习要求掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.课堂学习检测一、填空题1._____的_____叫做等腰三角形.2.(1)等腰三角形的性质1是______________________________________________.(2)等腰三角形的性质2是______________________________________________.(3)等腰三角形的对称性是_____,它的对称轴是_____.图5-13.如图5-1,根据已知条件,填写由此得出的结论和理由.(1)∵ΔABC中,AB=AC,∴∠B=______.()(2)∵ΔABC中,AB=AC,∠1=∠2,∴AD垂直平分______.()(3)∵ΔABC中,AB=AC,AD⊥BC,∴BD=______.()(4)∵ΔABC中,AB=AC,BD=DC,∴AD⊥______.()4.等腰三角形中,若底角是65°,则顶角的度数是_____.5.等腰三角形的周长为10cm,一边长为3cm,则其他两边长分别为_____.6.等腰三角形一个角为70°,则其他两个角分别是_____.7.等腰三角形一腰上的高与另一腰的夹角是20°,则等腰三角形的底角等于_____.二、选择题8.等腰直角三角形的底边长为5cm,则它的面积是()A.25cm2B.12.5cm2C.10cm2D.6.25cm29.等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cmC.63cm和51cm D.以上都不正确10.△ABC中,AB=AC,D是AC上一点,且AD=BD=BC,则∠A等于()A.45°B.36°C.90°D.135°综合、运用、诊断一、解答题11.已知:如图5-2,ΔABC中,AB=AC,D、E在BC边上,且AD=AE.求证:BD=CE.图5-212.已知:如图5-3,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.图5-313.已知:如图5-4,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.图5-4拓展、探究、思考14.已知:如图5-5,RtΔABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.求证:(1)DE=DF;(2)ΔDEF为等腰直角三角形.图5-515.在平面直角坐标系中,点P(2,3),Q(3,2),请在x轴和y轴上分别找到M点和N点,使四边形PQMN周长最小.(1)作出M点和N点.(2)求出M点和N点的坐标.图5-6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(一) 数与式(时间:45分钟 满分:100分)一、选择题(每小题3分,共24分)1.如果电梯上升5层记为+5.那么电梯下降2层应记为(B )A .+2B .-2C .+5D .-5 2.下列四个实数中,绝对值最小的数是(C )A .-5B .- 2C .1D .43.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81 000名观众,其中数据81 000用科学记数法表示为(B )A .81×103B .8.1×104C .8.1×105D .0.81×1054.化简x 2x -1+11-x的结果是(A )A .x +1B .x -1C .x 2-1 D.x 2+1x -15.如图,数轴上的点A ,B 分别对应实数a ,b ,下列结论正确的是(C )A .a >bB .|a |>|b |C .-a <bD .a +b <0 6.下列运算正确的是(C )A .2a 3÷a =6B .(ab 2)2=ab 4C .(a +b )(a -b )=a 2-b 2D .(a +b )2=a 2+b 2 7.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于(A )A .3B .-3C .1D .-18.甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客购买这种商品最合算的超市是(C )A .甲B .乙C .丙D .一样二、填空题(每小题4分,共16分) 9.分解因式:2a 2-4a +2=2(a -1)2. 10.若a +b =3,ab =2,则(a -b)2=1. 11.代数式x -1x -1中x 的取值范围是x>1. 12.阅读理解:引入新数i ,新数i 满足分配律、结合律、交换律,已知i 2=-1,那么(1+i)(1-i)=2.三、解答题(共60分)13.(6分)计算:(2 019)0×8-(12)-1-|-32|+2cos 45°.解:原式=1×22-2-32+2×22=22-2-32+ 2 =-2.14.(6分)计算:(3+2-1)(3-2+1).解:原式=[3+(2-1)][3-(2-1)] =3-(2-1)2 =3-3+2 2 =2 2.15.(8分)先化简,再求值:a(a -2b)+2(a +b)(a -b)+(a +b)2,其中a =-12,b =1.解:原式=a 2-2ab +2a 2-2b 2+a 2+2ab +b 2=4a 2-b 2.当a =-12,b =1时,原式=4×(-12)2-12=0.16.(8分)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.解:原式=(x -y )2(x -y )(x +y )=x -yx +y.当x =3+1,y =3-1时,x -y =2,x +y =2 3. ∴原式=223=33.17.(10分)已知P =a 2+b 2a 2-b 2,Q =2aba 2-b 2,用“+”或“-”连接P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.解:如选P +Q 进行计算:P +Q =a 2+b 2a 2-b 2+2aba 2-b 2=a 2+b 2+2ab a 2-b 2=(a +b )2(a +b )(a -b ) =a +ba -b. 当a =3,b =2时,P +Q =3+23-2=5.18.(10分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1.(2)答案不唯一,如:要使上式有意义,则x≠±1且x≠0. ∵-2<x≤2且x 为整数, ∴x =2.将x =2代入x 2x -1中,得原式=222-1=4.19.(12分)先观察下列等式,然后用你发现的规律解答下列问题.11×2=1-12; 12×3=12-13; 13×4=13-14; …(1)计算:11×2+12×3+13×4+14×5+15×6=56; (2)探究11×2+12×3+13×4+…+1n (n +1)=nn +1;(用含有n 的式子表示)(3)若11×3+13×5+15×7+…+1(2n -1)(2n +1)的值为1735,求n 的值. 解:11×3+13×5+15×7+…+1(2n -1)(2n +1)=12(1-13+13-15+…+12n -1-12n +1) =12(1-12n +1) =12·2n 2n +1 =n 2n +1. 由题意知n 2n +1=1735.解得n =17.单元测试(二) 方程与不等式(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分) 1.方程3x +2(1-x)=4的解是(C )A .x =25B .x =65 C .x =2 D .x =1 2.方程组⎩⎨⎧y =2x ,3x +y =15的解是(D )A.⎩⎨⎧x =2y =3B.⎩⎨⎧x =4y =3C.⎩⎨⎧x =4y =8D.⎩⎨⎧x =3y =6 3.一元一次不等式2(x +2)≥6的解在数轴上表示为(A )4.如果2是方程x 2-3x +k =0的一个根,那么常数k 的值为(B )A .1B .2C .-1D .-25.一元二次方程4x 2-2x +14=0的根的情况是(B )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断 6.若关于x 的一元一次不等式组⎩⎨⎧x -2m <0,x +m >2有解,则m 的取值范围为(C )A .m >-23B .m ≤23C .m >23D .m ≤-23 7.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为(D )A.⎩⎨⎧x +y =352x +2y =94B.⎩⎨⎧x +y =354x +2y =94C.⎩⎨⎧x +y =354x +4y =94D.⎩⎨⎧x +y =352x +4y =948.(2018·淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是(C )A.60x -60(1+25%)x =30B.60(1+25%)x-60x =30C.60×(1+25%)x -60x =30D.60x -60×(1+25%)x =30二、填空题(每小题3分,共18分)9.方程2x -1=1的解是x =3.10.一元二次方程x 2-2x =0的解是x 1=0,x 2=2.11.若关于x 的一元二次方程x 2-x +k +1=0有两个不相等的实数根,则k 的取值范围是k<-34.12.已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 21-x 22=10,则a =214. 13.若关于x 的分式方程x x -3+3a 3-x=2a 无解,则a 的值为1或12.14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm ,长与宽的比为3∶2,则该行李箱的长的最大值为78cm.三、解答题(共50分)15.(6分)解方程组:⎩⎨⎧2x +y =3,①3x -5y =11.②解:由①,得y =3-2x.③把③代入②,得3x -5(3-2x )=11.解得x =2. 将x =2代入③,得y =-1. ∴原方程组的解为⎩⎨⎧x =2,y =-1.16.(6分)解方程:1x -3=1-x 3-x-2. 解:方程两边同乘(x -3),得 1=x -1-2(x -3).解得x =4.检验:当x =4时,x -3≠0, ∴x =4是原分式方程的解.17.(8分)解不等式组⎩⎪⎨⎪⎧1+x >-2,2x -13≤1,并把解集在数轴上表示出来.解:由1+x >-2,得x >-3.由2x -13≤1,得x≤2.∴不等式组的解集为-3<x≤2. 解集在数轴上表示如下:18.(8分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?解:设原计划每小时检修管道x 米.由题意,得 600x -6001.2x=2.解得x =50. 经检验,x =50是原方程的解,且符合题意. 答:原计划每小时检修管道50米.19.(10分)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在中秋节期间的对话.请问:(1)2016年到2018年甜甜和她妹妹在中秋节收到红包的年增长率是多少? (2)2018年中秋节甜甜和她妹妹各收到了多少元的微信红包?解:(1)设2016年到2018年甜甜和她妹妹在中秋节收到红包的年增长率是x ,依题意,得 400(1+x )2=484,解得x 1=0.1=10%,x 2=-2.1(舍去).答:2016年到2018年甜甜和她妹妹在中秋节收到红包的年增长率是10%. (2)设甜甜在2018年六一收到微信红包为y 元,依题意,得 2y +34+y =484, 解得y =150.所以484-150=334(元).答:甜甜在2018年中秋节收到微信红包为150元,她妹妹收到微信红包为334元.20.(12分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A ,B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元.(1)A ,B 两种奖品每件各多少元?(2)现要购买A ,B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件? 解:(1)设A 种奖品每件x 元,B 种奖品每件y 元,根据题意,得⎩⎨⎧20x +15y =380,15x +10y =280,解得⎩⎨⎧x =16,y =4.答:A 种奖品每件16元,B 种奖品每件4元.(2)设A 种奖品购买a 件,则B 种奖品购买(100-a )件,根据题意,得16a +4(100-a )≤900,解得a≤1253.∵a 为整数,∴a≤41.答:A 种奖品最多购买41件.单元测试(三) 函数(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.函数y =x +2中,自变量x 的取值范围是(A )A .x ≥-2B .x <-2C .x ≥0D .x ≠-2 2.已知函数y =⎩⎨⎧2x +1(x≥0),4x (x <0),当x =2时,函数值y 为(A )A .5B .6C .7D .83.已知点A(2,y 1),B(4,y 2)都在反比例函数y =kx (k<0)的图象上,则y 1,y 2的大小关系为(B )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法比较 4.如图,在物理课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y (单位:N )与铁块被提起的高度x (单位:cm )之间的函数关系的大致图象是( C )A .B .C .D .5.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax(B )A .有最大值a 4B .有最大值-a 4C .有最小值a 4D .有最小值-a46.如图,已知二次函数y 1=23x 2-43x 的图象与正比例函数y 2=23x 的图象交于点A(3,2),与x 轴交于点B(2,0).若0<y 1<y 2,则x 的取值范围是(C )A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>37.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=a-b+cx在同一坐标系中的大致图象是(C)8.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1.其中正确的是(C)A.①②③B.①③④C.①③⑤D.②④⑤二、填空题(每小题4分,共16分)9.点A(3,-2)关于x轴对称的点的坐标是(3,2).10.若反比例函数y=kx(k≠0)的图象经过点(1,-3),则一次函数y=kx-k(k≠0)的图象经过一、二、四象限.11.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=3x经过点D,则正方形ABCD的面积是12.12.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线解析式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线解析式是y =-19(x +6)2+4.三、解答题(共52分)13.(12分)如图,正比例函数y 1=-3x 的图象与反比例函数y 2=kx 的图象交于A ,B 两点.点C 在x 轴负半轴上,AC =AO ,△ACO 的面积为12.(1)求k 的值;(2)根据图象,当y 1>y 2时,写出x 的取值范围.解:(1)过点A 作AD ⊥OC 于点D. 又∵AC =AO , ∴CD =DO.∴S △ADO =12S △ACO =6.∴k =-12.(2)x<-2或0<x<2.14.(12分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多长时间? (2)小敏几点几分返回到家?解:(1)小敏去超市途中的速度是3 000÷10=300(米/分), 在超市逗留的时间为40-10=30(分).(2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3 000),(45,2 000)代入,得 ⎩⎨⎧40k +b =3 000,45k +b =2 000.解得⎩⎨⎧k =-200,b =11 000. ∴y 与x 的函数表达式为y =-200x +11 000. 令y =0,得-200x +11 000=0,解得x =55. ∴小敏8点55分返回到家.15.(14分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?解:(1)设y 与x 的函数解析式为y =kx +b , 将(10,30),(16,24)代入,得⎩⎨⎧10k +b =30,16k +b =24,解得⎩⎨⎧k =-1,b =40.所以y 与x 的函数解析式为y =-x +40(10≤x≤16). (2)根据题意知,W =(x -10)y =(x -10)(-x +40) =-x 2+50x -400 =-(x -25)2+225. ∵a =-1<0,∴当x <25时,W 随x 的增大而增大.∵10≤x≤16,∴当x =16时,W 取得最大值,最大值为144.答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.16.(14分)在平面直角坐标系中,O 为原点,直线y =-2x -1与y 轴交于点A ,与直线y =-x 交于点B ,点B 关于原点的对称点为点C.(1)求过点A ,B ,C 三点的抛物线的解析式;(2)P 为抛物线上一点,它关于原点的对称点为Q.当四边形PBQC 为菱形时,求点P 的坐标.解:(1)由题意,得⎩⎨⎧y =-2x -1,y =-x.解得⎩⎨⎧x =-1,y =1.∴B (-1,1).∵点B 关于原点的对称点为点C ,∴C (1,-1). ∵直线y =-2x -1与y 轴交于点A ,∴A (0,-1). 设抛物线解析式为y =ax 2+bx +c , ∵抛物线过A ,B ,C 三点,∴⎩⎨⎧c =-1,a -b +c =1,a +b +c =-1.解得⎩⎨⎧a =1,b =-1,c =-1.∴抛物线解析式为y =x 2-x -1.(2)∵对角线互相垂直平分的四边形为菱形,已知点B 关于原点的对称点为点C ,点P 关于原点的对称点为点Q ,且与BC 垂直的直线为y =x ,∴P (x ,y )需满足⎩⎨⎧y =x ,y =x 2-x -1. 解得⎩⎨⎧x 1=1+2,y 1=1+2,⎩⎨⎧x 2=1-2,y 2=1- 2.∴P 点坐标为(1+2,1+2)或(1-2,1-2).单元测试(四) 图形的初步认识与三角形(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列各组数中,不可能成为一个三角形三边长的是(C )A .3,4,5B .5,7,7C .5,6,12D .5,12,13 2.下列各图中,∠1与∠2互为余角的是(B )3.如图,字母B所代表的正方形的面积是(B)A.12 B.144 C.13 D.1944.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为(A)A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°5.如图,点D,E分别在线段AB,AC上,CD与BE相交于点O,已知AB=AC,现添加以下哪个条件仍不能判定△ABE≌△ACD(D)A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD 6.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放.若∠1=55°,则∠2的度数为(A)A.80°B.70°C.85°D.75°7.如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为(C)A.43 2 B.2 2 C.83 2 D.3 28.如图,E,F是▱ABCD对角线上AC两点,AE=CF=14AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则S△ADGS△BGH的值为(C)A.12 B.23 C.34D.1二、填空题(每小题4分,共24分)9.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为50__°.10.如图所示,小明同学利用一个锐角是30°的三角板测量一棵树的高度,测量时如图所示放置三角板,已知他与树之间的水平距离BE为5 m,小明的眼睛与地面的距离AB为1.5 m,那么这棵树高是4.39m.(可用计算器,精确到0.01)11.如图,E为▱ABCD的DC边延长线上一点,连接AE,交BC于点F,则图中与△ABF相似的三角形共有2个.12.如图,在Rt△ABC中,∠ACB=90°,D,E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,BC=23,则AB=4.13.如图,在△ABC 中,BF 平分∠ABC ,AF ⊥BF 于点F ,D 为AB 的中点,连接DF 并延长交AC 于点E.若AB =10,BC =16,则线段EF 的长为3.14.一般地,当α,β为任意角时,sin (α+β)与sin (α-β)的值可以用下面的公式求得:sin (α+β)=sin α·cos β+cos α·sin β;sin (α-β)=sin α·c os β-cos α·sin β.例如sin 90°=sin (60°+30°)=sin 60°·cos 30°+cos 60°·sin 30°=32×32+12×12=1.类似地,可以求得sin 15°的值是6-24.三、解答题(共44分)15.(10分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 相交于点G ,求证:GE =GF.证明:∵BE =CF , ∴BE +EF =CF +EF. ∴BF =CE.在△ABF 和△DCE 中,⎩⎨⎧AB =DC ,∠B =∠C ,BF =CE ,∴△ABF ≌DCE (SAS ). ∴∠GEF =∠GFE. ∴EG =FG .16.(10分)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形; (2)画一个底边长为4,面积为8的等腰三角形; (3)画一个面积为5的等腰直角三角形;(4)画一个边长为22,面积为6的等腰三角形.,(1)) ,(2)),(3)),(4))解:如图.17.(12分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10 m 的A 处,测得一辆汽车从B 处行驶到C 处所用时间为0.9 s 秒,已知∠B =30°,∠C =45°.(1)求B ,C 之间的距离;(保留根号)(2)如果此地限速为80 km /h ,那么这辆汽车是否超速?请说明理由.(参考数据:3≈1.7,2≈1.4)解:(1)过点A 作AD ⊥BC 于点D ,则AD =10 m , 在Rt △ACD 中, ∵∠C =45 °,∴AD =CD =10 m.在Rt △ABD 中,∵∠B =30 °,∴tan30 °=ADBD .∴BD =3AD =10 3 m. ∴BC =BD +DC =(10+103)m. (2)结论:这辆汽车超速. 理由:∵BC =10+103≈27(m ), ∴汽车速度为270.9=30(m/s )=108(km/h ).∵108>80,∴这辆汽车超速.18.(12分)问题1:如图1,在△ABC 中,AB =4,D 是AB 上一点(不与A ,B 重合),DE ∥BE ,交AC 于点E ,连接CD.设△ABC 的面积为S ,△DEC 的面积为S′.(1)当AD =3时,S′S =316;(2)设AD =m ,请你用含字母m 的代数式表示S′S .问题2:如图2,在四边形ABCD中,AB=4,AD∥BC,AD=12BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表S′S.图1图2 解:问题1:(2)∵AB=4,AD=m,∴AD=4-m.∵DE∥BC,∴CEEA=BDDA=4-mm.∴S△DECS△ADE=4-mm.又∵DE∥BC,∴△ADE∽△ABC.∴S△ADES△ABC=(m4)2=m216.∴S△DECS△ABC=S△DECS△ADE·S△ADES△ABC=4-mm·m216=-m2+4m16,即S ′S=-m2+4m16.问题2:分别延长BA,CD,相交于点O.∵AD∥BC,∴△OAD∽△OBC.∴OAOB=ADBC=12.∴OA=AB=4.∴OB=8. ∵AE=n,∴OE=4+n. ∵EF∥BC.由问题1的解法可知,S△CEFS△OBC=S△CEFS△OEF·S△OEFS△OBC=4-n4+n·(4+n8)2=16-n264.∵S△OADS△OBC=(OAOB)2=14,∴S四边形ABCDS△OBC=34.∴S△CEFS四边形ABCD =S△CEF34S△OBC=43×16-n264=16-n248,即S ′S=16-n248.单元测试(五)四边形(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.八边形的内角和为(C)A.180°B.360°C.1 080°D.1 440°2.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定成立的是(B) A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC3.如图,矩形ABCD的两条对角线相交于点O.若∠AOD=120°,AB=6,则AC等于(C) A.8 B.10 C.12 D.184.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH ∥FC交BC于点H.若AB=4,AE=1,则BH的长为(C)A.1 B.2 C.3 D.3 25.关于▱ABCD的叙述,正确的是(C)A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形6.如图,▱ABCD的周长为20 cm,AE平分∠BAD.若CE=2 cm,则AB的长度是(D) A.10 cm B.8 cm C.6 cm D.4 cm7.如图,在矩形ABCD中,AB=3,BC=4,BE∥DF且BE与DF之间的距离为3,则AE的长是(C)A.7B.38 C.78 D.588.如图,已知正方形ABCD的边长为4,点E,F分别在边AB,BC上,且AE=BF=1,CE,DF相交于点O.下列结论:①∠DOC=90°;②OC=OE;③tan∠OCD=43;④S△ODC=S四边形BEOF.其中正确的有(C)A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.如图,菱形ABCD的周长是8 cm,则AB的长是2cm.10.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:答案不唯一,如:∠DAB=90__°,使得该菱形为正方形.11.如图,O是矩形ABCD的对角线AC与BD的交点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.12.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80__°.13.如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若∠D=60°,BC=2,则点D的坐标是(2+3,1).14.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为17.三、解答题(共44分)15.(10分)如图,B ,E ,C ,F 在一条直线上,已知AB ∥DE ,AC ∥DF ,BE =CF ,连接AD.求证:四边形ABED 是平行四边形.证明:∵AB ∥DE ,AC ∥DF , ∴∠B =∠DEF ,∠ACB =∠F. ∵BE =CF ,∴BE +CE =CF +CE. ∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠DEF ,BC =EF ,∠ACB =∠F ,∴△ABC ≌△DEF (ASA ). ∴AB =DE. 又∵AB ∥DE ,∴四边形ABED 是平行四边形.16.(10分)如图,点O 是菱形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,连接OE.求证:(1)四边形OCED 是矩形; (2)OE =BC.证明:(1)∵DE ∥AC ,CE ∥BD , ∴四边形OCED 是平行四边形.又∵在菱形ABCD 中,AC ⊥BD ,即∠COD =90 °, ∴四边形OCED 是矩形. (2)∵四边形OCED 是矩形, ∴OE =CD.又∵在菱形ABCD 中,BC =CD , ∴OE =BC.17.(12分)如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1,BC 1分别交于点E ,F.(1)求证:△BCF ≌△BA 1D ;(2)当∠C =α度时,判定四边形A 1BCE 的形状并说明理由.解:(1)证明:∵△ABC 是等腰三角形, ∴AB =BC ,∠A =∠C. 由旋转性质,得A 1B =AB =BC ,∠A =∠A 1=∠C ,∠A 1BD =∠CBC 1. 在△BCF 和△BA 1D 中,⎩⎨⎧∠C =∠A 1,BC =BA 1,∠CBF =∠A 1BD ,∴△BCF ≌△BA 1D (ASA ).(2)四边形A 1BCE 是菱形.理由如下: ∵∠ADE =∠A 1DB ,∠A =∠A 1, ∴∠AED =∠A 1BD =α. ∴∠DEC =180 °-α. ∵∠C =α, ∴∠A 1=α.∴∠A 1BC =360 °-∠A 1-∠C -∠DEC =180 °-α. ∴∠A 1=∠C ,∠A 1BC =∠A 1EC. ∴四边形A 1BCE 是平行四边形. ∵A 1B =BC ,∴四边形A 1BCE 是菱形.18.(12分)如图,Rt △ABM 和Rt △ADN 的斜边分别为正方形ABCD 的边AB 和AD ,其中AM =AN.(1)求证:Rt △ABM ≌Rt △ADN ;(2)线段MN 与线段AD 相交于T ,若AT =14AD ,求tan ∠ABM 的值.解:(1)证明:∵AB =AD ,AM =AN ,∠AMB =∠AND =90 °. ∴Rt △ABM ≌Rt △ADN (HL ).(2)由Rt △ABM ≌Rt △ADN 易得,∠DAN =∠BAM ,DN =BM. ∵∠BAM +∠DAM =90 °,∠DAN +∠ADN =90 °, ∴∠DAM =∠ADN. ∴ND ∥AM.∴△DNT ∽△AMT. ∴AM DN =AT DT. ∵AT =14AD ,∴AT =3DT.∴AM DN =13. ∴tan ∠ABM =AM BM =AM DN =13.单元测试(六) 圆(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.如图,在半径为5 cm 的⊙O 中,弦AB =6 cm ,OC ⊥AB 于点C ,则OC =(B )A .3 cmB .4 cmC .5 cmD .6 cm2.如图,⊙O 是△ABC 的内切圆,则点O 是△ABC 的(B )A .三条边的垂直平分线的交点B .三条角平分线的交点C .三条中线的交点D .三条高的交点3.如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点,下列四个角中,一定与∠ACD 互余的角是(D )A .∠ADCB .∠ABDC .∠BACD .∠BAD4.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80 cm ,则这块扇形铁皮的半径是(B )A .24 cmB .48 cmC .96 cmD .192 cm5.如图,PA 和PB 是⊙O 的切线,点A 和B 是切点,AC 是⊙O 的直径,已知∠P =40°,则∠ACB 的大小是(C )A .60°B .65°C .70°D .75° 6.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD.若∠BOD =∠BCD ,则BD ︵的长为(C )A .π B.32π C .2π D .3π7.如图,半径为3的⊙A 经过原点O 和点C(0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为(C )A.13 B .2 2 C.24 D.2238.如图,将矩形ABCD 绕点A 逆时针旋转90°至矩形AEFG ,点D 的旋转路径为DG ︵.若AB =1,BC =2,则阴影部分的面积为(A )A.π3+32 B .1+32 C.π2 D.π3+1二、填空题(每小题4分,共24分) 9.如图,一块含有45°角的直角三角板,它的一个锐角顶点A 在⊙O 上,边AB ,AC 分别与⊙O 交于点D ,E ,则∠DOE 的度数为90__°.10.已知△ABC 在网格中的位置如图,那么△ABC 对应的外接圆的圆心坐标是(2,0).11.如图,⊙O 是△ABC 的外接圆,直径AD =4,∠ABC =∠DAC ,则AC 长为22.12.如图,正方形ABCD 内接于⊙O ,其边长为4,则⊙O 的内接正三角形EFG 的边长为26.13.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为23.14.在半径为1的⊙O中,弦AB,AC的长分别为1和2,则∠BAC的度数为105__°或15__°.三、解答题(共44分)15.(8分)如图,在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D 的度数.解:∵在⊙O中,D为圆上一点,∴∠AOC=2∠D.∴∠EOF=∠AOC=2∠D.在四边形FO ED中,∠CFD+∠D+∠DEO+∠EOF=360 °,∴90 °+∠D+90 °+2∠D=360 °.∴∠D=60 °.16.(10分)如图,在△ABC中,以AC为直径的⊙O分别交AB,BC于点D,E,连接DE,AD=BD,∠ADE=120°.(1)试判断△ABC的形状并说明理由;(2)若AC=2,求图中阴影部分的面积.解:(1)△ABC 是等边三角形. 理由:连接CD.∵AC 为⊙O 的直径, ∴CD ⊥AB.∵AD =BD ,∴AC =BC. ∵∠ADE =120 °,∴∠ACE =60 °. ∴△ABC 是等边三角形. (2)∵△ABC 是等边三角形, ∴∠A =∠ACB =∠B =60 °. ∴∠BED =∠BDE =∠B =60 °. ∴△BDE 是等边三角形. ∴BD =ED.∵AD =BD ,∴DE =AD.∴DE ︵=AD ︵.∴S 弓形DE =S 弓形AD .∴S 阴影=S △DEB . ∵AC =2,∴BD =1.∴S 阴影=S △DEB =34.17.(12分)如图,已知A ,B ,C 是⊙O 上的三个点,四边形OABC 是平行四边形,过点C 作⊙O 的切线,交AB 的延长线于点D.(1)求∠ADC 的大小;(2)经过点O 作CD 的平行线,与AB 交于点E ,与AB ︵交于点F ,连接AF ,求∠FAB 的大小.解:(1)∵CD 是⊙O 的切线,∴∠OCD =90 °, ∵四边形OABC 是平行四边形,∴OC ∥AD. ∴∠ADC =180 °-90 °=90 °. (2)连接OB.由圆的性质知,OA =OB =OC. ∵四边形OABC 是平行四边形, ∴OC =AB.∴OA =OB =AB.∴△OAB 是等边三角形.∴∠AOB =60 °. ∵OF ∥CD ,∠ADC =90 °,∴OF ⊥AB.由垂径定理,得AF ︵=BF ︵,∠AOF =∠BOF.∴∠FAB =12∠BOF =14∠AOB =15 °.18.(14分)如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF.(1)求∠CDE 的度数;(2)求证:DF 是⊙O 的切线;(3)若AC =25DE ,求tan ∠ABD 的值.解:(1)∵AC 为⊙O 的直径, ∴∠ADC =90 °. ∴∠CDE =90 °. (2)证明:连接OD. ∵∠CDE =90 °,点F 为CE 中点,∴DF =12CE =CF.∴∠FDC =∠FCD.又∵OD =OC ,∴∠ODC =∠OCD. ∴∠ODC +∠FDC =∠OCD +∠FCD. ∴∠ODF =∠OCF.∵EC ⊥AC ,∴∠OCF =90 °. ∴∠ODF =90 °.又∵OD 为⊙O 的半径, ∴DF 为⊙O 的切线.(3)在△ACD 与△ACE 中,∠ADC =∠ACE =90 °,∠CAD =∠EAC , ∴△ACD ∽△AEC. ∴AC AE =ADAC ,即AC 2=AD·AE. 又AC =25DE ,∴20DE 2=(AE -DE )·AE. ∴(AE -5DE )(AE +4DE )=0. ∴AE =5DE.∴AD =4DE.在Rt △ACD 中,AC 2=AD 2+CD 2,∴CD =2DE. 又在⊙O 中,∠ABD =∠ACD ,∴tan ∠ABD =tan ∠ACD =ADCD=2.单元测试(七)图形变化(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下面四个手机应用图标中是轴对称图形的是(D)A B C D2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是(C)A B C D3.如图是某个几何体的三视图,该几何体是(D)A.圆锥B.三棱锥C.圆柱D.三棱柱4.如图,已知△OAB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是(A)A.150°B.120°C.90°D.60°5.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字所在的面相对的面上标的字应是(C)A.全B.明C.城D.国6.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E,F,再分别以E,F为圆心,大于12EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=110°,则∠CMA的度数为(B)A.30°B.35°C.70°D.45°7.如图,E(-6,0),F(-4,-2),以O为位似中心,按比例尺1∶2把△EFO放大,则点F的对应点F′的坐标为(B)A.(-2,-1)或(2,1) B.(-8,-4)或(8,4)C.(-2,0) D.(8,-4)8.如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是(A)A.4 B.3 2 C.2 3 D.2+ 3二、填空题(每小题4分,共24分)9.如图是由若干个大小相同的棱长为1 cm的小正方体堆砌而成的几何体,那么其俯视图的面积为3cm2.10.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中,既是轴对称图形又是中心对称图形的个数是3.11.如图,△ABC中,AB=AC,BC=12 cm,点D在AC上,DC=4 cm.将线段DC沿着CB的方向平移7 cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为13cm.12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为66.13.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是6.14.如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A′处.若EA′的延长线恰好过点C,则sin∠ABE的值为10 10.三、解答题(共44分)15.(10分)如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的侧面积.解:(1)这个几何体是圆锥.(2)根据三视图知:该圆锥的母线长为6 cm,底面半径为2 cm,故侧面积S=πrl=π×2×6=12π(cm2).16.(10分)如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=65°,将△ADE绕着A旋转一个锐角后与△ABC重合,求这个旋转角的大小.解:(1)证明:在△ABC 和△ADE 中,⎩⎨⎧∠BAC =∠DAE ,AB =AD ,∠B =∠D.∴△ABC ≌△ADE (ASA ).(2)∵将△ADE 绕着A 旋转一个锐角后与△ABC 重合, ∴AE =AC. ∵∠AEC =65 °, ∴∠C =∠AEC =65 °. ∴∠EAC =180 °-∠AEC -∠C =50 °. 即这个旋转角的大小是50 °.17.(12分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点).(1)先将△ABC 竖直向上平移6个单位长度,再水平向右平移1个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△A 1B 1C 1绕点B 1顺时针旋转90°,得△A 2B 1C 2,请画出△A 2B 1C 2;(3)线段B 1C 1变换到B 1C 2的过程中扫过区域的面积为__94π.解:(1)画出△A 1B 1C 1如图所示. (2)画出△A 2B 1C 2如图所示.18.(12分)如图1,将矩形ABCD 沿DE 折叠使点A 落在A′处,然后将矩形展平,沿EF 折叠使点A 落在折痕DE 上的点G 处,再将矩形ABCD 沿CE 折叠,此时顶点B 恰好落在DE 上的点H 处,如图2.图1 图2(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.解:(1)证明:由折叠的性质可知,A ′E=AE,BC=CH,EG=AE.∵四边形AEA ′D为矩形,∴A ′E=AD.∵四边形ABCD为矩形,∴AD=BC.∴EG=CH.(2)由(1)可知,四边形AEA ′D是正方形,∴∠EDA=45 °.∵AF=FG=2,∠FDG=45 °,∠DGF=90 °,∴FD=2.∴AD=AE=2+ 2.由折叠的性质易证,△GFE≌△HEC.∴AF=FG=HE=EB= 2.∴AB=AE+EB=2+2+2=2+2 2.单元测试(八)统计与概率(时间:45分钟满分:100分)一、选择题(每小题5分,共30分)1.下列成语描述的事件为随机事件的是(B)A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼2.某校有35名同学参加文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(B) A.众数B.中位数C.平均数D.方差3.下表是某位男子马拉松长跑运动员近6次的比赛成绩:(单位:分钟)第几次 1 2 3 4 5 6比赛成绩145 147 140 129 136 125则这组成绩的中位数和平均数分别为(B)A.137,138 B.138,137 C.138,138 D.137,139 4.下列说法正确的是(D)A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1,2,5,5,5,3,3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定5.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是(D) A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市6.袋内装有标号分别为1,2,3,4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为(B)A.14 B.516 C.716 D.12二、填空题(每小题5分,共20分)7.一个不透明的口袋里装有红、蓝、黄三种颜色的球共20个,除颜色外完全相同,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述试验后发现,摸到黄球、蓝球的频率稳定在30%,20%,由此估计口袋中共有红色小球10个.8.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环) 9.5 9.5方差0.035 0.015请你根据上表中的数据选一人参加比赛,最适合的人选是乙.9.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80 000名九年级学生中“综合素质”评价结果为“A”的学生约为16__000人.10.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是4 9.三、解答题(共50分)11.(12分)今年我市将创建全国森林城市,提出了“共建绿色城”的倡议.某校积极响应,在3月12日植树节这天组织全校学生开展了植树活动,校团委对全校各班的植树情况道行了统计,绘制了如图所示的两个不完整的统计图.。

相关文档
最新文档