初中数学:《一次函数》单元测试(含答案)

合集下载

人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)人教版一次函数单元测试题(含答案)一、选择题1.已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x0时,y随x的增大而减小D.不论x如何变化,y不变2.表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()A。

m=,n=-B。

m=,n=-1C。

m=-1,n=-D。

m=-3,n=-23.若直线y=1x+n与曲线y=x2-2x-3有且仅有一个公共点,则n的取值范围是()A。

n<-3或n>1B。

n>-3且n<1C。

n≥-3且n≤1D。

n=-3或n=14.点A(-5,y1)和B(-2,y2)都在直线y=-1x上,则y1和y2的关系是()A。

y1≤y2B。

y1=y2C。

y1<y2D。

y1>y25.若ab>0,bc<0,则函数y=1(ax-c)的图象不经过第()象限。

A。

一B。

二C。

三D。

四6.如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是()A。

k>0B。

k<0C。

0<k<1D。

k>17.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是()A.37.2分钟B.48分钟C.30分钟D.33分钟8.在函数y=3x+2的图像上的点是()A。

(-1,1) B。

(-1,-1) C。

(2,8) D。

(0,-1.5)9.下列函数中,自变量的取值范围选取错误的是()A。

y=x-2中,x取x≥2B。

y=2/(x+1)中,x取x≠-1C。

y=2x中,x取全体实数D。

y=(x+3)/1中,x取x≥-310.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图像可能是()ABCD11.如图(1)所示的是实验室中常用的仪器,向以下内均匀注水,最后把注满,在注水过程中,的水面高度与时间的关系如图(2)所示,图中PQ为一线段,则这个是三棱柱。

第五章 一次函数单元测试卷(标准难度)(含答案)

第五章 一次函数单元测试卷(标准难度)(含答案)

浙教版初中数学八年级上册第五章《一次函数》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个2.根据如图所示的计算程序计算y的对应值,若输入变量x的值为12,则输出的结果为( )A. 12B. −12C. −32D. 543.在矩形ABCD中,动点P从A出发,沿A→D→C运动,速度为1m/s,同时动点Q从点A出发,以相同的速度沿路线A→B→C运动,设点P的运动时间为t(s),△CPQ的面积为S(m2),S与t的函数关系的图象如图所示,则△CPQ面积的最大值是( )A. 3B. 6C. 9D. 184.学枝组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈主陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A. B.C. D.5.小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是( )A. B.C. D.6.下列函数中,一次函数是( )+2 B. y=−2xA. y=1xC. y=x2+2D. y=mx+n(m,n是常数)7.函数①y=πx,②y=−2x+1,③y=1,④y=x2−1中,是一次函数的有( )xA. 4个B. 3个C. 2个D. 1个8.下列函数:(1)y=πx2(2)y=2x−1(3)y=1(4)y=2−3x(5)y=x2−1中,x是一次函数的有( )A. 4个B. 3个C. 2个D. 1个9.一次函数y=2(x+1)−1不经过第象限.( )A. 一B. 二C. 三D. 四10.如图,已知直线l1:y=−2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(−2,0),则k的取值范围是( )A. −2<k<2B. −2<k<0C. 0<k<4D. 0<k<2x+4与x轴、y轴分别交于A、B两点,C、D分别为线段AB、OB的11.如图,直线y=23中点,P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )A. (−52,0) B. (−3,0) C. (−32,0) D. (−6,0)12.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论中正确的个数是( )①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点60米;③甲、乙两人之间的距离为40米时,甲出发的时间为55秒和90秒;④乙到达终点时,甲距离终点还有80米.A. 4个B. 3个C. 2个D. 1个第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).14.某公司生产一种产品,前期投资成本为100万元,在此基础上,每生产一吨又要投入5万元成本,那么生产的总成本y万元与产量x吨之间的数量关系是______.15.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程1x−1+1m=1的解为.16.如图,直线y=kx+b与y=mx+n分别交x轴于点A(−0.5,0),B(2,0),则不等式(kx+b)(mx+n)>0的解集为______.三、解答题(本大题共9小题,共72分。

第19章一次函数单元达标测试题2021-2022学年人教版八年级数学下册

第19章一次函数单元达标测试题2021-2022学年人教版八年级数学下册

2021-2022学年人教版八年级数学下册《第19章一次函数》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.函数y=中自变量x的取值范围是()A.x≥2且x≠1B.x≥2C.x≠1D.﹣2≤x<1 2.如图所示曲线中,表示y是x的函数的为()A.B.C.D.3.函数y=﹣2021x﹣2022的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P在直线y=﹣x+4上,下列说法不正确的是()A.函数y随x的增大而减小B.图象与x轴的交点是(4,0)C.点P一定不在第三象限D.当x>2时,y>25.直线y=﹣x+2上有三个点(﹣2,y1),(﹣1,y2),(2,y2),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2<y1<y3D.y2>y1>y3 6.根据函数y1=5x+6和y2=3x+10的图象,当x>2时,y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定7.小花放学回家走了一段路,在途径的书店买了一些课后阅读书籍,然后发现时间比较晚了,急忙跑步回到家.若设小花与家的距离为s(米),她离校的时间为t(分钟),则反映该情景的大致图象为()A.B.C.D.8.某人购进一批苹果到集贸市场零售,已知卖出的苹果数量y(千克)与售价x(元)之间的关系如图所示,若成本5元/千克,现以8元/千克卖出,能挣得钱数为()A.55元B.155元C.165元D.440元二.填空题(共8小题,满分40分)9.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+18,如果某一温度的摄氏度数是40℃,那么它的华氏度数是℉.10.已知直线y=kx+3向右平移2个单位后经过点(4,2),则k=.11.若一次函数y=kx+b(k为常数且k≠0)的图象经过点(﹣2,0),则关于x的方程k(x ﹣5)+b=0的解为.12.若一次函数y=2x+b(b是常数)向上平移5个单位后,图象经过第一、二、三象限,则b的取值范围是.13.如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集是.14.如图,在平面直角坐标系中,直线AB的解析式为y=﹣x+3.点C是AO上一点且OC=1,点D在线段BO上,分别连接BC,AD交于点E,若∠BED=45°,则OD的长是.15.某苹果种植合作社通过网络销售苹果,图3中线段AB为苹果日销售量y(千克)与苹果售价x(元)的函数图象的一部分.已知1千克苹果的成本价为5元,如果某天以8元/千克的价格销售苹果,那么这天销售苹果的盈利是元.16.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(m)与时间t(h)之同的关系.当甲车出发1小时时,两车相距km.三.解答题(共6小题,满分40分)17.已知点A(8,0)及在第一象限的动点P(x,y),且x+y=6,△AOP的面积为S.求:(1)S关于x的函数表达式:.(2)直接写出x的取值范围为;(3)当S=12时,求点P的坐标.18.如图,在平面直角坐标系中,已知A(﹣1,1),B(3,4),C(3,8).(1)①在平面直角坐标系中,描出A、B、C三点;②求出三角形ABC的面积.(2)①求出直线AB的函数关系式;②求三角形ABO的面积.19.甲、乙两车分别从A、B两地沿同一路线同时出发,相向而行,以各自速度匀速行驶,甲车行驶到B地停止,乙车行驶到A地停止,甲车比乙车先到达终点.设甲、乙两车之间的路程为y(km),乙车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)甲车行驶的速度为km/h;乙车行驶的速度为km/h.(2)图中a=(3)求甲车到达B地后,y与x之间的函数表达式,并写出x的取值范围.(4)当两车之间的路程为160km时,请直接写出乙车行驶的时间.20.五一节快到了,甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴某地旅游的团体优惠方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元.(1)分别表示出甲旅行社收费y1和乙旅行社收费y2与旅游人数x(x>4)的函数关系式;(2)某单位有8至18人参加旅游(含8人和18人),问哪家旅行社的收费更优惠?21.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y 轴交于点B,且与正比例函数的图象交点为C(a,4),求:(1)求a的值与一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)在y轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.22.已知在平面直角坐标系中,点A(0,2),动点P在x轴正半轴上,作矩形OABP,点C 为PB中点,△ABC沿AC折叠后得到△ADC,直线CD与矩形OABP一边交于点E.(1)如图,当点E与原点O重合时,①求证:△OCP≌△ADO.②求OP长.(2)当EC=5ED,求点P坐标.参考答案一.选择题(共8小题,满分40分)1.解:由题意得,x﹣2≥0且x﹣1≠0,解得x≥2且x≠1,∴x≥2.故选:B.2.解:A、对于自变量x的每一个值,y不是都有唯一的值与它对应,所以不能表示y是x 的函数,故A不符合题意;B、对于自变量x的每一个值,y都有唯一的值与它对应,所以能表示y是x的函数,故B符合题意;C、对于自变量x的每一个值,y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C不符合题意;D、对于自变量x的每一个值,y不是都有唯一的值与它对应,所以不能表示y是x的函数,故D不符合题意;故选:B.3.解:∵y=﹣2021x﹣2022中k=﹣2021<0,b=﹣2022<0,∴一次函数图象经过第二、三、四象限,不经过第一象限,故选:A.4.解:∵直线y=﹣x+4上k=﹣1<0,∴y随着x的增大而减小,∴A选项不符合题意;当y=﹣x+4=0时,x=4,∴函数与x轴交点为(4,0),∴B选项不符合题意;∵y=﹣x+4经过第一、二、四象限,∴P一定不在第三象限,∴C不符合题意;当x>2时,y<2,∴D选项符合题意.故选:D.5.解:∵k=﹣2<0,∴y值随x值的增大而减小.又∵﹣2<﹣1<2,∴y1>y2>y3.故选:A.6.解:∵函数y1=5x+6和y2=3x+10的交点为(2,16),图象为:根据数形结合,当x>2时,y1>y2.故选:B.7.解:由题意得,最初与家的距离s随时间t的增大而减小,途径书店购买课后阅读书籍时,时间增大而s不变,急忙跑步时,与家的距离s随时间t的增大而减小,故选:C.8.解:设卖出的苹果数量y(千克)与售价x(元)之间的函数解析式是y=kx+b,该函数过点(5,100),(10,25),∴,解得,即卖出的苹果数量y(千克)与售价x(元)之间的函数解析式是y=﹣15x+175(5≤x ≤10),x=8时,卖出的苹果数量y=﹣15×8+175=55,∴这天销售苹果的盈利是55×(8﹣5)=165(元).故选:C.二.填空题(共8小题,满分40分)9.解:根据题意,当x=40时,y=×40+18=42,所以它的华氏度数是42℉,故答案为:42.10.解:直线y=kx+3向右平移2个单位得到的新直线的解析式为y=k(x﹣2)+3.∵直线y=k(x﹣2)+3经过(4,2),∴2=2k+3,∴k=﹣.故答案为:﹣.11.解:直线y=k(x﹣5)+b是由直线y=kx+b向右平移5个单位所得,∵y=kx+b与x轴交点为(﹣2,0),∴直线y=k(x﹣5)+b与x轴交点坐标为(3,0),∴k(x﹣5)+b=0的解为x=3,故答案为:x=3.12.解:一次函数y=2x+b(b是常数)向上平移5个单位后得到y=2x+b+5,∵图象经过第一、二、三象限,∴b+5>0,∴b>﹣5,故答案为:b>﹣5.13.解:根据题意,可知当x=﹣3时,y=kx+b=2,根据图象可知不等式kx+b<2的解集是:x<﹣3.故答案为:x<﹣3.14.解:方法一:在x轴负半轴截取OF=,过点F作FH⊥AF交AD的延长线于点H,过点H作HP⊥x轴于点P,∵OC:OB=1:4,OF:OA=÷3=1:4,∴将△BOC逆时针旋转90°时,再将点B平移到与点A重合时,此时的∠F AO和∠CBO 重合,∴∠F AO=∠CBO,∵FH⊥AF,∴∠AFO+∠HFP=90°,而∠AFO+∠F AO=90°,∴∠F AO=∠HFP=∠CBO,∴BC∥FH,∴∠FHA=∠BED=45°,∴△AFH为等腰直角三角形,∴AF=FH,而∠AOF=∠FPH,∠FPH=∠AFO,∴△AOF≌△FPH(AAS),∴PF=AO=3,PH=OF=,故OP=FP﹣OF=3﹣=,故点H(,﹣),设直线AH的表达式为y=kx+b,则,解得,故直线AH的表达式为y=﹣x+3,令y=0,则y=﹣x+3=0,解得:x=,故点D(,0),故OD=,故答案为.方法二:过点A作x轴的平行线MN,交过点E与y轴的平行线于点M,交过点F与y 轴的平行线于点N,由点B、C的坐标得,直线BC的表达式为y=﹣x+1,同理可证:△EMA≌△ANF(AAS),则AN=ME=3+m﹣1=m+2,NF=AM=m,则点F的坐标为(﹣m﹣2,3﹣m),将点F的坐标代入直线BC的表达式并解得m=,故点E的坐标为(,),由点A、E的坐标得,直线AE的表达式为y=﹣x+3,令y=﹣x+3=0,解得x=,故OD=,故答案为.15.解:设苹果日销售量y(千克)与苹果售价x(元)的函数解析式是y=kx+b,该函数过点(5,4000),(10,1000),∴,解得,即苹果日销售量y(千克)与苹果售价x(元)的函数解析式是y=﹣600x+7000(5≤x ≤10),x=8时,苹果日销售量y=﹣600×8+7000=2200,∴这天销售苹果的盈利是2200×(8﹣5)=6600(元).故答案为:6600.16.解:甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),∴甲走完全程所用时间为80÷40=2(小时),∴乙比甲先出发1小时,乙的速度是40÷3=(km/h),由图象知,当甲车出发1小时时,两车相距:[20+40×(2﹣1.5)]﹣×2=(km),故答案为:.三.解答题(共6小题,满分40分)17.解:(1)∵x+y=6,∴y=﹣x+6,∵A(8,0),∴OA=8,∴S==4(﹣x+6)=﹣4x+24;故答案为:S=﹣4x+24;(2)∵P在第一象限,∴x>0,﹣x+6>0,解得0<x<6,故答案为:0<x<6;(3)当S=12时,即﹣4x+24=12,解得x=3,∴P(3,3).18.解:(1)①A、B、C三点如图所示;②三角形ABC的面积=•BC•(x B﹣x A)=×4×4=8;(2)①设直线AB的函数关系式为y=kx+b,∵A(﹣1,1),B(3,4),∴,解得,∴直线AB的函数关系式为y=x+;②如图所示,作BD⊥x轴于D,AE⊥x轴于E.则四边形AEDB为梯形,∴S△ABO=S梯形AEDB﹣S△AEO﹣S△BOD=×(1+4)×4﹣×1×1﹣×3×4=10﹣﹣6=.19.解:(1)甲车的速度是180÷1.8=100km/h;乙车的速度是180﹣100=80km/h.故答案为:100;80.(2)a=180÷80=2.25.故答案为:2.25.(3)设y与x之间的函数关系式为y=kx+b,由题意,得,解得,则y=80x.x的取值范围:1.8≤x≤2.25.(4)当y=160时,80x=160,解得:x=2.答:乙车行驶的时间是2小时.20.解:(1)根据题意,得y1=100×4+0.5×100(x﹣4)=50x+200,y2=0.7×100x=70x,∴当x>4时,y1=50x+200,y2=70x;(2)当y1=y2,即50x+200=70x,解得x=10,当y1>y2,即50x+200>70x,解得x<10,∴当8≤x<10时,选乙旅行社更优惠;当x=10时,两旅行社费用相同;当10<x≤18时,选甲旅行社更优惠.21.解:(1)∵点C在正比例函数图象上,∴a=4,解得:a=3,∵点C(3,4),A(﹣3,0)在一次函数图象上,∴代入一次函数解析式可得,解这个方程组得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2)∴S△BOC=×2×3=3;(3)∵点C(3,4),∴OC==5,当OP=OC时,∵OP=OC=5,∴P的坐标为(0,5)或(0,﹣5),当CP=CO时,作CK⊥y轴垂足为K,∵CP=CO,CK⊥y轴,∴PK=OK,∵点C(3,4),∴OK=4,∴PK=OK=4,∴P的坐标是(0,8),当PO=PC时,作CK⊥y轴垂足为K,设P的坐标为,(0,t)在Rt△PCK中,PC=OP=t,PK=4﹣t,KC=3,∴(4﹣t)2+32=t2解得t=,∴P的坐标是(0,)综上可知,P的坐标为(0,5)或(0,﹣5)或(0,8)或(0,).22.(1)①证明:∵四边形OABP为矩形,∴∠B=∠P=90°,AB=OP.∵△ABC沿AC折叠后得到△ADC,∴△ABC≌△ADC.∴AB=AD,∠B=∠ADC=90°.∴AD=OP,∠ADO==∠P=90°.∵∠AOD+∠COP=90°,∠COP+∠OCP=90°,∴∠AOD=∠OCP.在△OCP和△ADO中,,∴△OCP≌△ADO(AAS);②解:∵A(0,2),∴OA=2.∵点C为PB中点,∴CP=PB=1.∵四边形OABP为矩形,∴BP=OA=2.∵△OCP≌△ADO,∴OC=AO=2.∴OP==;(2)解:①当点E在线段OP上时,连接AE,如图,∵A(0,2),∴OA=2.∵点C为PB中点,∴CB=PB=1.∵△ABC沿AC折叠后得到△ADC,∴△ABC≌△ADC.∴CD=BC=1,AD=AB.∵四边形OABP为矩形,∴AB=OP.∴AD=AB=OP.∵EC=5ED,∴ED=CD=.∴EC=.∴EP==.设AD=AB=OP=x,则OE=x﹣.∵AO2+OE2=AE2,AD2+DE2=AE2,∴.解得:x=3.∴P(3,0);②当点E在线段OA上,点D在第一象限时,过点E作EF⊥BP于点F,如图,由(2)①知:ED=,EC=,AB=AD=OP.∵EF⊥BP,四边形OABP为矩形,∴EF=OP,∠AEF=∠CFE=90°.∴EF=AD.∵∠AED+∠CEF=90°,∠CEF+∠ECF=90°,∴∠AED=∠ECF.在△ECF和△AED中,,∴△ECF≌△AED(AAS).∴CF=DE=.∴EF===.∴OP=EF=.∴P(,0);③当点E在线段OA上,点D在第二象限时,过点C作CF⊥OA于点F,如图,∵△ABC沿AC折叠后得到△ADC,∴△ABC≌△ADC.∴CD=BC=1.∵EC=5ED,∴DE=,EC=.由(2)①知:AB=AD=OP.∵CF⊥OA,四边形OABP为矩形,∴CF=OP,∠AFC=∠BCF=90°.∴CF=AD.在△ECF和△AED中,,∴△ECF≌△AED(AAS).∴EF=DE=.∴FC===.∴OP=CF=.∴P(,0).综上,点P坐标为(3,0)或(,0)或(,0).。

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析

人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。

一次函数单元测试题(含答案)

一次函数单元测试题(含答案)

第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=2x - C .y=24x - D .y=2x +·2x -2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:xy1234-2-1CA-14321O(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?566-2xy1234-2-15-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)

北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)

北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r B.某地一天的气温T与时间t C.某班学生的身高y与学生的学号x D.一个正数的平方根与这个数2.一个正比例函数的图象经过点(-2,-4),则它的表达式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x3.【教材P88习题T4改编】正比例函数y=x的图象向上平移2个单位长度,所得函数为( )A.y=x+2 B.y=x-2 C.y=2x D.y=x 24.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为( ) A.x=3B.x=-3C.x=4D.x=-45.已知点P(a,-3)在一次函数y=2x+9的图象上,则a的值为( ) A.-3 B.-6 C.15 D.36.关于函数y=-x2-1,下列说法错误的是( )A.当x=2时,y=-2B.y随x的增大而减小C.若(x1,y1),(x2,y2)为该函数图象上两点,x1>x2,则y1>y2D.图象经过第二、三、四象限7.【教材P98复习题T3变式】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有如下关系(其中x≤12).下列说法不正确的是( )A.x与y都是变量,且x是自变量B.弹簧不挂物体时的长度为10 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg,弹簧长度为14.5 cm8.若直线y=-3x+m与两坐标轴所围成的三角形的面积是6,则m的值为( ) A.6 B.-6 C.±6 D.±39.【教材P99复习题T8变式】已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是( )10.【2020·铜仁】如图,在长方形ABCD中,AB=3,BC=4,动点P沿折线BCD 从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x 之间的函数关系的图象大致是( )二、填空题(每题3分,共24分)11.【2021·黑龙江】在函数y =1x -5中,自变量x 的取值范围是__________.12.若函数y =(m +1)x |m |是关于x 的正比例函数,则m =________. 13.直线y =3x +1与y 轴的交点坐标是__________.14.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +1上,则m 与n 的大小关系是__________.15.拖拉机油箱中有54 L 油,拖拉机工作时,每小时平均耗油6 L ,则油箱里剩下的油量Q (L)与拖拉机的工作时间t (h)之间的函数关系式是________________(写出自变量的取值范围).16.【教材P 90习题T 2改编】一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是________.17.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是____________.(第17题) (第18题)18.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法:①两人出发1小时后相遇;②赵明阳跑步的速度为8 km/h;③王浩月到达目的地时两人相距10 km;④王浩月比赵明阳提前1.5 h到目的地.其中错误的序号是________.三、解答题(每题11分,共66分)19.已知y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.20.已知一次函数y=(m-3)x+m-8中,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象经过第一、三、四象限,试写一个m的值,不用写理由.21.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值,(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C的坐标.22.如图,一次函数y=kx+5的图象与y轴交于点B,与正比例函数y=32x的图象交于点P(2,a).(1)求k的值;(2)求△POB的面积.23.水龙头关闭不紧会持续不断地滴水,小明用可以显示水量的容器做实验,并根据实验数据绘制出容器内盛水量y(L)与滴水时间t(h)之间的函数关系图象(如图).请结合图象解答下面的问题:(1)容器内原有水多少升?(2)求y与t之间的函数表达式,并计算在这种滴水状态下一天的滴水量是多少升.24.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费金额y (元)与通信时间x (分钟)之间的函数关系如图所示.(1)有月租费的收费方式是________(填“①”或“②”),月租费是________元; (2)分别求出①②两种收费方式中,收费金额y (元)与通信时间x (分钟)之间的函数表达式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.参考答案一、1.D 2.B 3.A 4.D 5.B 6.C 7.D 8.C 9.B 10.D二、11.x ≠5 12.1 13.(0,1) 14.m <n15.Q =54-6t (0≤t ≤9) 16.14 17.y =-x +3 18.③三、19.解:(1)设y -2=kx (k ≠0).把x =2,y =4代入,得k =1.故y 与x 之间的函数关系式是y =x +2. (2)因为点M (m ,3)在这个函数的图象上, 所以3=m +2,解得m =1.所以点M 的坐标为(1,3).20.解:(1)因为一次函数y =(m -3)x +m -8中,y 随x 的增大而增大,所以m -3>0. 所以m >3.(2)因为这个一次函数是正比例函数, 所以m -8=0,即m =8. (3)答案不唯一,如m =4.21.解:将A (2,0)的坐标代入y =2x +b ,得2×2+b =0,解得b =-4.(2)因为S △AOC =4,点A (2,0), 所以OA =2.所以12OA ·y c =4,解得y c =4.把y =4代入y =2x -4,得2x -4=4, 解得x =4.所以点C 的坐标为(4,4).22.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3).把点P (2,3)的坐标代入y =kx +5,得2k +5=3, 解得k =-1.(2)由(1)知一次函数表达式为y =-x +5. 把x =0代入y =-x +5,得y =5,所以点B的坐标为(0,5).所以S△POB=12×5×2=5.23.解:(1)根据图象可知,当t=0时,y=0.3,即容器内原有水0.3 L.(2)设y与t之间的函数表达式为y=kt+b.将点(0,0.3),(1.5,0.9)的坐标分别代入,得b=0.3,1.5k+b=0.9,解得k=0.4.所以y与t之间的函数表达式为y=0.4t+0.3.当t=24时,y=0.4×24+0.3=9.9,所以在这种滴水状态下一天的滴水量是9.9-0.3=9.6(L).24.解:(1)①;30(2)记有月租费的收费金额为y1(元),无月租费的收费金额为y2(元),则设y1=k1x+30,y2=k2x.将点(500,80)的坐标代入y1=k1x+30,得500k1+30=80,所以k1=0.1,则y1=0.1x+30.将点(500,100)的坐标代入y2=k2x,得500k2=100,所以k2=0.2,则y2=0.2x.所以①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式分别为y1=0.1x+30,y2=0.2x.(3)当收费相同,即y1=y2时,0.1x+30=0.2x,解得x=300.结合图象,可知当通信时间少于300分钟时,选择收费方式②更实惠;当通信时间超过300分钟时,选择收费方式①更实惠;当通信时间等于300分钟时,选择收费方式①②一样实惠.。

一次函数_单元测试含答案

一次函数_单元测试含答案

二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。

4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。

12、一次函数y=kx+5的图象过点A(-2,-1),则k=________.13、正比例函数y=2x的图象经过第________象限.14、两港相距600千米,轮船以10千米/小时的速度航行,t小时后剩下的距离y与t的函数关系式________.15、已知一次函数的图象与y轴的交点的纵坐标为-2,且经过点(5,3),则此函数的表达式为________.16、当b为________时,直线与直线的交点在x轴上.17、已知函数y=的图象经过点B(m,),则m=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:《一次函数》单元测试(含答案)
(时间:90分钟 总分100分)
一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )
A .
B .y=
C .
D .2.下面哪个点在函数y=
1
2
x+1的图像上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( )

A .y=2x-1
B .y=
3
x
C .y=2x 2
D .y=-2x+1 4.一次函数y=-5x+3的图像经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四
5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>
12 B .m=12 C .m<12 D .m=-12
6.若一次函数y=(3-k )x-k 的图像经过第二、三、四象限,则k 的取值范围是( )
A .k>3
B .0<k ≤3
C .0≤k<3
D .0<k<3

7.已知一次函数的图像与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )
A .y=-x-2
B .y=-x-6
C .y=-x+10
D .y=-x-1
8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图像表示应为下图中的( )
9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,
停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图像的示意图,同学们画出的图像如图所示,你认为正确的是( )
10.一次函数y=kx+b 的图像经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )
A .y=-2x+3
B .y=-3x+2
C .y=3x-2
D .y=1
2
x-3

二、你能填得又快又对吗(每小题3分,共30分)
11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.
12.若点(1,3)在正比例函数y=kx 的图像上,则此函数的解析式为________. 13.已知一次函数y=kx+b 的图像经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.
14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.
15.已知一次函数y=-x+a 与y=x+b 的图像相交于点(m ,8),则a+b=_________. 16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”) 17.已知直线y=x-3与y=2x+2的交点为(-5,-8),
y
12
34
A
566
-2
x
y
1
23
4
-2-15-1
43
21O 则方程组30
220
x y x y --=⎧⎨-+=⎩的解是________.
~
18.已知一次函数y=-3x+1的图像经过点(a ,1)和点(-2,b ),则a=________,b=______.
19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b 的图像经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;
(2)y=kx+b 的图像经过点(3,2)和点(-2,1).
"
22.(12分)一次函数y=kx+b 的图像如图所示:
(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少 (3)当y=12时,•x 的值是多少
23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图像回答下列问题: (1)农民自带的零钱是多少
(2)降价前他每千克土豆出售的价格是多少

(3)降价后他按每千克元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆
24.(10分)如图所示的折线ABC•表示从甲地向乙地打
长途电话所需的电话费y(元)与通话时间t(分钟)
之间的函数关系的图像.(1)写出y与t•之间的函数
关系式.(2)通话2分钟应付通话费多少元通话7分
钟呢
25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料米,可获利50元;做一套N型号的时装需用A 种布料米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.
①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;
②当M型号的时装为多少套时,能使该厂所获利润最大最大利润是多
^
答案:
1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.16
16.<;< 17.
5
8
x
y
=-


=-

18.0;7 19.±6 20.y=x+2;4
21.①y=16
9
x;②y=
1
5
x+
7
5
22.y=x-2;y=8;x=14
23.①5元;②元;③45千克
24.①当0<t≤3时,y=;当t>3时,y=.
%
②元;元
25.①y=50x+45(80-x)=5x+3600.
∵两种型号的时装共用A种布料[+0.•6(80-x)]米,共用B种布料[+(80-x)]米,
∴解之得40≤x≤44,
而x为整数,
∴x=40,41,42,43,44,
∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);
②∵y随x的增大而增大,
∴当x=44时,y
=3820,
最大
即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

相关文档
最新文档