SABER仿真器的双管正激参数及控制环路设计
saber-电路设计简介

驱动器电路中使用的商业器件
在设计中使用了商业器件,它们是 q2n3904,q2n3906,q2n2907a和q2n3227. 这些器件的特点与实际器件的特点相同, 因此无须设置这些器件的参数,但是为 了使设计具有可读性,可以修改这些器 件特性编辑器的ref项.
返回
驱动电路中使用的电阻器件
在SaberSketch中的元件库中,有两个电阻符号 (Resistor(|)和Resistor(-)),它们分别表示在设计 中放置电阻的方向,分别为将电阻垂直放置和 水平放置,在本设计中将放置4个垂直方向的 垂直方向的 电阻和一个水平方向的电阻. 电阻和一个水平方向的电阻 为了使设计更具有可读性,需要修改电阻器件 特性编辑器中的ref项,在ref项中电阻输入电阻 在设计中对应的编号,在各个电阻器件特性编 辑器中的rnom项输入对应的电阻值.
电路设计的基本步骤和过程
在SaberSketch中,电路设计的基本步骤和过程 与前面CD-ROM马达控制系统的设计过程相似, 主要为: 在SaberSketch的元件库中寻找需要的器件,并 将其放在SaberSketch的设计图纸中(放在适当 的地方). 根据需要,适当地连接各个器件,构成驱动电 路. 根据需要编辑各个元件的特性.
将直流结果标注在电路上的选项电路分析的结果返回小结?通过本部分的学习大家应该比较熟练地掌握sabersketch中元件库的使用在元件库中寻找需要的器件编辑元件的特性库中寻找需要的器件编辑元件的特性在sabersketch中调节元件的位置元件的连接对电路作直流分析以及将直流分析的结果标注在电路上
电路设计简介
在CD-ROM马达控制系统中驱动器是以传递函 数的形式给出,本部分将设计实现这个驱动器 的电路.从驱动器电路的设计中体会到在 SaberSketch中电路设计的基本步骤和过程. 复习和熟练掌握SaberSketch中元件库的使用方 法. 对设计的电路进行直流工作点分析.并学会在 电路上标注直流仿真的结果.
整流电路仿真saber

实验要求:整流电路,输入电压220V,50Hz;输出电压311V DC(相控和斩控输出电压250V)。
输出功率:500W。
(saber)一、仿真分析:单相桥式整流电路,带大电容滤波,4700uF。
比较分析不控整流,相控整流,PWM整流电路的输入电流THD和输入功率因数。
1.二极管不控整流电路硬件电路图搭建如下:输出电压波形如下:输入电压、电流波形:输入电流FFT分析:PF值计算如下:先求出电压电流相位差α,通过saber中的delay来观察从上图可以分析出,电压、电流基波相位基本一致cosα约为1,所以功率因数主要由THD决定。
由20lg(THD)=THD(SABER)得THD=1.93cosPF=α=0.462.相控整流电路硬件电路搭建如下:通过改变clock里面的start_delay时间来实现移相控制驱动信号波形:相控触发角模拟30°输出电压波形输入电压电流波形:输入电流FFT分析:PF值计算如下:由20lg(THD)=THD(SABER)得THD=1.99cosPF=α=0.448为了使输出电压达到250V,输出功率为500W,将电容改为120uF,负载变成125Ω输出电压如下:输入电压电流波形:输入电流FFT分析:PF值计算如下:由20lg(THD)=THD(SABER)得THD=0.92PF=α=0.74cos3.PWM整流电路硬件电路搭建如下:驱动PWM信号:输出电压波形如下:输入电压电流波形如下:输入电流FFT分析如下:PF值计算如下:由20lg(THD)=THD(SABER)得THD=0.419cosPF=α=0.923为了使输出电压达到250V,输出功率为500W,将电容改为120uF,负载变成125Ω输出电压如下:驱动PWM信号:输入电压电流波形:输入电流FFT分析:PF值计算如下:由20lg(THD)=THD(SABER)得THD=0.418cosPF=α=0.923二、仿真分析:单相不控整流电路,比较分析带大电容滤波和LC滤波电路下的输入功率因数。
双管正激参数及控制环路的S

双管正激参数及控制环路的S
引言
双管正激变换器开关管的电压应力等于输入电压,关断时也不会出现漏感尖峰,加上结构简单、可靠性高,在高输入电压的中、大功率场合得到广泛的应用。
在开关电源的设计过程中,控制环路设计的优劣关系到系统的稳定与否。
对于PWM变换器的控制环路,传统的方法使用状态空间平均法,求出小信号模型,来设计控制环路。
此方法计算量大,效率低,不利于工程应用。
SABER与其他仿真软件相比,具有更丰富的元件库和更精确的仿真描述能力,真实性更好。
特别是在电源领域的先天优势,借助其强大的仿真功能缩短电源产品的上市时间。
目前,用SABER软件设计控制环路尚不多见,基于此,提出用SABER仿真设计双管正激参数及控制环路。
1 电路结构。
SABER 环路计算,补偿和仿真

BUCK 电路的环路计算,补偿和仿真Xia Jun 2010-8-14 本示例从简单的BUCK 电路入手,详细说明了如何进行电源环路的计算和补偿,并通过saber 仿真验证环路补偿的合理性。
一直以来,环路的计算和补偿都是开关电源领域的“难点”,很多做开关电源研发的工程师要么对环路一无所知,要么是朦朦胧胧,在产品的开发过程中,通过简单的调试来确定环路补偿参数。
而这种在实验室里调试出来的参数真的能满足各种实际的使用情况吗?能保证电源产品在高低温的情况下,在各种负载条件下,环路都能够稳定吗?能保证在负载跳变的情况下收敛吗?太多的未知数,这是产品开发的大忌。
我们必须明明白白的知道,环路的稳定性如何?相位裕量是多少?增益裕量是多少?高低温情况下这些值又会如何变化?在一些对动态要求非常严格的场合,我们如何折中考虑环路稳定性和动态响应之间的关系?有的放矢,通过明确的计算和仿真,我们的产品设计才是科学的,合理的,可靠的。
我们的目标是让产品经得起市场的检验,让客户满意,让自己放心。
一切从闭环系统的稳定性说起,在自动控制理论中,根据乃奎斯特环路稳定性判据,如果负反馈系统在穿越频率点的相移为180°,那么整个闭环系统是不稳定的。
很多人可能对这句话很难理解,虽然自动控制理论几乎是所有大学工科学生的必修课,可大部分是是抱着应付的态度的,学完就忘了。
那就再给大家讲解一下吧。
等式:V out=[Vin-V out*H(S)]*G(S)公式:Vout Vin G S ()1G S ()H S ()⋅+G(S)/(1+G(S)*H(S))就称之为系统的闭环传递函数,如果1+G(S)*H(S)=0,那么闭环系统的输出值将会无限大,此时闭环系统是不收敛的,也即是不稳定的。
G(S)*H(S)是系统的开环传递函数,当G(S)*H(S)=-1时,以S=j ω带入,即获得开环系统的频域响应为G(j ω)*H(j ω)=-1,此时频率响应的增益和相角分别为:gain =‖-1‖=1angle=tan -1(0/-1)=180°从上面的分析可以看出,如果扰动信号经过G(S)和H(S)后,模不变,相位改变180°,那么这个闭环系统就是不稳定的。
Saber仿真软件入门教程

SABER讲义第一章使用Saber Designer创建设计本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。
有以下任务:*怎样使用Part Gallery来查找和放置符号*怎样使用Property Editor来修改属性值*怎样为设计连线*怎样查找一些常用模板在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。
注:对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。
如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。
一、创建教材目录你需要创建两个目录来为你所建立的单级放大器电路编组数据。
1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实例。
2. 进入analogy_tutorial目录。
3. 创建一个名为amp的目录。
4. 进入amp目录。
二、使用Saber Sketch创建设计在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。
1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。
2. 按以下方法为设计提供名称3) 通过选择File>Save As …菜单项,存储目前空白的设计。
此时将出现一个Save Schematic As对话框,如图1所示。
图 12) 在File Name字段输入名称Single_amp。
3) 单击OK。
3. 检查Saber Sketch工作面1)将光标置于某一图符上并保持在那里。
会显示一个文字窗口来识别该图符。
在工作面底部的Help字段也可查看有关图符的信息2)注意有一个名为Single_amp的Schematic窗口出现在工作面上。
三、放置部件在教材的这一部分你将按图2所示在原理框图上放置符号。
图中增加了如r1、r2等部件标号以便参照。
图 2 单级晶体管放大器部件布局1.按以下方式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所示。
Saber仿真在开关电源产品设计中的应用

Saber仿真在开关电源产品设计中的应用
充电状态时,最低电压为42V
Saber仿真在开关电源产品设计中的应用
驱动波形和谐振电流波形如下
Saber仿真在开关电源产品设计中的应用
谐振电容电压波形
Saber仿真在开关电源产品设计中的应用
从以上仿真可以看出,在所有工作区间,开 关频率最低为180kHz(58V满载输出时)。 谐振电容的电压最大有效值为366V(58V满 载输出时)。 谐振电感电流和励磁电感电流均在58V满载输 出时达到最大值。 以上结论和相关数据,对于磁性器件损耗计 算和仿真,谐振电容选型,开关频率参数设 定等具有指导性意义。
Saber仿真在开关电源产品设计中的应用 在所有的解决方案中,平均电流控制模式的CCM BOOST PFC电路应用最为成熟,广泛应用于中大功 率电源场合。 但是,一般单路CCM BOOST PFC电路在1~3kW的 功率范围内可以达到最佳的设计效果。在3kW以上 的应用中,单路PFC电路的优化设计将变得困难。 在此背景下,交错并联PFC电路引起大家的关注和 重视。其每个并联支路的设计思路与单路PFC电路 完全相同,因此可以获得体积,布局和热设计的优 化设计结果。而两路之间错相180°控制,开关纹 波可以相互抵消,因此可以简化输入EMI滤波器的 设计。
Saber仿真在开关电源产品设计中的应用
负载动态电压波形(更改431补偿电容为47nF,3842 COMP 端电阻为2k)
负载动态调整时间缩小到2ms左右,电压过冲降到15.4V
Saber仿真在开关电源产品设计中的应用
本文由于写作时间的关系,不再对环路进行 详细的计算和仿真。 关于环路补偿部分的计算和仿真,请参考本 人在21世纪电源网论坛发的文章《环路补 偿—计算和仿真》。 反激电路在DCM模式下的传递函数在张兴柱 博士的公司网站上()可以找 到相关资料。
基于SABER仿真器的双管正激参数及控制环路
基于SABER仿真器的双管正激参数及控制环路目前,正激变流器在中、大功率场合得到广泛的应用,但单管正激变换器的开关管承受两倍输入应力,不能用在较高输入场合。
双管正激变换器解决了这个问题,其开关管的电压应力等于输入电压,关断时也不会浮现漏感尖峰,加上结构容易、牢靠性高,在高输入电压的中、大功率场合得到广泛的应用。
在的设计过程中,控制环路设计的优劣关系到系统的稳定与否。
因此优良的控制环路,对开关电源系统是至关重要的。
对于变换器的控制环路,传统的办法用法状态空间平均法,求出小信号模型,来设计控制环路。
此办法计算量大,效率低,不利于工程应用。
高效的办法是用软件得出开环BODE图来设计控制环路。
市面的仿真软件十分多,功能也很强大,如Matlab、Pspice等,然而Pspice软件的收敛算法不好,带来了十分多的不便;Matlab软件建模复杂,其补偿器为传递函数或状态方程,需利用电网络理论转化为详细的电路,诸多不便。
SABER与其他仿真软件相比,具有更丰盛的元件库和更精确的仿真描述能力,真切性更好。
特殊是在电源领域的先天优势,借助其强大的仿真功能缩短电源产品的上市时光。
目前,用SABER软件设计控制环路尚不多见,基于此,提出用SABER仿真设计双管正激参数及控制环路。
1 电路结构双管正激拓扑结构1所示,工作原理为:VT1、VT2同时导通,同时关断;VT1与VT2导通时,电源经高频T,快复原VD3向负载输出能量,经L给C充电;VT1与VT2关断时,输出由快复原二极管VD4续流,同时变压器原边绕组的励磁电流经VD1-UiN-VD2向电源反馈能量。
因为VD1与VD2的箝位,VT1与VT2的开关应力等于电源电压。
与单管正激电路相比,多用一个开关管,电压应力为单管的一半,不存在漏感尖峰,变压器无需磁通复位绕组,适用于较高输入电压的中、大功第1页共5页。
SABER 环路计算,补偿和仿真
BUCK 电路的环路计算,补偿和仿真Xia Jun 2010-8-14 本示例从简单的BUCK 电路入手,详细说明了如何进行电源环路的计算和补偿,并通过saber 仿真验证环路补偿的合理性。
一直以来,环路的计算和补偿都是开关电源领域的“难点”,很多做开关电源研发的工程师要么对环路一无所知,要么是朦朦胧胧,在产品的开发过程中,通过简单的调试来确定环路补偿参数。
而这种在实验室里调试出来的参数真的能满足各种实际的使用情况吗?能保证电源产品在高低温的情况下,在各种负载条件下,环路都能够稳定吗?能保证在负载跳变的情况下收敛吗?太多的未知数,这是产品开发的大忌。
我们必须明明白白的知道,环路的稳定性如何?相位裕量是多少?增益裕量是多少?高低温情况下这些值又会如何变化?在一些对动态要求非常严格的场合,我们如何折中考虑环路稳定性和动态响应之间的关系?有的放矢,通过明确的计算和仿真,我们的产品设计才是科学的,合理的,可靠的。
我们的目标是让产品经得起市场的检验,让客户满意,让自己放心。
一切从闭环系统的稳定性说起,在自动控制理论中,根据乃奎斯特环路稳定性判据,如果负反馈系统在穿越频率点的相移为180°,那么整个闭环系统是不稳定的。
很多人可能对这句话很难理解,虽然自动控制理论几乎是所有大学工科学生的必修课,可大部分是是抱着应付的态度的,学完就忘了。
那就再给大家讲解一下吧。
等式:V out=[Vin-V out*H(S)]*G(S)公式:Vout Vin G S ()1G S ()H S ()⋅+G(S)/(1+G(S)*H(S))就称之为系统的闭环传递函数,如果1+G(S)*H(S)=0,那么闭环系统的输出值将会无限大,此时闭环系统是不收敛的,也即是不稳定的。
G(S)*H(S)是系统的开环传递函数,当G(S)*H(S)=-1时,以S=j ω带入,即获得开环系统的频域响应为G(j ω)*H(j ω)=-1,此时频率响应的增益和相角分别为:gain =‖-1‖=1angle=tan -1(0/-1)=180°从上面的分析可以看出,如果扰动信号经过G(S)和H(S)后,模不变,相位改变180°,那么这个闭环系统就是不稳定的。
LED电路仿真设计-Saber篇
学习曲线陡峭
Saber软件功能强大但操作复杂, 需要设计师具备一定的专业知识 和技能。
资源占用较大
Saber软件的仿真过程需要占用较 大的计算资源,对于小型项目可 能存在一定的性能挑战。
成本较高
Saber软件是一款商业软件,购买 和维护成本较高,可能不适合小 型项目或个人用户。
THANKS
感谢观看
仿真精度设置
用户可以根据需要设置仿真的精度, 如采样点数、仿真步长等。
Saber软件的仿真结果分析
波形分析
参数优化
通过Saber软件的波形分析功能,用户可以 观察LED电路的输入输出波形,了解电路的 工作状态和性能表现。
根据仿真结果,用户可以对元件参数进行 优化,以提高LED电路的性能指标。
可靠性分析
05
LED电路仿真设计的挑战与展望
LED电路仿真设计的挑战
高精度模拟需求
LED电路的特性要求高精度模拟,以准确预测其性能和行为。
复杂的光学效应
LED的光学效应(如散射、反射和干涉)增加了电路仿真的复杂性。
材料特性的多样性
不同LED材料的电气和光学特性差异大,增加了仿真的难度。
热效应的考量
LED在工作时会产生热量,热效应对LED性能有显著影响,需要纳入仿真设计。
总结词
LED照明电路仿真设计能够预测实际照明 效果,优化照明质量和能效,降低设计 和制作成本。
VS
详细描述
LED照明电路的设计需要考虑照明的均匀 性、颜色和亮度等参数。通过仿真设计, 可以预测不同电路参数下的照明效果,从 而优化电路设计,提高照明质量和能效。 此外,仿真设计还可以帮助设计师快速评 估不同方案的成本和性能,为实际制作提 供可靠的依据。
双管正激电路的设计与仿真3-10(开环设计与仿真)2010
48
(1)滤波电感设计
① 电感量计算; ② 磁芯选取
a. 电感磁芯材料的选取:
•
有较大的直流偏磁,磁通摆幅小,相应交流损耗 也小,因此可以选择较高的饱和磁密。应选取( 铁氧体、铁粉芯、铁铝硅Kool u、MPP、 high flux 、非晶等 );----
49
(2)滤波电感设计
② 磁芯选取
b. 初选磁芯型号:
双管正激电路的设计
一.开环设计;
二.开环仿真(瞬态)、分析与模型细化; 三.闭环设计与仿真; 四.闭环仿真; 五.元件级仿真。
43
开环仿真(瞬态)、分析与模型细化
(1)原理图编辑 (2)仿真模拟 (3)仿真结果分析 (4)模型细化
44
(3)仿真结果分析
① 输出电压纹波;
– 电容电流波形
② 电感电流波形(DCM、CCM);
– Vout 28VDC – Vout(p-p) <100mV – Iout 2- 20A,在所有负载下,电路工作于CCM
• 其他性能:
– 开关频率 100kHz
5
(2)双管正激电路的工作原理
• 主电路拓扑选择
– 非隔离式拓扑 X
– 隔离式拓扑:单端正激、单端反激、推 挽、全桥、半桥、双管正激等;
• 其他设置
– 基本、输入输出、校准、数值积分、算法
34
Analysis > Time Domain > Transient :
Basic
• End Time:定义瞬态分 析结束时间; • Time Step:步长;
– 设计中有关时间常数的 1/10; – 驱动源最小的上升或下 降沿; – 正弦驱动源输入周期的 1/100。