河南省漯河市数学高三文数第二次联考试卷
2024-2025学年河南省高三上学期联考(二)数学试题及答案

2024-2025年度河南省高三年级联考(二)数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:集合与常用逻辑用语,函数与导数,三角函数,平面向量,数列,不等式.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21A x x =-<,{}3B x a x a =<<+.,若{}15A B x x =<< ,则a =( )A.0B.1C.2D.32.已知符号)(表示不平行,向量(1,2)a =--,(,7)b m m =+ .设命题:(0,)p m ∀∈+∞,a )(b ,则()A.:(0,)p m ⌝∃∈+∞,//a b,且p ⌝为真命题B.:(0,)p m ⌝∀∈+∞,//a b,且p ⌝为真命题C.:(0,)p m ⌝∃∈+∞,//a b,且p ⌝为假命题D.:(0,)p m ⌝∀∈+∞,//a b,且p ⌝为假命题3.若||0a b >>,则下列结论一定成立的是( )A.22a b ab > B.2211ab a b> C.33a b < D.a c c b->-4.已知等比数列{}n a 的前n 项和为n S ,且31S ma =,则“7m =”是“{}n a 的公比为2”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5.已知函数3()log f x x =,若0b a >>,且a ,b 是()f x 的图像与直线(0)y m m =>的两个交点对应的横坐标,则4a b +的最小值为( )A.2B.4C.6D.86.三角板主要用于几何图形的绘制和角度的测量,在数学、工程制图等领域被广泛应用.如图,这是由两块直角三角板拼出的一个几何图形,其中||||AB AC = ,||||BD BC =,0BD BC ⋅= .连接AD ,若AD x AB y AC =+,则x y -=( )A.1B.2D.327.若0a ≠,()2ππsin 066x ax bx c ⎛⎫-++≥ ⎪⎝⎭对[0,8]x ∈恒成立,则( )A.0a > B.0bc +> C.0c > D.16b c a-=-8.已知A 是函数()e 3xf x x =+图象上的一点,点B 在直线:30l x y --=上,则||AB 的最小值是( )B.3C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且3n an b =,则下列结论不正确的是()A.若{}n a 是递增数列,则{}n S 是递增数列B.若{}n a 是递减数列,则{}n S 是递减数列C.若{}n a 是递增数列,则{}n T 是递增数列D.若{}n a 是递减数列,则{}n T 是递减数列10.已知(31)f x +为奇函数,(3)1f =,且对任意x ∈R ,都有(2)(4)f x f x +=-,则必有( )A.(11)1f =-B.(23)0f =C.(7)1f =- D.(5)0f =11.已知函数()sin sin 3f x x x =+,则( )A.()f x 的图象关于点(π,0)中心对称B.()f x 的图象关于直线π4x =对称C.()f x的值域为⎡⎢⎣D.()f x 在π3π,24⎡⎤⎢⎥⎣⎦上单调递增三、填空题:本题共3小题,每小题5分,共15分.12.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,且1a =,3b =,1cos 3C =,则ABC △外接圆的面积是__________.13.已知某种污染物的浓度C (单位:摩尔/升)与时间t (单位:天)的关系满足指数模型(1)0e k t C C -=,其中0C 是初始浓度(即1t =时该污染物的浓度),k 是常数.第2天(即2t =)测得该污染物的浓度为5摩尔/升,第4天测得该污染物的浓度为15摩尔/升,若第n 天测得该污染物的浓度变为027C ,则n =__________.14.1796年,年仅19岁的高斯发现了正十七边形的尺规作图法.要用尺规作出正十七边形,就要将圆十七等分.高斯墓碑上刻着如图所示的图案.设将圆十七等分后每等份圆弧所对的圆心角为α,则162121tan 2k k α==+∑__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,4cos 5A =,2cos 3cos a C c A =.(1)求sin C 的值;(2)若3a =,求ABC △的周长.16.(15分)已知函数()sin()(0,0,0π)f x A x b A ωϕωϕ=++>><<的部分图象如图所示.(1)求()f x 的解析式;(2)求()f x 的零点;(3)将()f x 图象上的所有点向右平移π12个单位长度,得到函数()g x 的图象,求()g x 在7π0,12⎡⎤⎢⎥⎣⎦上的值域.17.(15分)已知函数3()33xx a f x ⋅=+,且()()66log 3log 122f f +=.(1)求a 的值;(2)求不等式()22310f x x +->的解集.18.(17分)已知函数2()(2)ln(1)2f x ax x x x =++--.(1)当0a =时,求()f x 的单调区间与极值;(2)当0x ≥时,()0f x ≤恒成立,求a 的取值范围.19.(17分)设数列{}n a 的前n 项和为n S ,若对任意的n +∈N ,都有2n n S kS =(k 为非零常数),则称数列{}n a 为“和等比数列”,其中k 为和公比.(1)若23n a n =-,判断{}n a 是否为“和等比数列”.(2)已知{}n b 是首项为1,公差不为0的等差数列,且{}n b 是“和等比数列”,2n b nc =,数列{}n c 的前n 项和为n T .①求{}n b 的和公比;②求n T ;③若不等式2134(1)22n n n n T m -+->--对任意的n +∈N 恒成立,求m 的取值范围.2024-2025年度河南省高三年级联考(二)数学参考答案1.C 由题意可得{}13A x x =<<.因为{}15A B x x =<< ,所以1,35a a ≥⎧⎨+=⎩,解得2a =.2.A :(0,)p m ⌝∃∈+∞,//a b ,当(7)2m m -+=-,即7m =时,//a b,所以p ⌝为真命题.3.B 当3a =,2b =-时,2218,12a b ab =-=,此时22a b ab <,则A 错误.因为||0a b >>,所以a b >,且0ab ≠,所以2210a b >,所以2211ab a b>,则B 正确.当2a =,1b =-时,338,1a b ==-,此时33a b >,则C 错误.当2a =,1b =,3c =时,1a c -=-,2c b -=,此时a c c b -<-,则D 错误.4.A 设{}n a 的公比为q ,则()23123111S a a a q q a ma =++=++=.因为10a ≠,所以21q q m ++=.由7m =,得217q q ++=,即260q q +-=,解得2q =或3q =-.由2q =,得7m =,则“7m =”是“{}n a 的公比为2”的必要不充分条件.5.B 由题意可得01a b <<<,1b a=,则44a b +≥,当且仅当42a b ==时,等号成立.故4a b +的最小值为4.6.A 如图,以A 为原点,AB ,AC的方向分别为x ,y 轴的正方向,建立直角坐标系,设1AB =,则(0,0)A ,(1,0)B ,(0,1)C ,故(1,0)AB = ,(0,1)AC =.作DF AB ⊥,交AB 的延长线于点F .设||1AB = ,则||||1BF DF ==,所以(2,1)D ,所以(2,1)AD = .因为AD x AB y AC =+,所以2,1x y ==,则1x y -=.7.B 因为[0,8]x ∈,所以πππ7π,6666x ⎡⎤-∈-⎢⎥⎣⎦.当[0,1)x ∈时,ππsin 066x ⎛⎫-< ⎪⎝⎭;当()1,7x ∈时,ππsin 066x ⎛⎫-> ⎪⎝⎭;当(7,8]x ∈时,ππsin 066x ⎛⎫-< ⎪⎝⎭.因为()2ππsin 066x ax bx c ⎛⎫-++≥ ⎪⎝⎭对[0,8]x ∈恒成立,所以1,7是20ax bx c ++=的两根,且0a <,则17,17,b ac a ⎧+=-⎪⎪⎨⎪⨯=⎪⎩故80b a =->,70c a =<,15b c a -=-,0b c a +=->.8.D 由题意可得()(1)e xx f x +'=.设()()g x f x '=,则()(2)e xg x x '=+,当1x <-时,()0f x '<,当1x >-时,()0g x '>,()f x '单调递增.因为(0)1f '=,所以()(1)e 1x f x x '=+=,得0x =,此时(0,3)A,故min ||AB ==.9.ABD 当7n a n =-时,{}n a 是递增数列,此时{}n S 不是递增数列,则A 错误.当12n a n =-+时,{}n a 是递减数列,此时{}n S 不是递减数列,则B 错误.由{}n a 是递增数列,得{}n b 是递增数列,且0n b >,则{}n T 是递增数列,故C 正确.由{}n a 是递减数列,得{}n b 是递减数列,且0n b >,则{}n T 是递增数列,故D 错误.10.CD 由(31)f x +为奇函数,可得(31)(31)f x f x -+=-+,则()f x 的图象关于点(1,0)对称.又(2)(4)f x f x +=-,所以()f x 的图象关于直线3x =对称,则()f x 是以8为周期的周期函数,所以(7)(3)1f f =-=-,(5)(1)0f f ==,(11)(3)1f f ==,(23)(7)1f f ==-,故选CD.11.ACD 因为(π)(π)sin(π)sin 3(π)sin(π)sin 3(π)0f x f x x x x x ++-=++++-+-=,所以()f x 的图象关于点(π,0)中心对称,则A 正确.由题意可得()sin sin 32sin 2cos f x x x x x =+=,则ππππ2sin 2cos 2cos 2cos 4244f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,ππππ2sin 2cos 2cos 2cos 4244f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以ππ44f x f x ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于直线π4x =对称,则B 错误.由题意可得3()2sin 2cos 4sin 4sin f x x x x x ==-.设sin [1,1]t x =∈-,则3()44y g t t t ==-+,故()22()124431g t t t '=-+=--.由()0g t '>,得t <<()0g t '<,得1t -≤<1t <≤,则()g t在1,⎡-⎢⎣和⎤⎥⎦上单调递减,在⎛ ⎝上单调递增.因为(1)(1)0g g -==,g ⎛= ⎝,g =()g t ⎡∈⎢⎣,即()f x的值域是⎡⎢⎣,则C 正确.当π3π,24x ⎡⎤∈⎢⎥⎣⎦时,sin t x ⎤=∈⎥⎦.因为sin t x =在π3π,24⎡⎤⎢⎥⎣⎦上单调递减,且()g t在⎤⎥⎦上单调递减,所以()f x 在π3π,24⎡⎤⎢⎥⎣⎦上单调递增,则D 正确.12.9π4 由余弦定理可得22212cos 1921383c a b ab C =+-=+-⨯⨯⨯=,则c =因为1cos 3C =,所以sin C =,则ABC △外接圆的半径32sin 2c R C ==,故ABC 外接圆的面积为29ππ4R =.13.7 由题意可得030e 5,e 15,k kC C ⎧=⎨=⎩则2e 3k =,解得ln 32k =.因为(1)00e 27k n C C -=,即3ln(1)200e 27n C C -=,所以ln 3(1)2e 27n -=,所以ln 3(1)ln 273ln 32n -==,解得7n =.14.15 由题可知2π17α=,则222π11tan 1tan π217cos 17k k k α+=+=,则161616162211112π2π2π2cos 1cos 16cos 1717171tan 2k k k k k k k k α====⎛⎫==+=+ ⎪⎝⎭+∑∑∑∑.由161611π2π(21)π(21)π33πππ2sin cos sin sin sin sin 2sin17171717171717k k k k k ==+-⎡⎤⋅=-=-=-⎢⎥⎣⎦∑∑,得1612πcos117k k ==-∑,故原式16115=-=.15.解:(1)因为4cos 5A =,且0πA <<,所以3sin 5A ==.因为2cos 3cos a C c A =,所以2sin cos 3sin cos A C C A =,所以342cos 3sin 55C C ⨯=⨯,即cos 2sin C C =.因为22sin cos 1C C +=,所以21sin 5C =.因为0πC <<,所以sin C =(2)由(1)可知3sin 5A =,4cos 5A =,sin C =,cos C =,则34sin sin()sin cos cos sin 55B A C A C A C =+=+==由正弦定理可得sin sin sin a b cA B C==,则sin sin a B b A ==,sin sin a C c A==,故ABC △的周长为3a b c ++=+.16.解:(1)由图可知3(1)22A --==,3(1)12b +-==,()f x 的最小正周期7ππ2π1212T ⎛⎫=-= ⎪⎝⎭.因为2π||T ω=,且0ω>,所以2ω=.因为()f x 的图象经过点π,312⎛⎫⎪⎝⎭,所以ππ2sin 2131212f ϕ⎛⎫⎛⎫=⨯++= ⎪ ⎪⎝⎭⎝⎭,即πsin 16ϕ⎛⎫+=⎪⎝⎭,所以ππ2π()62k k ϕ+=+∈Z ,即π2π()3k k ϕ=+∈Z .因为0πϕ<<,所以π3ϕ=.故π()2sin 213f x x ⎛⎫=++ ⎪⎝⎭.(2)令()0f x =,得π1sin 232x ⎛⎫+=- ⎪⎝⎭,则ππ22π()36x k k +=-∈Z 或π5π22π()36x k k +=-∈Z ,解得ππ4x k =-或7ππ()12k k -∈Z ,故()f x 的零点为ππ4k -或7ππ()12k k -∈Z .(3)由题意可得πππ()2sin 212sin 211236g x x x ⎡⎤⎛⎫⎛⎫=-++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为7π0,12x ⎡⎤∈⎢⎥⎣⎦,所以ππ4π2,663x ⎡⎤+∈⎢⎥⎣⎦.当ππ262x +=,即π6x =时,()g x 取得最大值π36g ⎛⎫= ⎪⎝⎭;当π4π263x +=,即7π12x =时,()g x 取得最小值7π112g ⎛⎫= ⎪⎝⎭.故()g x 在7π0,12⎡⎤⎢⎥⎣⎦上的值域为1⎡⎤⎣⎦.17.解:(1)因为3()33x x a f x ⨯=+,所以221393(2)333933x x x xa a af x --+⨯-===+++,则33()(2)3333x x x a af x f x a ⨯+-=+=++.又666log 3log 12log 362+==,所以()()66log 3log 12f f a +=,从而2a =.(2)由(1)可知236()23333x x xf x ⨯==-++,显然()f x 在R 上单调递增.因为1(0)2f =,所以由()22310f x x +->,可得()23(0)f x x f +>,则230x x +>,解得3x <-或0x >,故不等式()22310f x x +->的解集为(,3)(0,)-∞-+∞ .18.解:(1)当0a =时,2()2ln(1)2f x x x x =+--,其定义域为(1,)-+∞,则()222(2)22111x x x x f x x x x x ---+'=--==+++.当(1,0)x ∈-时,()0f x '>,()f x 的单调递增区间为(1,0)-,当(0,)x ∈+∞时,()0f x '<,()f x 的单调递减区间为(0,)+∞,故()f x 的极大值为(0)0f =,无极小值.(2)设1t x =+,[1,)t ∈+∞,2()(2)ln 1g t at a t t =+--+,[1,)t ∈+∞,则2()ln 2at a t t a tg -=+-+'.设()()h t g t '=,则222222()2a a t at a h t t t t --++-'=--=.设2()22m t t at a =-++-,则函数()m t 的图象关于直线4at =对称.①当2a ≤时,()m t 在[1,)+∞上单调递减.因为(1)240m a =-≤,所以2()220m t t at a =-++-≤在[1,)+∞上恒成立,即()0h t '≤在[1,)+∞上恒成立,则()h t 在[1,)+∞上单调递减,即()g t '在[1,)+∞上单调递减,所以()(1)0g t g ''≤=,所以()g t 在[1,)+∞上单调递减,则()(1)0g t g ≤=,即()0f x ≤在[0,)+∞上恒成立,故2a ≤符合题意.②当2a >时,()m t 在[1,)+∞上单调递减或在[1,)+∞上先增后减,因为(1)240m a =->,所以存在01t >,使得()00m t =.当()01,t t ∈时,()0m t >,即()0h t '>,所以()g t '在()01,t 上单调递增.因为(1)0g '=,所以()0g t '>在()01,t 上恒成立,所以()g t 在()01,t 上单调递增,则()0(1)0g t g >=,故2a >不符合题意.综上,a 的取值范围为(,2]-∞.19.解:(1)因为23n a n =-,所以121n a n +=-,所以12n n a a +-=.因为11a =-,所以{}n a 是首项为-1,公差为2的等差数列,则22n S n n =-,所以2244n S n n =-,所以222444422n n S n n n S n n n --==--.因为442n n --不是常数,所以{}n a 不是“和等比数列”.(2)①设等差数列{}n b 的公差为d ,前n 项和为n S ,则21(1)1222n n n d d S nb d n n -⎛⎫=+=+- ⎪⎝⎭,所以222(2)n S dn d n =+-.因为{}n b 是“和等比数列”,所以2n n S kS =,即222(2)22kd kd dn d n n k n ⎛⎫+-=+- ⎪⎝⎭,所以2,22,2kd d kd d k ⎧=⎪⎪⎨⎪-=-⎪⎩解得4,2,k d =⎧⎨=⎩即{}n b 的和公比为4.②由①可知12(1)21n b n n =+-=-,则212n n n c -=,所以35211232222n n n T -=++++ ,所以2352121112122222n n n n nT -+-=++++ ,所以235212121211122311111422222212nn n n n n n T -++⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=++++-=-- ,即2132344332n n n T ++=-⨯,所以21834992n n n T -+=-⨯.③设2121212134834348103429922992n n n n n n n n n n P T ----++++=-=--=-⨯⨯,12121103710345(1)092924n n n n n n n n P P ++-+++-=-⨯+⨯=>.不等式2134(1)22n n n n T m -+->--对任意的n +∈N 恒成立,即不等式(1)2n n P m >--对任意的n +∈N 恒成立.当n 为奇数时,()1min 23n m P P --<==-,则1m >;当n 为偶数时,()2min 122n m P P -<==-,则32m <.综上,m 的取值范围是31,2⎛⎫⎪⎝⎭.。
2025届河南省漯河实验高中高三第二次联考数学试卷含解析2

2025届河南省漯河实验高中高三第二次联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角,A C 处作圆弧的切线,两条切线交于B 点,测得如下数据:6,6,10.392AB cm BC cm AC cm ===(其中30.8662≈).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( )A .3π B .4π C .2π D .23π 2.已知直线30x y m -+=过双曲线C :22221(0,0)x y a b a b-=>>的左焦点F ,且与双曲线C 在第二象限交于点A ,若||||FA FO =(O 为坐标原点),则双曲线C 的离心率为A .2B .31+C .5D .51-3.等腰直角三角形ABE 的斜边AB 为正四面体ABCD 侧棱,直角边AE 绕斜边AB 旋转,则在旋转的过程中,有下列说法:(1)四面体E -BCD 的体积有最大值和最小值; (2)存在某个位置,使得AE BD ⊥;(3)设二面角D AB E --的平面角为θ,则DAE θ≥∠;(4)AE 的中点M 与AB 的中点N 连线交平面BCD 于点P ,则点P 的轨迹为椭圆. 其中,正确说法的个数是( ) A .1 B .2C .3D .44.设()f x x =,点()00O ,,()01A ,,()()n A n f n ,,*n N ∈,设n n AOA θ∠=对一切*n N ∈都有不等式22223122222sin sin sin sin 123n nθθθθ+++⋅⋅⋅⋅⋅⋅+ 222t t <--成立,则正整数t 的最小值为( ) A .3 B .4C .5D .65.已知函数有三个不同的零点 (其中),则 的值为( )A .B .C .D .6.已知定义在R 上的函数()2xf x x =⋅,3(log 5)a f =,31(log )2b f =-,(ln 3)c f =,则a ,b ,c 的大小关系为( ) A .c b a >>B .b c a >>C .a b c >>D .c a b >>7.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .6748.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )A .12B .13C .41π-D .42π-9.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .10.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P ,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N 个点,经统计落入五环内部及其边界上的点数为n 个,已知圆环半径为1,则比值P 的近似值为( )A .8Nnπ B .12nNπ C .8nNπ D .12Nnπ11.已知角α的终边经过点()3,4-,则1sin cos αα+= A .15-B .3715C .3720D .131512.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b二、填空题:本题共4小题,每小题5分,共20分。
河南省漯河高中2024学年高中毕业班教学质量检测试题(二)数学试题

河南省漯河高中2024学年高中毕业班教学质量检测试题(二)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i是虚数单位,21izi=-则||z=()A.1 B.2 C.2D.222.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是()A.16πB.32 3πC.23πD.2053π3.已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知函数1,0()ln,0xxf xxxx⎧<⎪⎪=⎨⎪>⎪⎩,若函数()()F x f x kx=-在R 上有3个零点,则实数k的取值范围为()A.1(0,)eB .1(0,)2eC .1(,)2e-∞D.11(,)2e e5.已知向量a,b,b=(13,且a在b方向上的投影为12,则a b⋅等于()A .2B .1C .12D .06.已知集合{}|,A x x a a R =≤∈,{}|216xB x =<,若A B ,则实数a 的取值范围是( )A .∅B .RC .(],4-∞D .(),4-∞7.已知a >b >0,c >1,则下列各式成立的是( ) A .sin a >sin bB .c a >c bC .a c <b cD .11c c b a--< 8.设ln3a =,则lg3b =,则( )A .a b a b ab +>->B .a b ab a b +>>-C .a b a b ab ->+>D .a b ab a b ->>+ 9.函数()sin 2sin 3f x x m x x =++在[,]63ππ上单调递减的充要条件是( )A .3m ≤-B .4m ≤-C.3m ≤-D .4m ≤10.已知公差不为0的等差数列{}n a 的前n 项的和为n S ,12a =,且139,,a a a 成等比数列,则8S =( ) A .56B .72C .88D .4011.已知x ,y 满足不等式组2202100x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则点(),P x y 所在区域的面积是( )A .1B .2C .54D .4512.若集合{}A=|2x x x R ≤∈,,{}2B=|y y x x R =-∈,,则A B ⋂=( ) A .{}|02x x ≤≤B .{}2|x x ≤C .{}2|0x x -≤≤D .∅二、填空题:本题共4小题,每小题5分,共20分。
河南省漯河市高三理数第二次(11月)联考数学试卷

河南省漯河市高三理数第二次(11月)联考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)已知集合则下列结论正确的是()A .B .C .D .2. (1分)复数z=(m2+m)+mi(m∈R,i为虚数单位)是纯虚数,则实数m的值为()A . 0或-1B . 0C . 1D . -13. (1分)(2017·武威模拟) 已知,且α为第三象限角,则tan2α的值等于()A .B . ﹣C .D . ﹣4. (1分) (2016高三上·湖北期中) 下列命题中,是假命题的是()A . ∃x0∈R,sinx0+cosx0=B . ∃x0∈R,tanx0=2016C . ∀x>0,x>lnxD . ∀x∈R,2x>05. (1分) (2018高二上·牡丹江期中) 双曲线()的焦距为4,一个顶点是抛物线的焦点,则双曲线的离心率等于()A . 2B .C .D .6. (1分)不等式表示的平面区域(用阴影表示)是()A .B .C .D .7. (1分)已知双曲线C:(a>0,b>0)的左、右焦点分别为F1 , F2 ,第二象限的点P (x0 , y0)满足bx0+ay0=0,若线段PF2的垂直平分线恰为双曲线C的过一、三象限的渐近线,则双曲线C的离心率为()A .B . 4C .D . 28. (1分)(2012·天津理) 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A .B .C .D .9. (1分)执行如图所示的程序框图.若输出S=15,则框图中①处可以填入()A .B .C .D .10. (1分)(2017·新乡模拟) 设a=60.4 , b=log0.40.5,c=log80.4,则a,b,c的大小关系是()A . a<b<cB . c<b<aC . c<a<bD . b<c<a11. (1分)已知函数(n>2且n∈N﹡)设是函数f(x)的零点的最大值,则下述论断一定错误的是()A . ≠0B .C .D .12. (1分)某人向正东方向走后,向右转,然后朝新方向走,结果他离出发点恰好,那么的值为()A .B .C . 或D .二、填空题 (共4题;共4分)13. (1分) (2019高一下·雅安月考) 若向量的夹角为,,则________.14. (1分)在的展开式中,的系数为________ (用数字作答)。
河南省漯河市2021届新高考数学第二次调研试卷含解析

河南省漯河市2021届新高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数2()(2)g x f x x =+为奇函数,且(2)3f =,则(2)f -=( ) A .2 B .5 C .1 D .3【答案】B 【解析】 【分析】由函数2()(2)g x f x x =+为奇函数,则有(1)(1)0(2)1(2)10g g f f -+=⇒-+++=,代入已知即可求得.【详解】(1)(1)0(2)1(2)10(2)5g g f f f -+=⇒-+++=⇒-=-.故选:B . 【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.2.在平面直角坐标系xOy 中,锐角θ顶点在坐标原点,始边为x 轴正半轴,终边与单位圆交于点5P m ⎛⎫ ⎪ ⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭( )A .10B .10C .10D 【答案】A 【解析】 【分析】根据单位圆以及角度范围,可得m ,然后根据三角函数定义,可得sin ,cos θθ,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果. 【详解】由题可知:2215m ⎛+= ⎝⎭,又θ为锐角所以0m >,m =根据三角函数的定义:sin 55θθ==所以4sin 22sin cos 5θθθ==223cos 2cos sin 5θθθ=-=-由sin 2sin 2cos cos 2sin 444πππθθθ⎛⎫+=+ ⎪⎝⎭所以43sin 24525210πθ⎛⎫+=⨯-⨯= ⎪⎝⎭ 故选:A 【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.3.已知双曲线22122:1x y C a b -=与双曲线222:14y C x -=没有公共点,则双曲线1C 的离心率的取值范围是( )A .(B .)+∞C .(D .)+∞【答案】C 【解析】 【分析】先求得2C 的渐近线方程,根据12,C C 没有公共点,判断出1C 渐近线斜率的取值范围,由此求得1C 离心率的取值范围. 【详解】双曲线222:14y C x -=的渐近线方程为2y x =±,由于双曲线22122:1x y C a b -=与双曲线222:14y C x -=没有公共点,所以双曲线1C 的渐近线的斜率2b a ≤,所以双曲线1C 的离心率(e =.故选:C 【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.4.过双曲线()2222:10,0x y C a b a b-=>>左焦点F 的直线l 交C 的左支于,A B 两点,直线AO (O 是坐标原点)交C 的右支于点D ,若DF AB ⊥,且BF DF =,则C 的离心率是( )【解析】 【分析】如图,设双曲线的右焦点为2F ,连接2DF 并延长交右支于C ,连接FC ,设2DF x =,利用双曲线的几何性质可以得到2DF x a =+,4FC x a =+,结合Rt FDC ∆、2Rt FDF ∆可求离心率. 【详解】如图,设双曲线的右焦点为2F ,连接FC ,连接2DF 并延长交右支于C . 因为2,==FO OF AO OD ,故四边形2FAF D 为平行四边形,故2FD DF ⊥. 又双曲线为中心对称图形,故2F C BF =.设2DF x =,则2DF x a =+,故22F C x a =+,故4FC x a =+.因为FDC ∆为直角三角形,故()()()2224222x a x a x a +=+++,解得x a =. 在2Rt FDF ∆中,有22249c a a =+,所以5102c e a ===. 故选:D. 【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于,,a b c 的方程,本题属于难题.5.已知复数z 满足(3)1i z i +=+,则z 的虚部为( ) A .i - B .iC .–1D .1【答案】C 【解析】 【分析】∵(3)1i z i +=+,∴131iz i i++==-, ∴2z i =--,∴复数z 的虚部为1-. 故选:C. 【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题. 6.抛物线22y x =的焦点为F ,则经过点F 与点()2,2M 且与抛物线的准线相切的圆的个数有( )A .1个B .2个C .0个D .无数个【答案】B 【解析】 【分析】圆心在FM 的中垂线上,经过点F ,M 且与l 相切的圆的圆心到准线的距离与到焦点F 的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆. 【详解】因为点(2,2)M 在抛物线22y x =上, 又焦点1(2F ,0),由抛物线的定义知,过点F 、M 且与l 相切的圆的圆心即为线段FM 的垂直平分线与抛物线的交点, 这样的交点共有2个,故过点F 、M 且与l 相切的圆的不同情况种数是2种. 故选:B . 【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.7.设等差数列{}n a 的前n 项和为n S ,若23S =,410S =,则6S =( ) A .21 B .22C .11D .12【答案】A 【解析】 【分析】由题意知24264,,S S S S S --成等差数列,结合等差中项,列出方程,即可求出6S 的值.解:由{}n a 为等差数列,可知24264,,S S S S S --也成等差数列,所以()422642S S S S S -=+- ,即()62103310S ⨯-=+-,解得621S =. 故选:A. 【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.8.如图,将两个全等等腰直角三角形拼成一个平行四边形ABCD ,将平行四边形ABCD 沿对角线BD 折起,使平面ABD ⊥平面BCD ,则直线AC 与BD 所成角余弦值为( )A .223B .6 C 3D .13【答案】C 【解析】 【分析】利用建系,假设AB 长度,表示向量AC u u u r 与BD u u u r,利用向量的夹角公式,可得结果. 【详解】由平面ABD ⊥平面BCD ,AB BD ⊥平面ABD ⋂平面BCD BD =,AB Ì平面ABD 所以AB ⊥平面BCD ,又DC ⊂平面BCD 所以AB DC ⊥,又DB DC ⊥所以作z 轴//AB ,建立空间直角坐标系B xyz - 如图设1AB =,所以1,1,2BD DC BC ===则()()()()0,1,1,0,1,0,1,0,0,0,0,0A B C D所以()()1,1,1,0,1,0AC BD =---u u u r u u u r所以3cos ,33AC BD AC BD AC BD⋅===u u u r u u u ru u u r u u u r u u u r u u u r 故选:C 【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.9.如图所示是某年第一季度五省GDP 情况图,则下列说法中不正确的是( )A .该年第一季度GDP 增速由高到低排位第3的是山东省B .与去年同期相比,该年第一季度的GDP 总量实现了增长C .该年第一季度GDP 总量和增速由高到低排位均居同一位的省份有2个D .去年同期浙江省的GDP 总量超过了4500亿元 【答案】D 【解析】根据折线图、柱形图的性质,对选项逐一判断即可. 【详解】由折线图可知A 、B 项均正确,该年第一季度GDP 总量和增速由高到低排位均居同一位的 省份有江苏均第一.河南均第四.共2个.故C 项正确;4632.1(1 3.3%)44844500÷+≈<. 故D 项不正确. 故选:D. 【点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.10.设1F ,2F 是双曲线()2222:10,0x yC a b a b-=>>的左,右焦点,O 是坐标原点,过点2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为( ) ABC .2D .3【答案】B 【解析】 【分析】设过点()2,0F c 作b y x a =的垂线,其方程为()a y x c b =--,联立方程,求得2a x c=,ab y c =,即2,a ab P c c ⎛⎫⎪⎝⎭,由1PF =,列出相应方程,求出离心率. 【详解】解:不妨设过点()2,0F c 作b y x a =的垂线,其方程为()ay x c b=--, 由()b y x a a y xc b ⎧=⎪⎪⎨⎪=--⎪⎩解得2a x c =,ab y c =,即2,a ab P c c ⎛⎫ ⎪⎝⎭,由1PF OP =,所以有22224222226a b a a a b c c c cc ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭, 化简得223a c =,所以离心率==ce a. 故选:B. 【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中11.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .36 cm 3B .48 cm 3C .60 cm 3D .72 cm 3【答案】B 【解析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.12.若复数z 满足2312z z i -=+,其中i 为虚数单位,z 是z 的共轭复数,则复数z =( ) A .35 B .5C .4D .5【答案】D 【解析】 【分析】根据复数的四则运算法则先求出复数z ,再计算它的模长. 【详解】解:复数z =a+bi ,a 、b ∈R ; ∵2z 312z i -=+,∴2(a+bi )﹣(a ﹣bi )=312i +,即23212a a b b -=⎧⎨+=⎩,解得a =3,b =4, ∴z =3+4i ,∴|z|22345+=. 故选D .本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题. 二、填空题:本题共4小题,每小题5分,共20分。
2019年河南省漯河市郾城区第二高级中学高三数学文联考试题含解析

2019年河南省漯河市郾城区第二高级中学高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知A、B为双曲线E的左右顶点,点M在E上,AB=BM,三角形ABM有一个角为120°,则E的离心率为()A.B.C.D.2参考答案:B【考点】双曲线的简单性质.【专题】计算题;方程思想;数形结合法;圆锥曲线的定义、性质与方程.【分析】由题意画出图形,过点M作MN⊥x轴,得到Rt△BNM,通过求解直角三角形得到M坐标,代入双曲线方程可得a与b的关系,结合隐含条件求得双曲线的离心率.【解答】解:设双曲线方程为(a>0,b>0),如图所示,|AB|=|BM|,∠AMB=120°,过点M作MN⊥x轴,垂足为N,则∠MBN=60°,在Rt△BMN中,∵BM=AB=2a,∠MBN=60°,∴|BN|=a,,故点M的坐标为M(2a,),代入双曲线方程得a2=b2,即c2=2a2,∴.故选:B.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.2. 若为虚数单位,则等于()A、B、C、1 D、-1。
参考答案:A略3. 已知复数、在复平面内对应的点关于虚轴对称,,则=( )A. 2B.C.D. 1参考答案:D【分析】由复数、在复平面内对应的点关于虚轴对称且,得,即可求解的值,得到答案.【详解】由题意,复数、在复平面内对应的点关于虚轴对称,,则,所以,故选D.【点睛】本题主要考查了复数的表示,以及复数的运算与求模,其中解答熟记复数的运算公式和复数的表示是解答的关键,着重考查了运算与求解能力,属于基础题.4. 已知双曲线E:(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为双曲线E的两个焦点,且双曲线E的离心率是2.直线AC的斜率为k.则|k|等于()A.2 B.C.D.3参考答案:B【考点】双曲线的简单性质.【分析】可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由离心率公式,可得a,b,c的关系,运用直线的斜率公式,计算即可得到所求值.【解答】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由双曲线E的离心率是2,可得e==2,即c=2a,b==a,直线AC的斜率为k==﹣=﹣=﹣.即有|k|=.故选:B.5. 德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半 (即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数(首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现),则的所有不同值的个数为( )A.4 B.6 C.32 D.128参考答案:B【知识点】合情推理与演绎推理【试题解析】因为倒着分析得第一个数可为共六个不同取值故答案为:B6. 引入复数后,数系的结构图为()参考答案:A7. 如果命题“”为假命题,则A.均为真命题B.均为减命题C.中至少有一个为真命题D.中至多有一个真命题参考答案:B试题分析:当命题为假命题时,为假命题,故答案为B考点:命题的真假性的应用8. 已知,则()A. B.C. D.参考答案:A考点:同角三角函数的关系及运用.9. 已知a>0且a≠1,则两函数f(x)=a x和g(x)=log a的图象只可能是 ( )参考答案:C10. 已知a =ln,b=sin,c=,则a,b,c的大小关系为A. a < b < cB. a <c <bC.b <a<cD. b <c < a参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知的值为.参考答案:﹣【考点】两角和与差的正切函数.【分析】由条件利用两角差的正切公式,求得tanβ=tan[(α+β)﹣α]的值.【解答】解:∵已知=tan[(α+β)﹣α]= = =﹣,故答案为:﹣.12. 已知函数,若存在,使得,则a的取值范围是 .参考答案:略13. 已知定义在R上的连续奇函数满足,且在的最大值为2,有下列命题:①的周期为4;②的图像关于直线x=2k+1(k)对称;③的图像关于点(2k,0)(k)对称;④在R上的最小值是2.其中真命题为.参考答案:①②③④.略14. 如果实数满足不等式组则的最小值是 .参考答案:4略15. 若框图所给的程序运行结果为S=90,那么判断框中应填入的关于的条件是_____参考答案:16. 若直线是曲线的切线,则实数的值为 .参考答案:设切点为,由得,故切线方程为,整理得,与比较得,解得,故17. 已知O是椭圆E的对称中心,F1,F2是E的焦点,以O为圆心,OF1为半径的圆与E的一个交点为A.若与的长度之比为2:1,则E的离心率等于______.参考答案:【分析】因为为正三角形,故可根据椭圆的定义可得的关系,从而得到离心率.我们也可以根据已知条件得到,把代入椭圆整理,得,由此能够求出椭圆的离心率.【详解】解法1:如图,设,,因为与的长度之比为2:1,故,,所以为正三角形,故.在等腰中,求得.根据椭圆的定义,可得,故椭圆的离心率.解法2:如图,设椭圆的方程为,.由题意,易知,,所以为正三角形,故,因为点在椭圆上,所以,即,即,整理,得,即,解得(舍去)或,所以.【点睛】本题考查椭圆的本题考查了椭圆的定义,性质和应用,解题时要认真审题,注意公式的灵活运用.三、解答题:本大题共5小题,共72分。
2025届河南省漯河市高级中学高三二诊模拟考试数学试卷含解析

2025届河南省漯河市高级中学高三二诊模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知[]2240a b a b +=⋅∈-,,,则a 的取值范围是( ) A .[0,1]B .112⎡⎤⎢⎥⎣⎦,C .[1,2]D .[0,2]2.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D 533.已知函数3ln ()3ln x a x f x a x x=-+-在区间()1,+∞上恰有四个不同的零点,则实数a 的取值范围是( ) A .(,3)(3,)e +∞ B .[)0,eC .()2,e +∞D .(,){3}e -∞4.已知F 为抛物线2:8C y x =的焦点,点()1,A m 在C 上,若直线AF 与C 的另一个交点为B ,则AB =( )A .12B .10C .9D .85.已知双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别为E F ,,以OF (O 为坐标原点)为直径的圆C 交双曲线于A B 、两点,若直线AE 与圆C 相切,则该双曲线的离心率为( ) A 236+ B 226+C 3226+D 326+6.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .67.M 是抛物线24y x =上一点,N 是圆()()22121x y -+-=关于直线10x y --=的对称圆上的一点,则MN 最小值是( ) A 111- B 31 C .221D .328.由曲线3,y x y x ==)A .512 B .13C .14D .129.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .2nn a =C .21nn S =-D .121n n S -=-10.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ). A .122B .112C .102D .9211.设a 、b R +∈,数列{}n a 满足12a =,21n n a a a b +=⋅+,n *∈N ,则( )A .对于任意a ,都存在实数M ,使得n a M <恒成立B .对于任意b ,都存在实数M ,使得n a M <恒成立C .对于任意()24,b a ∈-+∞,都存在实数M ,使得n a M <恒成立D .对于任意()0,24b a ∈-,都存在实数M ,使得n a M <恒成立 12.已知复数z 满足1z =,则2z i +-的最大值为( ) A .23+B .15+C .25D .6二、填空题:本题共4小题,每小题5分,共20分。
河南省漯河市高三数学上学期第二次模拟考试试题 文

2017-2018学年(上)高三第二次模拟考试数学试题(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}| 26,A x x x Z =<<∈,集合{}3,5,8B =,则集合A B ⋂的子集个数为( ) A .2 B .3 C .4 D .162.若复数z 满足()113i z i -=+,则||z =( )A B . D 3.“l g 0x >”是“21x>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知,m n 是两条不同直线,α是平面,则下列命题是真命题的是( ) A .若,m m n α∥∥,则n α∥ B .若,m n αα⊥⊥,则m n ∥ C .若,m m n α⊥∥,则n α∥ D .若,m m n α⊥⊥,则n α∥ 5.已知()1,1m λ=+),()2,2n λ=+,若()()m n m n +⊥-,则λ=( ) A .-4 B .-3 C .-2 D .-1 6.若把函数()(3sin 2)3f x x π=+的图象向右平移()0ϕϕ>个单位后所得图象关于坐标原点对称,则ϕ的最小值为( ) A .6π B .12π C . 3π D . 4π7.已知函数()f x 是R 上的偶函数,且()()11f x f x -=+,当[]0,1x ∈时,()2f x x =,则函数()5log y f x x =-的零点个数是( ) A .3 B .4 C .5 D .6 8.已知函数sin )6(3y x ππ=+在[]0,t 上至少取得2 次最大值,则正整数t 的最小值为( )A .6B .7C .8D .99.已知点O 为ABC 内一点,且满足40OA OB OC ++=,设OBC 与ABC 的面积分别为12,S S ,则12S S =( ) A .18 B .16 C .14 D .1210.四面体ABCD 的四个顶点都在球O 的表面上,2AB =,1BC CD ==,60BCD ∠=,AB ⊥平面BCD ,则球O 的表面积为( ) A .8π B.3 CD .163π11.设函数()f x 的定义域为R ,()()f x f x -=且()(2)f x f x =-,当[]0,1x ∈时,()3f x x =,则函数()cos()=)|(|g x x f x π-在区间13[,]22-上的所有零点的和为( )A .4B .3C .2D .112.已知函数()f x 在定义域R 上的导函数为()x f ',若()0f x '=无解,且()[2018]2018x f f x -=,若()s i n c o s g x x x k x =--在[,]22ππ-上与()f x 在R 上的单调性相同,则实数k 的取值范围是( )A .(,1]-∞- B.(-∞ C.[- D.)+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知等差数列{}n a 的前n 项和为n S ,,,P A B 三点共线,且32016OP a OA a OB =+,则2018S = .14.已知函数()22|log |,02813,2x x x x x f x <≤⎧=⎨-+>⎩,若函数()f x 在区间(),a b 上单调递减,则b a -的最大值为 .15.在ABC 中,角,,A B C 所对的边分别为,,a b c ,且2cos 2cos 22sin sin 2cos A B A B C ++=,则角C = .16.已知函数()()x f x x a e =+,若对任意的[]1,2a ∈,函数()f x 在(),2a b e -上为增函数,则b 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等比数列{}n a 的前n 项和为n S ,且4332S S a =-,11a =. (1) 求n S ;(2) 若221log n n b a +=,数列{}n b 的前n 项和为n T ,证明: 数列21{}21n T n ++是等差数列. 18.在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为12,cos 4b c A -==-.(1) 求a 和sin C 的值; (2) 求cos(2)6A π+的值.19.如图,在矩形ABCD 中,1,2AB AD ==,PA ⊥平面ABCD ,E F 、分别为AD PA 、的中点,点Q 是BC 上一个动点.(1) 当Q 是BC 中点时,求证:平面BEF ∥平面PDQ ; (2) 当BD FQ ⊥时,求BQQC的值. 20.己知函数()()() 1 k f x k x lnx k R x =+--∈,函数 ()1ln g x x x=+. (1) 求1k =时曲线()y f x =在点1, )((1)f 处的切线方程;(2) 设函数()()() h x f x g x =-在()0,x ∈+∞上是单调函数,求实数k 的取值范围. 21.已知函数()2(+1) ln f x a x x =+.(1) 当0a ≥时,解关于x 的不等式()2f x a >;(2) 若对任意4()2a ∈--,及[]1,3x ∈时,恒有()2ma f x a ->成立,求实数m 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4: 坐标系与参数方程已知直线l的参数方程为22x m t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上.(1) 若直线l 与曲线C 交于A B 、两点,求||||FA BF ⋅的值; (2) 求曲线C 的内接矩形的周长的最大值. 23.选修4-5: 不等式选讲 已知函数()|21|1f x x x =+--. (1)求不等式()2f x <的解集;(2) 若关于x 的不等式()22a f x a ≤-有解,求a 的取值范围.试卷答案一、选择题1-5:CBABB 6-10:ABBBD 11、12:BA 二、填空题13.1009 14.2 15.3π 16.2[3,2)e e -+ 三、解答题17.(1)由4332S S a =-得432a a =- ∴公比2q =-∴1[1(2)]3nn S =--(2)1(2)n n a -=-∴2n b n =∴()1n T n n =+∴212221n T n n +=++ ∴232122321n n T Tn n ++-=++ ∴数列21{}21n Tn ++是等差数列18.(1)∵()1cos ,0,4A A π=-∈ ∴sin 4A =∴1sin 2bc A =∴24bc = 由余弦定理得2222cos a b c b A =+-=()()221cos 64b c bc A -+-= ∴8,6,4a b c ===(2)sin 2A =7cos 28A =-∴cos(2)616A π+=19.解:(1)∵,E Q 分别是矩形ABCD 的对边,AD BC 的中点,∴,ED BQ ED BQ =∥,∴四边形BEDQ 是平行四边形,∴BE DQ ∥. 又BE ⊄平面PDQ ,DQ ⊂平面PDQ ,∴BE ∥平面PDQ ,又F 是PA 中点,∴EF PD ∥,∵EF ⊄平面PDQ ,PD ⊂平面PDQ ,∴EF ∥平面PDQ , ∵BE EF E ⋂=,BE EF ⊂、平面BEF ,∴平面BEF ∥平面PDQ . (2)连接AQ ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA BD ⊥. ∵BD FQ ⊥,PA FQ F ⋂=,PA FQ ⊂、平面PAQ ,∴BD ⊥平面PAQ , ∵AQ ⊂平面PAQ ,∴AQ BD ⊥,在矩形ABCD 中,由AQ BD ⊥得AQB 与DBA 相似,∴2AB AD BQ =⨯, 又1,2AB AD ==,∴13,22BQ QC ==,∴13BQ QC =20.解:(Ⅰ)当1k =时,()12ln f x x x x=--, ()22211212x x f x x x x -+'=+-=所以()211122112f x x'=+-=+-=,又 20()111f =--=, 所以曲线()y f x =在点(1,(1))f 处的切线方程为2(1)22x x y +==-;(Ⅱ)()()() h x f x g x '''=-()22211k k x x x=++-+22(1)(1)2k x xx ++-=因为函数()h x 在()0,x ∈+∞上是单调函数,所以()'0h x ≥或()'0h x ≤ 由()'0h x ≥得2(1)(1)20k x x ++-≥,所以2211x k x +≥+,max 221()11xk x +≥=+,所以0k ≥; 由()'0h x ≤得2(1)(1)20k x x ++-≤,所以min 221()1x k x +≤+,而2201x x >+,所以10k +≤,所以1k ≤-.综上所述: 实数k 的取值范围是(,1][0,)-∞-⋃+∞.21.解: (1)()()212120ax f x ax x x x+'=+=>,当0a ≥时,恒有()0f x '>,则()f x 在()0,+∞上是增函数, 又()12f a =,∴()2f x a >化为()()1f x f >,∴1x >. (2)由题意知对任意()4,2a ∈--及[]1,3x ∈时, 恒有()2ma f x a ->成立,等价于()2max ma a f x ->,当()4,2a ∈--时,由()2210ax f x x+'=≤得x ≥因为()4,2a ∈--,所以1142<<, 从而()f x 在[]1,3上是减函数,所以()()max 12f x f a ==,所以22ma a a ->,即2m a <+,因为()4,2a ∈--,所以220a -<+<,所以实数m 的取值范围为2m ≤-.22.(1) 曲线C 的直角坐标系方程为:221124x y +=∴()F - ∴直线l的参数方程为2x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)将(,)22-代入221124x y +=得:2220t t --= 设A B 、两点所对应的参数为12,t t ,则122t t ⋅=-∴||||2FA FB ⋅= (2) 设P 为内接矩形在第一象限的顶点()c o s,2s i n P θθ,(0,)2πθ∈则矩形的周长2sin )16sin()3l πθθθ=+=+∴当6πθ=即()3,1P 时周长最大,最大值为16.23.(1)()122131221x x f x x x x x ⎧--≤-⎪⎪=⎨-<≤⎪⎪+>⎩ ∴不等式的解集为2{|4}3x x -<<(2)由(1)得()f x 在1(,]2-∞-上为减函数,在1[,)2-+∞上为增函数∴()min 13()22f x f =-=-∴()22a f x a ≤-有解,只须2322a a -≤-∴a 的取值范围为:13a -≤≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省漯河市数学高三文数第二次联考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共12分)
1. (1分)(2020·陕西模拟) 已知集合,,则()
A .
B .
C .
D .
2. (1分)(2016·中山模拟) 复数z= 的共轭复数是()
A . 1+i
B . 1﹣i
C . + i
D . ﹣ i
3. (1分)(2020·赣县模拟) 已知是等比数列,,前n项和为,则“ ”是“ 为递增数列”的()
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
4. (1分) (2019高一上·安徽期中) 已知,则()
A .
B .
C .
D .
5. (1分) (2018高二上·东至期末) 已知过双曲线右焦点,斜率为的直线与双曲线的第一象限交于点,点为左焦点,且,则此双曲线的离心率为()
A .
B .
C .
D .
6. (1分)(2017·四川模拟) 已知流程图如图所示,该程序运行后,为使输出的b值为16,则循环体的判断框内①处应填()
A . 2
B . 3
C . 4
D . 5
7. (1分)曲线上任一点处的切线的倾斜角的范围是()
A .
B .
C .
D .
8. (1分)设变量选x,y满足约束条件,则目标函数的最大值为()
A . 4
B . 11
C . 12
D . 14
9. (1分)一个几何体的三视图如右图所示,且其左视图是一个等边三角形,则这个几何体的体积为()
A .
B .
C .
D .
10. (1分) (2020高一下·如东期末) 已知l,m为两条不同直线,,为两个不同平面,则下列命题
中真命题的是()
A . 若,,则
B . 若,,则
C . 若,,则
D . 若,,则
11. (1分) (2018高二上·武汉期末) 抛物线上有一点P,它到A(2,10)距离与它到焦点距离之和最小时,点P坐标是()
A . (,10)
B . (,20)
C . (2,8)
D . (1,2)
12. (1分)(2020·九江模拟) 已知函数,,,,给出以下四个命题:① 为偶函数;② 为偶函数;③ 的最小值为0;④ 有两个零点.其中真命题的是().
A . ②④
B . ①③
C . ①③④
D . ①④
二、填空题 (共4题;共4分)
13. (1分) 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率________.
14. (1分)(2019·鞍山模拟) 已知向量,单位向量满足,则向量的
坐标为________.
15. (1分)(2018·兴化模拟) 经过点且圆心是直线与直线的交点的圆的标准方程为________.
16. (1分)(2020·沈阳模拟) 已知等差数列的前n项和为,且, .数列中,, .则 ________.
三、解答题 (共7题;共14分)
17. (2分)(2018高二下·大名期末) 已知的内角的对边分别为
.
(1)求;
(2)若,求的面积.
18. (2分)如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.
(I)求证:BC⊥平面ACFE;
(II)当EM为何值时,AM∥平面BDF?证明你的结论.
19. (2分) (2015高二上·安徽期末) 某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.
(1)求图中a的值,并估计日需求量的众数;
(2)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.
(ⅰ)将S表示为x的函数;
(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.
20. (2分) (2018高二上·平遥月考) 已知中心在原点的双曲线C的右焦点为(2,0),实轴长为 .
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C左支交于A、B两点,求k的取值范围;
21. (2分)(2020·杭州模拟) 设函数f(x)=ex﹣ax+a(a∈R),其图象与x轴交于A(x1 , 0),B(x2 ,0)两点,且x1<x2 .
(1)求a的取值范围;
(2)证明:f′()<0(f′(x)为函数f(x)的导函数);
(3)设点C在函数y=f(x)的图象上,且△ABC为等腰直角三角形,记 t,求(a﹣1)(t﹣1)的值.
22. (2分)(2018·汉中模拟) 在直角坐标系中,曲线的参数方程为(其中为参数),曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线的普通方程和曲线的极坐标方程;
(2)若射线与曲线分别交于两点,求 .
23. (2分)(2018·南宁模拟) 已知函数 . (1)当时,求不等式的解集;
(2)若不等式的解集为,求实数的取值范围.
参考答案一、单选题 (共12题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共14分) 17-1、
17-2、
18-1、
19-1、19-2、20-1、20-2、
21-1、21-2、
21-3、22-1、22-2、
23-1、23-2、。