干货!一种简易的MOSFET自举驱动电路设计分享
自举电路详解

自举电路是一种常用于驱动高侧开关的电路,它通过利用辅助元件和电容来提供高侧开关驱动所需的电压。
下面是对自举电路的详细解释:
自举电路主要由以下几个元件组成:
高侧开关:通常是功率MOSFET或IGBT,用于控制电路的负载。
低侧开关:通常是功率MOSFET或IGBT,用于接地电路的负载。
驱动电路:用于控制高侧和低侧开关的开关信号。
自举电容:连接在高侧开关的驱动信号上,通过充放电来提供所需的驱动电压。
自举电路的工作原理如下:
初始状态:当高侧开关断开时,自举电容开始充电。
同时,低侧开关通断控制电路的负载。
开始导通:当低侧开关导通时,电路的负载开始流过电流。
此时,自举电容继续充电,并积累电压。
自举效应:由于自举电容已经充电,其正极的电压逐渐升高。
当达到足够高的电压时,驱动电路将高侧开关导通,实现电路的闭合。
高侧开关导通:一旦高侧开关导通,自举电容开始放电,将电荷提供给驱动电路,维持高侧开关的导通状态。
循环工作:高侧开关持续导通,低侧开关周期性地切换,从而实现电路的周期性工作。
自举电路的优点:
提供高侧开关所需的驱动电压,避免了外部电源的需求。
可以有效地驱动高侧开关,减小开关驱动信号的电阻负载。
适用于高压和高功率应用,能够提供可靠的驱动电压。
总结起来,自举电路是一种用于驱动高侧开关的电路,通过自举电容的充放电来提供所需的驱动电压。
它可以在没有外部电源的情况下有效地驱动高压和高功率应用,提供稳定可靠的驱动电压。
自举驱动电路原理

自举驱动电路原理自举驱动电路(bootstrap circuit)是一种常用于电源管理和驱动高侧MOSFET的电路。
它通过利用电容的充放电过程,将低电平信号转换为高电平信号,实现对高侧MOSFET的驱动。
本文将详细解释自举驱动电路的基本原理,包括电路结构、工作原理和应用。
1. 自举驱动电路结构自举驱动电路主要由以下几个组成部分构成:•高侧MOSFET:用于控制电源的开关,通常用于驱动电机、LED灯等。
•低侧MOSFET:用于控制电源的接地开关,与高侧MOSFET配合使用。
•驱动信号:用于控制高侧MOSFET的信号,通常由微控制器或其他驱动器提供。
•自举电容:用于存储能量,通过充放电过程提供高电平驱动信号。
下图展示了一个典型的自举驱动电路结构:2. 自举驱动电路工作原理自举驱动电路的工作原理可以分为两个阶段:充电阶段和放电阶段。
2.1 充电阶段在充电阶段,当低侧MOSFET导通时,电源通过低侧MOSFET和自举电容充电。
此时,自举电容的负极连接到地,正极连接到高侧MOSFET的驱动信号输入端。
•步骤1:低侧MOSFET导通,将电源的正极连接到自举电容。
•步骤2:自举电容开始充电,电压逐渐升高。
2.2 放电阶段在放电阶段,当低侧MOSFET截止时,自举电容通过高侧MOSFET的驱动信号输出高电平。
此时,自举电容的正极电压高于电源电压,实现了对高侧MOSFET的驱动。
•步骤1:低侧MOSFET截止,断开电源与自举电容的连接。
•步骤2:自举电容通过高侧MOSFET的驱动信号输出高电平。
3. 自举驱动电路应用自举驱动电路主要应用于需要驱动高侧MOSFET的场合,如电机驱动、LED灯控制等。
它具有以下几个优点:•高电平驱动能力:自举驱动电路可以提供高于电源电压的驱动信号,有效地驱动高侧MOSFET,避免了电平不匹配的问题。
•简单且经济:自举驱动电路的结构简单,成本低廉,易于实现。
•高效率:通过自举电容的充放电过程,自举驱动电路可以实现高效率的能量转换。
MOSFET的驱动保护电路设计

摘要:率场效应晶体管由于具有诸多优点而得到广泛的应用;但它承受短时过载的能力较弱,使其应用受到一定的限制。
分析了二极管器件驱动与保护电路的设计要求;计算了MOSFET驱动器的功耗及MOSFET驱动器与MOSFET的匹配;设计了基于IR2130驱动模块的MOSFET驱动保护电路。
该电路具有结构简单,实用性强,响应速度快等特点。
在驱动无刷直流电机的应用中证明,该电路驱动能力及保护功能效果良好。
功率场效应晶体管(Power MOSFET)是一种多数载流子导电的单极型电压控制器件,具有开关速度快、高频性能好、输入阻抗高、噪声小、驱动功率小、动态范围大、无二次击穿现象和安全工作区域(SOA)宽等优点,因此,在高性能的开关电源、斩波电源及电机控制的各种交流变频电源中获得越来越多的应用。
但相比于绝缘栅双极型晶体管IGBT或大功率双极型晶体管GTR等,MOSFET管具有较弱的承受短时过载能力,因而其实际使用受到一定的限制。
如何设计出可靠和合理的驱动与保护电路,对于充分发挥MOSFET 功率管的优点,起着至关重要的作用,也是有效利用MOSFET管的前提和关键。
文中用IR2130驱动模块为核心,设计了功率MOSFET驱动保护电路应用与无刷直流电机控制系统中,同时也阐述了本电路各个部分的设计要求。
该设计使系统功率驱动部分的可靠性大大的提高。
1 功率MOSFET保护电路设计功率场效应管自身拥有众多优点,但是MOSFET管具有较脆弱的承受短时过载能力,特别是在高频的应用场合,所以在应用功率MOSFET对必须为其设计合理的保护电路来提高器件的可靠性。
功率MOSFET保护电路主要有以下几个方面:1)防止栅极 di/dt过高:由于采用驱动芯片,其输出阻抗较低,直接驱动功率管会引起驱动的功率管快速的开通和关断,有可能造成功率管漏源极间的电压震荡,或者有可能造成功率管遭受过高的di/dt 而引起误导通。
为避免上述现象的发生,通常在MOS驱动器的输出与MOS管的栅极之间串联一个电阻,电阻的大小一般选取几十欧姆。
常见的MOSFET驱动方式驱动电路的参数计算

常见的MOSFET驱动方式,驱动电路的参数计算在简单的了解MOS管的基本原理以及相关参数后,如何在实际的电路中运用是我们努力的方向。
比如在实际的MOS驱动电路设计中,如何去根据需求搭建电路,计算参数,根据特性完善电路,根据实际需求留余量等等,在这些约束条件下搭建一个相对完善的电路。
参考了一些资料后,就我目前的需求和自身的理解力分享相关的一些笔记和理解。
1.常见的MOSFET驱动方式直接驱动:最简单的驱动方式,比如用单片机输出PWM信号来驱动较小的MOS。
使用这种驱动方式,应注意几点;一是实际PWM和MOS的走线距离必定导致寄生电感引起震荡噪声,二是芯片的驱动峰值电流,因为不同芯片对外驱动能力不一样。
三是MOS的寄生电容Cgs、Cgd如果比较大,导通就需要大的能量,没有足够的峰值电流,导通的速度就会比较慢。
图腾柱/推拉式驱动电路由两个三极管构成,上管是NPN型,下管是PNP型三极管,两对管共射联接处为输出端,结构类似于乙类推挽功率放大器。
利用这种拓扑放大驱动信号,增强电流能力。
(驱动IC内部也是集成了类似的结构)隔离式驱动电路为了满足安全隔离也会用变压器驱动。
如图其中R1抑制振荡,C1隔直流通交流同时防止磁芯饱和。
隔离式的驱动电路不太常见,就不做过多的了解。
小结:当然除以上驱动电路之外,还有很多其它形式的驱动电路。
对于各种各样的驱动电路并没有一种是最好的,只能结合具体应用,选择最合适的拓扑。
2.驱动电路的参数计算我的实际工作中碰到最多的驱动电路是以下这种能够控制开关速度的驱动电路,我就以它举例做进一步的分析。
如图,在驱动电阻Rg2上并联一个二极管。
其中D1常用快恢复二极管,使关断时间减小同时减小关断损耗,Rg1可以限制关断电流,R1为mos管栅源极的下拉电阻,给mos管栅极积累的电荷提供泄放回路。
(根据MOSFET栅极高输入阻抗的特性,一点点静电或者干扰都可能导致MOS管误导通,所以R1也起降低输入阻抗作用,一般取值在10k~几十k)Lp为驱动走线的杂散寄生电感,包括驱动IC引脚、MOS引脚、PCB走线的感抗,精确的数值很难确定,通常取几十nH。
mosfet自举电路

mosfet自举电路
MOSFET自举电路是一种常见的电路设计,用于提供驱动电路所需的电压。
在这篇文章中,我们将介绍MOSFET自举电路的工作原理、应用场景以及设计要点。
让我们来了解一下MOSFET自举电路的工作原理。
MOSFET自举电路利用电容器存储电荷的特性,通过周期性地充放电来提供所需的驱动电压。
当输入信号触发时,电容器会充电,然后在下一个周期释放储存的电荷,从而提供足够的电压来驱动负载。
这种设计可以有效地提高电路的效率和性能。
MOSFET自举电路通常用于驱动需要较高电压的负载,例如功率放大器、电机驱动器等。
通过合理设计电容器的参数和工作频率,可以实现较高的输出电压和电流,以满足不同应用场景的需求。
在设计MOSFET自举电路时,有几个关键的要点需要考虑。
首先是选择合适的MOSFET管和电容器,以确保电路的稳定性和可靠性。
其次是合理设计电路拓扑结构,包括输入信号的触发方式、电容器的充放电控制等。
最后是进行严格的电路仿真和实际测试,以验证设计的正确性和性能。
总的来说,MOSFET自举电路是一种高效、可靠的电路设计,广泛应用于各种需要高电压驱动的场合。
通过合理的设计和优化,可以实现更好的性能和效率。
希望本文能帮助读者更好地了解MOSFET
自举电路的工作原理和设计要点,从而在实际应用中取得更好的效果。
MOSFET电流源驱动原理及实现

MOSFET电流源驱动原理及实现王仲娟,葛芦生王文娟郝玲玲陈志杰束林(安徽工业大学安徽马鞍山243002)摘要:在开关电源中,随着开关频率的提高,开关器件MOSFET的开关损耗也相应增加。
目前大多数都是采用电压源的驱动方法,此驱动方法存在Miller效应、开关时间长、开关损耗大等一些缺点。
本文对电流源驱动原理进行了分析,并以BUCK电路为例,实现了电流源驱动电路。
通过两种驱动类型比较分析,证明了电流源驱动方式可以缩短开关时间,从而可以有效的减低损耗,提高工作效率。
关键字:电流源驱动开关时间Abstract:In the switching power supply,along with turn-on frequency’s enchancement,the switch component MOSFET switching loss also correspondingly increase.At present the conventional driver is used majority,but this method has the Miller effect,the switching time to be long,switching loss big and so on some shortcomings.This paper has carried on the analysis to the current source driver principle,and take the BUCK circuit as the example,has realized current source driver circuit.Through compared with the conventional driver,had proven the current source driver might reduce the switching time,thus might effective decrease the loss,raised the working efficiency.Keyword:current source driver,switching time引言:目前随着微电子技术的发展,电力电子电路正走向高频化,已出现了各种各样的全控型器件。
自举驱动电路的原理

自举驱动电路的基本原理什么是自举驱动电路自举驱动电路(Bootstrap Circuit)是一种用于驱动高侧开关的电路,它通过一种巧妙的方式,将低电平信号转换为高电平信号,以控制高侧开关的开关行为。
自举驱动电路常用于直流-直流(DC-DC)转换器、电机驱动等应用中。
自举驱动电路的原理自举驱动电路的基本原理是利用电容器的充放电过程,将低电平信号转换为高电平信号。
下面将详细解释自举驱动电路的原理。
1. 基本电路首先,让我们来看一个基本的自举驱动电路示意图:Vcc|R1|Vin -----|----|----- Vout| |C Q1| |GND GND其中,Vin是输入信号,Vout是输出信号,Vcc是供电电压,R1是限流电阻,C是电容器,Q1是开关管。
2. 充电过程在初始状态下,假设电容器C上没有电荷,Q1处于关断状态。
当输入信号Vin为高电平时,Q1导通,C开始充电。
此时,电容器C的上端连接到输入信号Vin,下端连接到开关管Q1的漏极。
因此,电容器C开始充电,电荷积累在C上。
3. 放电过程当输入信号Vin变为低电平时,Q1关断,电容器C开始放电。
此时,电容器C的上端连接到Vcc,下端连接到开关管Q1的漏极。
由于电容器C上积累的电荷无法通过Q1流入地,只能通过Q1的漏极流向Vcc。
因此,电容器C开始放电,电荷从C流向Vcc。
4. 放电过程中的电压提升在放电过程中,电容器C的下端电压逐渐上升。
当电容器C的下端电压上升到开关管Q1的阈值电压以上时,Q1开始导通。
此时,电容器C的下端电压继续上升,直到与Vcc相等。
因此,通过放电过程,我们可以将低电平信号Vin转换为与Vcc相等的高电平信号Vout。
5. 周期性工作自举驱动电路具有周期性工作的特点。
在每个周期中,电容器C先充电,然后放电并提升电压,最后再次充电。
通过不断重复这个过程,我们可以稳定地获得高电平信号Vout。
自举驱动电路的应用自举驱动电路广泛应用于直流-直流(DC-DC)转换器和电机驱动等领域。
利用MOSFET管自举升压驱动电路

利用MOSFET管自举升压驱动电路MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光。
现在的MOS驱动,有几个特别的需求,1,低压应用当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V左右的压降,导致实际最终加在gate上的电压只有4.3V。
这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。
同样的问题也发生在使用3V或者其他低压电源的场合。
2,宽电压应用输入电压并不是一个固定值,它会随着时间或者其他因素而变动。
这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。
为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值。
在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。
同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。
3,双电压应用在一些控制电路中,逻辑部分使用典型的5V或者3.3V数字电压,而功率部分使用12V甚至更高的电压。
两个电压采用共地方式连接。
这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2中提到的问题。
在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构。
于是我设计了一个相对通用的电路来满足这三种需求。
电路图如下:图1用于NMOS的驱动电路图2用于PMOS的驱动电路这里我只针对NMOS驱动电路做一个简单分析:Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh。
Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通。
R2和R3提供了PWM电压基准,通过改变这个基准,可以让电路工作在PWM信号波形比较陡直的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
干货!一种简易的MOSFET自举驱动电路设计分享
功率开关器件MOSFET在驱动电路中的应用频率在最近几年直线上升,在一些中小功率的开关电源产品中,利用MOSFET完成驱动电路的设计不仅省时省力,还具有良好的功率转换效果。
本文将会为各位工程师分享一种建议的MOSFET自举驱动电路设计方案,下面就让我们一起来看看吧。
相信大多数工程师都非常了解的一个设计要求是,在一个开关电源的电路设计过程中,驱动电路的工作要求是在最短的时间内改变MOSFET的阻抗,使其从最大值转换成最小值。
实际的导通时间至少是理论值的数量级2、3倍的时间延迟。
这一要求也从侧面说明了一个问题,那就是MOSFET的寄生参数比抽象出来的模型复杂的多,它们将会随驱动电压的改变而改变。
而自举驱动电路的设计目的是把这些电容充满,使门极电压达到导通值。
主板buck 电路设计中,为降低续流二极管的导通损耗,用低导通阻值的场效应管代替二极管,上下两个开关管交错导通,即所谓同步整流模式,其电路设计效果如下图图1所示。
图1 同步整流结构中的上下端开关管
在图1所展示的这一同步整流结构的电路图中可以看到,下端开关管源极接地驱动相对简单,上端源极(Phase端)电压在0—Vin间变化,驱动时需要自举电路实现门源间的电压差。
因此,根据功率器件MOSFET的开关特点,本文设计了带自举能力的MOSFET推挽驱动电路,其电路结构的设计图下图图2所示。