大学《工程力学》课后习题解答汇总
(完整版)工程力学课后详细答案

第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
《工程力学》课后习题解答

4日1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB 杆的受力图。
(a)(b)c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)a)b)98 解:1-3 试画出以下各题中AB 梁的受力图。
(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
解:(a)(d)FC(e)WB(f)F FBC(c)(d)AT F BAF (b)e)(b)(c)(d)(e)CAA C’CDDC ’B2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos 6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.122D A D D A F F FF F BC AB AC F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
工程力学课后习题答案(静力学和材料力学)

解:图(a):θ = arcsin 4 ,
5
∑ Fx = 0 ,
F sin(60° − θ ) − W sinθ = 0 , F = 1672 N
图(b):θ = 53.13° ,
∑ Fx = 0 , F cos(θ − 30°) − W sinθ = 0 , F = 217N
Fy
x
30D B
Wθ
y
可推出图(b)中 FAB = 10FDB = 100F = 80 kN。
FED αD
FDB FD′ B
FCB
α
B
F 习题 1-12 解 1 图
F AB 习题 1-12 解 2 图
1—13 杆 AB 及其两端滚子的整体重心在 G 点,滚子搁置在倾斜的光滑刚性平面上,如
图所示。对于给定的θ 角,试求平衡时的 β 角。
=
25 kN 6
即
FR
= ( 5 , 10 )kN 23
作用线方程: y = 4 x + 4 3
讨论:本题由于已知数值的特殊性,实际 G 点与 E 点重合。
2-3三个小拖船拖着一条大船,如图所示。每根拖缆的拉力为5kN。试求:(1)作用于大 船上的合力的大小和方向。(2)当A船与大船轴线x的夹角θ为何值时,合力沿大船轴线方向。
投影: Fx1 = F cosα , Fy1 = F sinα
讨论: ϕ = 90°时,投影与分力的模相等;分力是矢量,投影是代数量。
图(b):
分力: Fx2 = (F cosα − F sin α tan ϕ )i2 ,
Fy2
=
F sinα sinϕ
j2
投影: Fx2 = F cosα ,
Fy2 = F cos(ϕ − α )
《工程力学》课后习题与答案全集

由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN
;
由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。
则
(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。
工程力学课后习题答案解析

《工程力学》复习资料1.画出(各部分)的受力图(1)(2)(3)2.力F作用在边长为L正立方体的对角线上。
设Oxy平面与立方体的底面ABCD 相平行,两者之间的距离为h,试求力F对O点的矩的矢量表达式。
解:依题意可得:ϕθcos cos ⋅⋅=F F xϕθsin cos ⋅⋅=F F y θsin ⋅=F F z 其中33sin =θ 36cos =θ 45=ϕ 点坐标为:()h l l ,, 则()3)()(3333333j i h l F k F j F i F F M +⋅+=-+-= 3.如图所示力系由F 1,F 2,F 3,F 4和F 5组成,其作用线分别沿六面体棱边。
已知:的F 1=F 3=F 4=F 5=5kN, F 2=10 kN ,OA=OC/2=1.2m 。
试求力系的简化结果。
解:各力向O 点简化 0.0.0.523143=-==-==+-=C O F A O F M C B F A O F M C O F C O F M Z Y X 即主矩的三个分量 kN F F Rx 55==kN F F Ry 102==kN F F F F RZ 5431=+-=即主矢量为: k j i 5105++合力的作用线方程 Z y X ==24.多跨梁如图所示。
已知:q=5kN ,L=2m 。
试求A 、B 、D 处的约束力。
取CD 段0=∑ci M 0212=-⋅ql l F D 解得 kN F D 5=取整体来研究,0=∑iy F02=+⋅-+D B Ay F l q F F 0=∑ix F 0=Ax F0=∑iAM 032=⋅+⋅-⋅l F l ql l F D B 联合以上各式,解得 kN F F Ay A 10-== kN F B 25=5.多跨梁如图所示。
已知:q=5kN ,L=2m ,ψ=30°。
试求A 、C 处的约束力。
(5+5=10分)取BC 段0=∑iy F0cos 2=⋅+⋅-ϕC B F l q F 0=∑ix F 0sin =⋅-ϕC Bx F F0=∑icM 022=⋅⋅+⋅-l l q l F By联合以上各式,解得 kN F Bx 77.5= kN F By 10= kN F C 574.11=取整体研究0=∑ix F0sin =⋅-ϕC Ax F F 0=∑iy F 0cos 2=⋅+⋅-ϕC Ay F l q F0=∑iAM 04cos 32=⋅⋅+⋅⋅-l F l l q M C A ϕ 联合以上各式,解得 kN F Ax 774.5= kN F Ay 10= m kN M A ⋅=406.如图无底的圆柱形容器空筒放在光滑的固定地面上,内放两个重球。
工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。
在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。
然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tan α≈α)。
如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。
题2-4图作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。
工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。
在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。
然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tan α≈α)。
如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。
题2-4图作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。
(完整版)工程力学课后详细答案
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
工程力学课后习题答案
2-7 已知梁AB上作用一力偶,力偶矩为M,梁长为l,梁重不计。求在图a,b,两三种情况下,支座A和B的约束反力。
(a) (b)
题2-7图
(a) (注意,这里,A与B处约束力为负,表示实际方向与假定方向相反,结果应与你的受力图一致,不同的受力图其结果的表现形式也不同)
(b)
2-8 在题图所示结构中二曲杆自重不计,曲杆AB上作用有主动力偶,其力偶矩为M,试求A和C点处的约束反力。
题3-1图
3-2 图示力系中,F1=100N,F2=300N,F3=200N,各力作用线的位置如图所示。将力向原点O简化
题3-2图
3-3 边长为a的等边三角形板,用六根杆支持在水平面位置如图所示。若在板面内作用一力偶,其矩为M,不计板重,试求各杆的内力。
题3-3图
3-4 如图所示的空间构架由三根杆件组成,在D端用球铰链连接,A、B和C端也用球铰链固定在水平地板上。今在D端挂一重物P=10kN,若各杆自重不计,求各杆的内力。
题6-2图
6-3题6-2图所示圆截面杆,已知载荷 , , 段的直径 ,如欲使 与 段横截面上的正应力相同,试求 段的直径。
6-4设图示结构的1和2两部分皆为刚体,刚拉杆 的横截面直径为 ,试求拉杆内的应力。
题6-4图
1做受力图
2列平衡方程求解
解得F=6kN, FN=3kN, AB杆的应力为:
6-5某受扭圆管,外径 ,内径 ,横截面上的扭矩 ,试计算距轴心21mm处圆管横截面与纵截面上的扭转切应力。
题2-4图
作BD两节点的受力图
联合解得:
2-5在四连杆机构ABCD的铰链B和C上分别作用有力F1和F2,,机构在图示位置平衡。求平衡时力F1和F2的大小间的关系。
(完整版)工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欢迎阅读1-1试画出以下各题中圆柱或圆盘的受力图,与其它物体接触处的摩擦力均略去。
F A(e)B2-2 杆AC、BC在C处铰接,另一端均与墙面铰接,如图所示,F1和F2作用在销钉C上,F1=445 N,F2=535 N,不计杆重,试求两杆所受的力。
解:(1)(2)AC2-3解:(1)(2)2-42-6 A 和E解:(1)(2)2-7 1和F2解:(1(2)2-9解:(1) 取整体为研究对象,受力分析,AB、AC、AD均为二力杆,画受力图,得到一个空间汇交力系;(2) 列平衡方程:解得:AB、AC杆受拉,AD杆受压。
3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。
求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a)(b) (c) 3-2 A和C 解:(1) (2) 3-3 2 =125 Nm解:(1) (2) 3-5 M 2 解:(1) (2) 可知:(3) 研究OA 杆,受力分析,画受力图:列平衡方程:3-7 O 1和O 2圆盘与水平轴AB 轴,O 2盘垂直x 轴,盘面上分别作用力偶(F 1,F ’1),(F 2,F ’2r =20 cm, F 1 =3 N, F 2 =5 N,AB =80 cm,不计构件自重,试计算轴承A 和B A B B A A解:(1)y方向的约束力分别组成力偶,画受力图。
(2)AB3-8 M的力偶,各尺寸如图。
求支座A解:(1)(2)y4-1 试求题4-1图所示各梁支座的约束力。
设力的单位为kN,力偶矩的单位为kN?m,长度单位为m,分布载荷集度为kN/m。
(提示:计算非均布载荷的投影和与力矩和时需应用积分)。
解:Array (b):(1)(2)(c):(1)(2)(e):(1)(2)4-5 AB长为b解:(1)(2)4-7 2 m,=5 m。
解:(1)(2)(3)4-13 A点,解:(1)(2)(3)(4)4-15 在齿条送料机构中杠杆AB=500 mm,AC=100 mm,齿条受到水平阻力F Q的作用。
已知Q=5000 N,各零件自重不计,试求移动齿条时在点B的作用力F是多少?解:Array 4-16链解:4-17。
解:(a):(b):4-18解:约束力的方向如图所示。
4-19 起重构架如题4-19图所示,尺寸单位为mm。
滑轮直径d=200 mm,钢丝绳的倾斜部分平行于杆BE。
吊起的载荷W=10 kN,其它重量不计,求固定铰链支座A、B的约束力。
解:(1) 研究整体,受力分析,画出受力图(平面任意力系);(2)(3)(4)(5)4-20 AB杆解:(1)(2)(3)(4)(5)5-4 一重量W=1000 N的匀质薄板用止推轴承A、径向轴承B和绳索CE支持在水平面上,可以绕水平轴AB转动,今在板上作用一力偶,其力偶矩为M,并设薄板平衡。
已知a=3 m,b=4 m,h=5 m,M=2000 N?m,试求绳子的拉力和轴承A、B约束力。
解:(1)(2)5-5B的约解: (1)(2)5-6F 及A解: (1)(2)欢迎阅读8-1 试求图示各杆的轴力,并指出轴力的最大值。
(2) 取1-1(3) 取2-2 (4)(b)(1) (2) (3) (4) (c)(1)(2)(3) (4)(5) (d)(1)(2)(2) (5) 8-2 解:(a) (b) (c) (d) 8-5 AB 与BC 段的直径分别为d 1=20 mm和d 2=30 mm F 2之值。
(d)欢迎阅读解:(1) 用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-6 题8-5图所示圆截面杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。
解:(1) 用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同; 8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
解:(1)(2) 8-14 解:(1) (2) (2) 8-15作用,, 解:(1) (2) 8-16 题解:(1) (2) 取[F 8-18 AC 的解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。
从试验中测得杆1与杆2的纵向正应变分别为ε1=4.0×10-4与ε2=2.0×10-4,试确定载荷F 及其方位角θ之值。
已知:A 1=A 2=200 mm 2,E 1=E 2=200 GPa 。
解:(1) 对节点A θ的关系;F A C B欢迎阅读(2) 由胡克定律: 代入前式得:8-23 题8-15所述桁架,若杆AB 与AC 的横截面面积分别为A 1=400 mm 2与A 2=8000 mm 2,杆AB的长度l =1.5 m ,钢与木的弹性模量分别为E S =200 GPa 、E W =10 GPa 。
试计算节点A 的水平与铅直位移。
解:(1) 计算两杆的变形;1杆伸长,2杆缩短。
(2) 画出节点A 的协调位置并计算其位移;8-26 解:(1)(2) (3) (4) 8-27 2,许解:(1) (2) (3)8-30 ,[σ2]F 123解:(1) 对节点C 列平衡方程; (2) (3) 简化后得: C 22 △联立平衡方程可得:1杆实际受压,2杆和3杆受拉。
(4) 强度计算;综合以上条件,可得8-31 图示木榫接头,F=50 kN,试求接头的剪切与挤压应力。
解:(1)(2)8-32 图示摇臂,d。
已知载荷F1=50 kN,F2=35.4 kN,许用切应力[τ。
Array解:(1)(2)(3)8-33 ,解:(1)(2)(3)校核校核欢迎阅读欢迎阅读10-1 试计算图示各梁指定截面(标有细线者)的剪力与弯矩。
解:取(3)截开(b)(1)(2)取A(3)取C(4)取B(c)(1)(2)取A(3)取C(4) 求C+截面内力;取C+(5) 求B-截面内力;取B-(d)(1) 求A+截面内力取A+截面右段研究,其受力如图;2 (d)M A+RSC-M C-BR BM C+BR BMqBM(3) 求C -截面内力;取C -截面右段研究,其受力如图;(4) 求C +截面内力; 取C +(5) 求B -截面内力;取B -qB M B M(c)(1)(2)(d)(1)(2)(e)(1)(2)(f)(1)(2)欢迎阅读欢迎阅读 11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1)(2) (3)K11-7解:(1) (2) (3) 11-8 =1 m 。
解:(1) (2) (3) (4) 11-14 -]=120解:(1) (2) (3) A +A -11-15 。
已知载荷F =10 kN ,q =5 N/mm ,许用应力[σ] =160 Mpa 。
解:(1) (2) max max max 22176 4080ZMPa bh W ====⨯z B欢迎阅读 (3)11-17解:(1) (2) (3) 11-20 。
为解:(1)(2)11-22 (1) (2)解:(1)(2) (3) 解得: 11-25 εa =1.0×10-3与εb =0.4×F 及偏心距e 的数值。
解:(1) (2) y(M z将b、h数值代入上面二式,求得:11-27 图示板件,载荷F=12 kN,许用应力[σ] =100 MPa,试求板边切口的允许深度x。
(δ=5 mm)解:(1)(2)解得:e欢迎阅读。