制动噪声及振动介绍
乘用车制动噪声及抖动整车道路试验方法及评价

乘用车制动噪声及抖动整车道路试验方法及
评价
车辆的制动噪声和抖动是影响行驶舒适性和安全性的重要因素。
为了确保乘用
车的制动系统满足相应的噪声和抖动标准,需要进行整车道路试验方法及评价。
本文将介绍乘用车制动噪声和抖动的整车道路试验方法以及评价的主要内容。
首先,乘用车制动噪声和抖动的整车道路试验方法主要包括测量车辆在制动过
程中产生的噪声和抖动数据。
这可以通过在实际道路上进行制动试验来实现。
试验中,需要确保试验车辆符合标准配置,并且车辆制动系统正常工作。
随后在特定的路段和条件下进行制动测试,以获取制动噪声和抖动数据。
制动噪声的测量通常采用声学测量方法,通过安装合适的传感器捕捉噪声信号,并将其转换为可量化的数据。
这些数据可以包括峰值噪声水平、频率特性以及持续时间等信息。
此外,还可以使用振动测量设备对车辆制动过程中产生的抖动进行测量和分析。
评价乘用车制动噪声和抖动的标准通常由相关的法规和技术要求确定。
将测量
得到的制动噪声和抖动数据与标准进行比较,以确定是否符合要求。
评价可包括对制动系统性能的总体评估,如制动力分布、制动延迟等方面的考虑。
此外,为了提高制动噪声和抖动的评价准确性,还可以考虑其他因素的影响,
如道路表面条件、车辆载荷情况等。
这些因素可能会对制动噪声和抖动产生影响,需要在整车道路试验中予以考虑。
综上所述,乘用车制动噪声及抖动的整车道路试验方法及评价是确保车辆制动
系统质量和安全性的重要步骤。
通过准确测量和评价制动噪声和抖动数据,可以对车辆制动系统进行有效的优化和改善,提高行驶舒适性和安全性。
轿车制动器制动撞击噪音影响因素简析

轿车制动器制动撞击噪音影响因素简析轿车制动器在行驶过程中起着至关重要的作用,它能够减速车辆并停止车辆的运动。
当车辆制动时,常常会伴随着一些噪音,其中最常见的就是制动撞击噪音。
这种噪音不仅会影响车辆的驾驶舒适性,还可能会引起其他驾驶员和行人的困扰。
减少轿车制动撞击噪音成为了制动器设计和制造的重要课题。
本文将结合实际情况,对轿车制动器制动撞击噪音的影响因素进行简要分析,以期为相关行业提供一定的参考和借鉴。
一、制动器制动撞击噪音的特点制动器制动撞击噪音是指在制动器制动时,由于摩擦材料与制动盘之间的接触,产生的高频撞击振动声。
这种噪音通常具有尖锐、刺耳的特点,给人一种不安和不舒适的感觉,严重时还可能引起耳膜震动和听力损伤。
制动撞击噪音的产生主要受到制动器本身结构和工作方式的影响,以及使用环境和材料因素的影响。
下面将从这些方面对影响因素进行简要分析。
1. 制动器结构轿车制动器主要由刹车盘、刹车片和刹车蹄组成。
刹车盘作为制动器的主动部件,直接参与摩擦和制动过程。
刹车盘的几何形状、表面质量和材料特性对制动撞击噪音起着至关重要的作用。
通常情况下,刹车盘的几何形状呈对称结构,表面光滑平整。
当制动时,刹车片会受到摩擦和挤压,产生撞击振动声。
如果刹车盘表面粗糙不平或存在明显的磨损痕迹,就会加剧撞击噪音的产生。
刹车盘的材料特性也会直接影响制动撞击噪音。
目前,市面上常见的刹车盘材料有钢铁、复合材料和碳纤维等。
碳纤维制动盘因其硬度高、重量轻和导热性好,在减少制动撞击噪音方面表现较为优异。
2. 制动器工作方式制动器的工作方式主要包括摩擦制动和液压制动两种。
在制动过程中,摩擦制动主要依靠刹车片与刹车盘的摩擦产生制动力,而液压制动则是通过液压系统传递压力来实现制动的。
对于摩擦制动而言,摩擦材料的选择对制动撞击噪音有着直接的影响。
目前,市面上常用的摩擦材料有有机材料、无机材料和金属材料等。
一般来说,有机材料由于其弹性好、摩擦系数低,所以在一定程度上能够减少制动撞击噪音的产生。
汽车制动系统摩擦振动及噪声特性研究

汽车制动系统摩擦振动及噪声特性研究汽车制动系统摩擦振动及噪声特性研究摘要:汽车制动系统是整车安全的重要组成部分,而制动系统的摩擦振动及噪声特性对行车安全和驾驶舒适性有着重要的影响。
本文通过对汽车制动系统摩擦振动及噪声特性的研究,旨在提高制动系统的性能和质量,为改善驾驶体验和减少车辆噪音提供理论基础和技术支持。
1. 引言汽车制动系统是为了使车辆在行进过程中能够安全、准确地控制车速而设计的关键性系统。
制动器的摩擦振动及噪声问题一直以来都是汽车制造商和驾驶员关心的重要问题。
摩擦振动和噪声的产生不仅会降低制动系统的性能,还会对驾驶舒适性造成负面影响。
因此,研究汽车制动系统的摩擦振动及噪声特性对提高驾驶体验、减少车辆噪音具有重要意义。
2. 汽车制动系统的摩擦振动机制汽车制动系统的摩擦振动主要由制动盘和制动蹄片之间的摩擦运动引起。
当行驶中的车辆需要制动时,制动蹄片会受到压力,使其与制动盘之间产生摩擦,从而产生摩擦振动。
摩擦振动的主要机制包括初始接触、滑动接触、粘着接触和脱粘接触等过程。
这些接触过程会产生频率和振幅不同的振动信号,从而产生不同频段的噪声。
3. 汽车制动系统的噪声特性分析汽车制动系统的噪声特性主要包括频谱分析、时域分析和波形分析等方法。
频谱分析通过将制动系统产生的振动信号进行傅里叶变换,得到不同频率的振动成分,从而揭示噪声的频率分布规律。
时域分析通过对振动信号的波形进行实时采集和观测,分析噪声的时间特性。
波形分析通过分析制动系统振动信号的波形形态,揭示噪声信号的幅度和振幅变化规律。
4. 影响汽车制动系统摩擦振动及噪声特性的因素汽车制动系统摩擦振动及噪声特性受多种因素的影响,包括制动盘和制动蹄片的材料性能、制动盘和制动蹄片的表面粗糙度、刹车片温度和制动压力等。
这些因素的变化都会导致汽车制动系统的振动幅度和频率发生变化,从而影响制动系统的噪声特性。
5. 降低汽车制动系统噪声的方法为了降低汽车制动系统的噪声,需要综合考虑多种因素。
制动噪音的解析

1
卡 口 尺 寸
材 质 尺寸
长≤100mm 长≤100mm-150mm 长≥150mm 宽 平面度(进厂时)
Q235 公差带
≤0.10mm ≤0.12mm ≤0.15mm ≤0.12mm ≤0.12mm ≯0.15mm( 若大于此值将引起制动噪音 )
2
3 4
平面度(出货时) 厚度
材料的固有频率(本征频率)
4.2 制动衬片造成的噪音因素
◆钢背板因素
平面度
平面度越好产生噪音的机率越低,平面度越差产生噪音的机率越高。
材质 Q235(必要时需要求供方提材质检测报告) 卡口处的冲压光亮带 该值越大产生噪音的机率越低,该值越小产生噪音的机率越高。 固有频率(本征频率)
钢背板技术要求
摩擦面平面度(≤0.13mm)
摩擦面平面度越好产生噪音的机率就低,反之产生噪音的机率就高。
摩擦材料形态
开槽(槽最深处离背板1.5-2.0)/倒角的形态(角度和面积应一致)、尺寸与原装片相同时 产生的噪音机率就低反之就高。
硬度值的标准偏差(S ≤18)
标准偏差越小产生噪音的机率就低,反之产生噪音的机率就高。
END
2.1将两手掌贴在一起后作摩擦运动即搓两掌心。
注:认真听所发出的声音及音量大小
2.2将笔放在两手掌间,然后作摩擦运动即笔在两掌间来回摩擦。
注:认真听所发出的声音及音量大小
3、试验结果
◆ 3.1掌心摩擦的结果
用两手掌进行摩擦时所发出的声音为“啮啮”声,且我们可以明显 听 到!
◆ 3.2笔在两掌心摩擦的结果
制动噪音的解析
噪音的相关名词定义 及制动噪音的原因
1、相关名词的定义
1.1【噪音】:在一定环境中不应有而有的声音。泛指嘈杂、刺耳的声音。 1.2【频率】:单位时间内完成振动的次数,是描述振动物体往复运动频繁程 度的量(物体在1秒内完成周期性变化的次数叫做频率,常用f表示。) 1.3【本征频率】:只要把一个波形作傅立叶分解即可,把波形分解成一系列 时间的三角函数,这些三解函数的频率就叫本征频率。 1.4【共振频率】:一物理系统在特定频率下,比其它频率以更大的振幅做振 动的情形;这些特定频率称之为共振频率。
盘形制动系统的颤振和噪声分析

盘形制动系统的颤振和噪声分析盘形制动系统的颤振和噪声分析引言盘形制动系统是现代汽车中广泛使用的一种制动装置。
随着汽车制造技术的不断发展,人们对汽车行驶过程中的颤振和噪声问题提出了更高的要求。
因此,对盘形制动系统的颤振和噪声进行深入分析和研究,对于提升汽车的制动性能、舒适性以及安全性具有重要意义。
一、颤振的原因及分析1. 制动盘变形制动盘在高速制动时由于受到剧烈的摩擦和温度变化,容易产生变形。
制动盘的变形会导致刹车时的颤振,同时也会引发噪声问题。
2. 制动系统的不平衡制动系统的不平衡也是导致颤振的原因之一。
当制动盘和制动片之间的卡钳力不均匀时,制动盘会存在不平衡的现象,进而导致颤振问题。
3. 刹车片材料和制动盘的不匹配刹车片材料和制动盘的不匹配也可能引发颤振问题。
如果材料之间的配合不良,会产生较大的摩擦因素,进而导致非均匀的制动盘表面和刹车片之间的力分布,给用户带来不适的颤振感。
二、噪声的原因及分析1. 制动盘和刹车片之间的摩擦噪声在制动过程中,制动盘和刹车片之间的摩擦会引发噪声。
这种噪声主要是由于制动片在高速旋转时,和制动盘之间的摩擦所产生的。
2. 制动盘面不平整制动盘表面的不平整也是产生噪声的一个重要原因。
当制动盘表面存在凸起、凹陷等问题时,刹车片在制动盘上的摩擦力会变得不均匀,进而引起噪音。
3. 制动系统的松动制动系统在长时间使用后,由于振动和磨损会导致部件的松动。
当制动系统中的零部件松动时,会引发噪声问题。
三、盘形制动系统颤振和噪声的解决方法1. 优化制动盘的设计和制造工艺通过优化制动盘的结构设计和制造工艺,可以有效降低盘形制动系统的颤振和噪声问题。
应确保制动盘的刚度满足要求,并采用适当的冷却结构来提高散热效果,减少制动盘的变形。
2. 优化刹车片材料的选择选择合适的刹车片材料也是解决颤振和噪声问题的重要手段之一。
合理选择刹车片的材料,确保其与制动盘的配合良好,减少因材料摩擦不当引起的问题。
浅析城市轨道交通的噪声与振动及其控制措施

浅析城市轨道交通的噪声与振动及其控制措施城市轨道交通是城市公共交通系统中的重要组成部分,如地铁、有轨电车等。
其建设和运营对城市环境产生了一定的噪声和振动。
这些噪声和振动不仅影响了周围居民的生活质量,也会对建筑物、道路和地下管线等设施造成损害。
控制城市轨道交通的噪声和振动对于城市环境保护和居民健康至关重要。
1. 城市轨道交通的噪声与振动来源城市轨道交通的噪声主要来源于列车行驶时的轮轨摩擦、列车牵引和制动系统、隧道通风系统以及车站乘客活动等。
在地铁和有轨电车的运行过程中,列车行驶时的轮轨摩擦是主要的噪声来源。
列车牵引和制动系统的运行也会产生一定的噪声。
而振动则主要由列车行驶时的轮轨交会引起,同时也会受到列车的牵引和制动力影响。
2. 城市轨道交通噪声与振动对城市环境和居民健康的影响城市轨道交通的噪声和振动对周围居民的健康和生活质量产生了一定的影响。
噪声对人体的影响主要表现为耳朵疾病、心理健康问题和睡眠障碍等。
长期暴露在噪声环境中会增加人们患上心脏病、高血压等心血管疾病的风险。
而振动能直接作用于人体,造成人体局部振动,导致疲劳和不适感,长期暴露还可能引发骨骼、关节等伤害。
城市轨道交通的噪声和振动也会影响周围的建筑物、地下管线等结构,使其受到破坏。
3. 城市轨道交通噪声与振动的控制措施为了有效控制城市轨道交通的噪声和振动,可以采取以下措施:(1) 优化轨道和车辆设计。
通过改进轨道和车辆的减振和隔声性能,减少列车行驶时的轮轨摩擦和制动噪声,降低振动。
(2) 采取隔音隔振措施。
在轨道、车站和隧道等重要区域设置隔音隔振设施,减少噪声和振动的传播。
如在轨道旁设置隔音墙、在隧道内安装减振装置等。
(3) 控制列车运行速度。
适当控制列车的运行速度,减少车辆行驶时的轮轨摩擦和制动噪声,同时减小列车通过时的振动影响。
(4) 定期检测和维护轨道和车辆。
进行定期的轨道和车辆检测和维护,确保轨道和车辆的良好运行状态,减少不正常噪声和振动的产生。
车辆工程技术在车辆制动系统中噪音与振动控制的解决方案

车辆工程技术在车辆制动系统中噪音与振动控制的解决方案车辆噪音与振动控制是车辆工程技术中的一个重要方面,尤其在车辆制动系统中尤为突出。
噪音和振动不仅会影响驾驶体验,还可能给乘客和周围环境带来不适和危害。
因此,车辆制动系统的噪音与振动控制问题一直是车辆工程技术领域的研究重点。
本文将介绍一些解决方案,帮助降低车辆制动系统的噪音与振动。
首先,合理设计刹车盘和刹车片是解决车辆制动系统噪音与振动问题的关键。
刹车盘和刹车片之间的不平衡会导致制动时的振动增加。
为了控制振动,可以采用轻质但坚固的材料,并通过数值模拟和实验测试来精确计算刹车盘和刹车片的尺寸和形状。
此外,还可以采用渐变材料设计,以减少振动传导和噪音产生。
其次,制动系统的阻尼控制也是降低噪音和振动的有效方法。
增加阻尼可以减少振动的传播和反弹,从而降低噪音的产生。
在设计制动系统时,可以考虑添加阻尼材料或增加阻尼装置,以吸收和抑制振动能量。
此外,确保刹车系统的各个部件紧固可靠,并采用合适的阻尼控制系统,如减震器和阻尼垫片,也能有效控制噪音与振动。
此外,有效的隔音和隔振措施也是降低车辆制动系统噪音与振动的重要手段。
隔音材料可以被用于车辆制动系统组件的内部和外部,以吸收噪音和减少振动传递。
利用流体动力学原理,可以设计出具有隔音效果的组件和外壳。
此外,合理设计车辆的车身和底盘结构,采用隔振装置和减震器,也能有效降低车辆内部和外部的噪音和振动。
另外,定期维护和保养车辆制动系统也是保持其正常运行和减少噪音与振动的重要措施。
刹车盘和刹车片的磨损、松动或损坏可能导致噪音的产生。
通过定期检查和更换磨损部件,确保制动系统的良好工作状态,可以明显降低噪音与振动。
此外,合理调整刹车片的间隙和刹车片与刹车盘的接触面积,也能有效控制噪音与振动。
综上所述,车辆工程技术在车辆制动系统中噪音与振动控制的解决方案包括:合理设计刹车盘和刹车片,增加阻尼控制,采用隔音和隔振措施,以及定期维护和保养。
制动系统中的振动噪声控制技术研究

制动系统中的振动噪声控制技术研究制动系统是汽车运行中不可或缺的部件之一,其性能的好坏直接关系到汽车的行驶安全。
然而,随着科技的不断创新,对汽车行驶体验和噪音的要求越来越高,制动系统也面临着诸多挑战。
其中,振动噪声是制动系统中重要的问题之一,如何控制制动系统中的振动噪声成为研究的热点问题。
一、振动噪声的来源及其影响制动系统中的振动噪声是由制动器片和制动器盘在制动过程中的摩擦作用产生的,是在制动系统中最主要的产生噪声的机制之一。
主要表现为刺耳的摩擦声、低频震动、高频噪音等,其产生的主要原因是制动盘或制动片的不均匀磨损、气泡、热胀冷缩等。
振动噪声的存在不仅会影响驾驶乘坐的舒适性,更会影响汽车制动性能,使制动距离变长,甚至导致制动失灵,对于行车安全带来潜在威胁。
因此,如何控制制动系统中的振动噪声成为挑战之一。
二、控制振动噪声的技术手段1. 结构优化技术结构优化技术是制动系统中常用的振动噪声控制技术之一。
其主要目的是通过改进制动器盘和制动器片的结构,减少制动物体振动的数量和振幅,从而达到降低制动系统振动和噪声的目的。
其中,结构优化技术的具体方法包括“减重”、“均重”、“去偏”等。
在减重方面,制动器盘采取轻量化设计,使制动器盘质量减轻,从而减少转动惯量、减少失衡和振动等。
在均重方面,制动器盘和制动器片的重量应尽量均匀分配,以达到平衡稳定的状态,避免产生不均匀载荷而引发振动噪声。
在去偏方面,制动系统中采用的结合圆或椭圆型的制动器片,容易产生因过度磨损或用热而导致的偏心而造成振动噪声,因此,制动器片需要采取平衡配重以及合理的设计方式。
2. 材料科技手段材料科技是制动系统中常用的振动噪声控制技术之一。
通过选择适当的材料,可以有效地降低制动系统中的噪声,提高其性能和可靠性。
其中,一些常用的材料包括:陶瓷材料、无机材料、膜材料等。
陶瓷材料由于具有高度的耐磨、高温等性能,已被广泛应用于制动系统中。
陶瓷材料不仅具有高度的耐磨性能,而且还具有良好的噪音控制性能,能够有效地降低振动噪音。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.制动噪音及振动介绍
1.1声学基本术语
声音: 由物体的振动所造成的,并经弹性界质以声波的方式将能量传送出.
频率:单位时间內质点振动的周数(Hz)
声压: 振动强度(Pa)0,00002 < p < 200 [Pa]
为避免以Pa来表达声音或噪音,使用分贝(dB)这个标度。
该标度以20μPa 作为参考声压值,并定义这声压水平为0分贝.
分贝值= 20 log(p/p ref) dB
6.Rattle
7.Clonk
8.Wire-brush
9.
Chirp
10.Creak
1.LF-Squeal
2.HF-Squeal
3.(Hot-)Judder
4.Groan
5.
Moan
制动尖叫(Squeal)是制动刹车时最主要的噪音,可以通过减少振动来最小化噪音.制动时最常见十种噪音及振动问题
1.2制动噪音及振动的分类
500 1 k 10 k 20 k
Hz
Brake Shudder
< 100Hz
Groan Moan
High Frequency Squeal
LF Squeal Wire Brush
Shudder Groan/Moan LF squeal HF squeal Pad
Calliper
Rotor
Knuckle
Suspension
Bea r ing
Tire
1.3制动尖叫
1.3.1 一般知识
-由刹车片和制动盘摩擦引起,在一个或多个共振频率下发生;
-主要由制动盘发出,制动盘充当了扩音器的功能。
影响低频尖叫的主要因素(低频尖叫1-3KHz)
制动盘制动钳转向节悬挂刹车片
-盘厚度偏差-钳体-刚性-刚度-摩擦系数-材质-支架-模态频率-模态频率-材质
-表面处理-紧固件-材质/质量/ -材质/质量/ -尺寸形状
阻尼特性阻尼特性
-导向支架-减振片
-活塞尺寸/材质
1.3.3 模拟制动尖叫时各部件的形态
10 modes
100 modes
40 modes40 modes
1.3.4制动盘动态模型
横波
纵波切线运动平面剪切
1.4 制动噪音Groan
1.4.1制动噪音Groan
-制动噪音Groan是一种小于600Hz的低频噪音
-通常坐在车内的乘客能感觉到
-由车体结构的共振所引起
1.4.2 噪音Groan的特点
-车身随制动前倾时
-车速较低时
-在自动档车很容易发生
-噪音表现为一连串的有节奏的震动
-这种连续有节奏的震动是由于刹车片和制动盘间的蠕动
现象产生的
1.4.3造成Groan 噪音的潜在因素
-刹车片热变形
-刹车片/制动盘之间以及刹车片/卡钳之间的压力分布
-制动盘变形,即表面起槽,形成波纹及表面处理形态等
-摩擦力与速度
-卡钳刚度
-轴套刚度
1.5 制动噪音Moan
制动噪音Moan的特点
-人耳可以听到的这类噪音为小于500Hz
-通常与制动部件、轴以及悬挂系统的刚性有关
Moan 的发生条件
-车速较低
-很小或者没有制动压力
-制动转向或非制动转向时
Moan 噪音发生的潜在原因
-制动与悬挂装置之间处于锁死状态
-刹车片和制动盘以及卡钳与刹车片的压力分布
-非制动拖滞力矩
1.6 制动抖动Shudder
•主要由悬挂系统和转向系统共振造成的
•驾驶者可通过方向盘,地板,仪表盘,坐椅,刹车踏板等感觉到
•一般由轮胎压力变化,部件不平衡转动以及制动扭矩偏差造成•振动频率为5 到100Hz ,并受轮速变化的影响
•抖动的感觉与共振的频率大小,车辆本身的敏感性如传动路径,分系统的共振频率及阻尼特性都有关系
制动扭距变化和
方向盘振动示例
•由制动扭矩偏差产生的颤抖叫“制动颤抖或抖动”
•制动颤抖可进一步分为以下几种情况:
-热抖动=> 制动温度> 200 C
-冷抖动=> 制动温度< 200 C
-新车抖动= 新制动部件
-湿颤抖=制动部件进水
-高速颤抖=> 130kph
2. 当前工业应用
2.1 制动噪音抱怨
•60%
•20%
•5%
•15%
•other
•Groan/Graunch/Moan
•Shudder
•Squeal
60%5%
15%20%
2.2 各国对制动要求
4
2
4
3
清洁程度
3434磨损2312性能1121制动噪音控制澳大利亚
日本欧洲美国
2.3 解决制动尖叫的工具
调查、分析及验证工具
-整车测试
-台架测试(制动角总成和底盘)
-实验模态测试
-模拟
-温度记录法
-摩擦
一般的解决方案
消除激发噪声的源头(倒角设计,摩擦材料配方优化)
增加阻尼(摩擦材料加底料(减振层),制动盘和加减振片)
消除制动部件耦合的状态
改变接触面的压力分布
2.4 整车测试
•整车测试最终判断降噪方案成功与否
•典型的测试程序(北美)
LACT: Standard brake noise and wear validation test
Different routes for each OE(洛杉矶路试)
DST: Detroit Suburban Traffic, mainly for DTV
Others: Mojacar(Spain), Gross Glockner(Austria)•噪声等级
Rating Disturbance
10 None
9 Not detectable
8 Trace
7 Very light
6 Light
5 Moderate
4 Loud
3 Very loud
2 Severe
1 Intolerable
2.5 噪声测试-台架实验
•在可控环境下提供验证试验
•低成本, 高效率, 针对性强,比路试快捷
•典型的测试程序如下:
-AK : European originated procedure (mainly drag
stops)
-SAE J2521 : Developed after AK with additional
inertia stops
-Simulated LACT : A series of stops similar to LACT
driving conditions
-GM, Toyota, Ford etc
•声压数据一般通过这些测试得到
2.6 模态测试及分析
分析刹车尖叫的工具
-加速度仪
-激光振动扫描仪
-激光全息摄影术
-声音全息摄影术
•容易安装. 8小时完成一次标准测试. •非全息照相术快照,噪声需持续数秒
•针对制动噪音振动形态的快照分析
Nastran •摩擦水平和结构阻尼2.7 NVH 常用的分析软件Abaqus
2.8 摩擦
使用电子显微镜观察制动盘上的转移膜
2.9温度记录。