2018年海淀区初三上期中试卷及答案
近三年海淀九年级期中考试加解析

多少米?
22.(5 分)关于 x 的一元二次方程 x2+2(m﹣1)x+m2﹣1=0 有两个不相等的实数根 x1,x2.
(1)求实数 m 的取值范围;
(2)是否存在实数 m,使得 x1x2=0 成立?如果存在,求出 m 的值,如果不存在,请说明理由.
23.(5 分)古代丝绸之路上的花刺子模地区曾经诞生过一位伟大的数学家﹣﹣“代数学之父”阿尔•花拉子米.在
Hale Waihona Puke B.C.D.
二.填空题
9.(3 分)点 P(﹣1,2)关于原点对称的点 P′的坐标是
.
10.(3 分)写出一个图象开口向上,过点(0,0)的二次函数的表达式:
.
11.(3 分)如图,四边形 ABCD 内接于⊙O,E 为 CD 延长线上一点.若∠B=110°,则∠ADE 的度数为
.
12.(3 分)抛物线 y=x2﹣x﹣1 与 x 轴的公共点的个数是
A.y=x2+1
B.y=x2﹣1
C.y=﹣x2+1
D.y=﹣x2﹣1
3.(3 分)如图,A,B,C 是⊙O 上的三个点,若∠C=35°,则∠AOB 的度数为( )
A.35°
B.55°
C.65°
4.(3 分)下列手机手势解锁图案中,是中心对称图形的是(
D.70° )
A.
B.
C.
D.
5.(3 分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是( )
(2)作直线 PQ,交 AC 于点 O;
(3)以 O 为圆心,OA 为半径作⊙O,与 CB 的延长线交于点 D,连接 AD.线段 AD 即为所作的高.
请回答:该尺规作图的依据是
北京市海淀区2018--2019学年初三期中考试语文试卷及答案

初三第一学期期中学业水平调研语文参考答案及评分标准2018.11一、基础·运用(共15 分)1.(1)D (2)C(共 4 分。
共 2 小题,每小题 2 分)2.B(2 分)3.二示例:第二幅摆件的图案为“松”“鹤”,有延年益寿的寓意,能表达对奶奶的生日祝福。
(共 2 分。
共 2 空,每空 1 分)4.示例1:一武松打虎水浒传示例2:二空城计三国演义示例3:三三英战吕布三国演义示例4:四三借芭蕉扇西游记(共 2 分。
情节,1 分;出处,1 分)5.A(2 分)6.(1)D (2)示例1:将“宣传”改为“宣传和推广”。
示例2:在“宣传”后加“发展和创新”。
(共 3 分。
共 2 小题,第 1 小题,2 分;第 2 小题,1 分)二、古诗文阅读(共 18 分)(一)7.白露未晞在水之湄(共 2 分。
共 2 空,每空 1 分,有错该空不得分)8.人有悲欢离合月有阴晴圆缺(共 2 分。
共 2 空,每空 1 分。
有错该空不得分)(二)9.示例 1:我读出了“豪壮”,词中“了却君王天下事,赢得生前身后名”,抒发了词人杀敌报国、收复失地、建功立业的豪情壮志。
示例 2:我读出了“悲壮”。
词以“可怜白发生”为结句,慨叹时光虚度,抒发了词人壮志难酬的悲愤心情。
(共 3 分。
感受,1 分;说明,2 分)10.(1)示例1:“梦回吹角连营”,诗人借军营的号角声,营造了军营紧张的氛围,表达了词人梦回军营,渴望参与征战,收复失地的心愿。
示例2:“五十弦翻塞外声”,词人借军中奏起的高亢激越的边塞乐曲,抒发了戍边将士的壮志豪情。
示例3:“弓如霹雳弦惊”,弓弦放箭的响声,如霹雳令人心惊,词人借此描写了壮观而激烈的战争场面,仿佛置身其中,尽显杀敌报国之志。
(2)示例1:关关雎鸠,在河之洲。
示例2:两岸猿声啼不住,轻舟已过万重山。
示例3:此夜曲中闻折柳,何人不起故园情。
示例4:晓雾将歇,猿鸟乱鸣。
示例5:阡陌交通,鸡犬相闻。
北京市海淀区2018届九年级数学上学期期中试题

北京市海淀区2018届九年级数学上学期期中试题一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.一元二次方程23610x x --=的二次项系数、一次项系数、常数项分别是 A .3,6,1B .3,6,1-C .3,6-,1D .3,6-,1-2.把抛物线2y x =向上平移1个单位长度得到的抛物线的表达式为 A .21y x =+ B .21y x =- C .21y x =-+D .21y x =--3.如图,A ,B ,C 是⊙O 上的三个点. 若∠C = 35°,则∠AOB 的大小为 A .35° B .55°C .65°D .70°4.下列手机手势解锁图案中,是中心对称图形的是A B C D 5.用配方法解方程2420x x -+=,配方正确的是A .()222x -= B .()222x +=C .()222x -=- D .()226x -=6.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n °后能与原来的图案重合,那么n 的值可能是A .45B .60C .90D .1207.二次函数21y ax bx c =++与一次函数2y mx n =+2ax bx c mx n ++>+的x 的取值范围是A .30x -<<B .3x <-或0x >C .3x <-或1x >D .03x <<8.如图1,动点P 从格点A 出发,在网格平面内运动,设点P 走过的路程为s ,点P 到直线l 的距离为d . 已知d 与s 的关系如图2所示.下列选项中,可能是点P 的运动路线的是A B C D二、填空题(本题共24分,每小题3分)9.点P (1-,2)关于原点的对称点的坐标为________. 10.写出一个图象开口向上,过点(0,0)的二次函数的表达式:________.11.如图,四边形ABCD 内接于⊙O ,E 为CD 的延长线上一点.若∠B=110°,则∠ADE 的大小为________.l l ll l12.抛物线21y x x =--与x 轴的公共点的个数是________. 13.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(1-,0),将线段AB 绕点O 顺时针旋转,若 点A 的对应点A '的坐标为(2,0),则点B 的对应点B '的 坐标为________.14.已知抛物线22y x x =+经过点1(4)y -,,2(1)y ,,则1y ________2y (填“>”,“=”,或“<”).15.如图,⊙O 的半径OA 与弦BC 交于点D ,若OD = 3,AD = 2,BD = CD ,则BC 的长为________.16.下面是“作已知三角形的高”的尺规作图过程.已知:△ABC .A求作:BC 边上的高AD . 作法:如图,(1)分别以点A 和点C 为圆心,大于12AC 的 长为半径作弧,两弧相交于P ,Q 两点;(2)作直线PQ ,交AC 于点O ;(3)以O 为圆心,OA 为半径作⊙O ,与CB 的延长线交于点D ,连接AD .线段AD 即为所作的高.请回答:该尺规作图的依据是_____________________ _________________ _________ .三、解答题(本题共72分,第17题4分,第18~23题,每小题5分,第24~25题,每小题7分,第26~ 28题,每小题8分) 17.解方程:2430x x -+=.18.如图,等边三角形ABC 的边长为3,点D 是线段BC 上的点,CD = 2,以AD 为边作等边三角形ADE ,连接CE .求CE 的长.19.已知m 是方程2310x x -+=的一个根,求()()()2322m m m -++-的值.20.如图,在⊙O 中,»»AB CD =.求证:∠B =∠C .EB D CA21.如图,ABCD 是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG 的形状,其中点E 在AB 边上,点G 在AD 的延长线上,DG = 2BE .设BE 的长为x 米,改造后苗圃AEFG 的面积为y 平方米.(1)y 与x 之间的函数关系式为_____________________(不需写自变量的取值范围); (2)根据改造方案,改造后的矩形苗圃AEFG 的面积与原正方形苗圃ABCD 的面积相等,请问此时BE 的长为多少米?22.关于x 的一元二次方程()222110x m x m +-+-=有两个不相等的实数根12,x x .(1)求实数m 的取值范围;(2)是否存在实数m ,使得120x x =成立?如果存在,求出m 的值;如果不存在,请说明理由.23.古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家——“代数学之父”阿尔·花拉子米.在研究一E元二次方程解法的过程中,他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”.以21039x x +=为例,花拉子米的几何解法如下:如图,在边长为x 的正方形的两个相邻边上作边长分别为x 和 5的矩形,再补上一个边长为5的小正方形,最终把图形补 成一个大正方形.通过不同的方式来表示大正方形的面积,可以将原方程化为()2________39x +=+,从而得到此方程的正根是________.24.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,0),点P 的横坐标为2,将点A 绕点P旋转,使它的对应点B 恰好落在x 轴上(不与A 将点B绕点O 逆时针旋转90°得到点C . (1)直接写出点B 和点C 的坐标;(2)求经过A ,B ,C 三点的抛物线的表达式.25.如图,AB 为⊙O 的直径,点C 在⊙O 上,过点O 作OD ⊥BC 交BC 于点E ,交⊙O 于点D ,CD ∥AB .(1)求证:E 为OD 的中点;(2)若CB = 6,求四边形CAOD 的面积.26.在平面直角坐标系xOy 中,已知抛物线C :244y x x =-+和直线l :2(0)y kx k k =->.(1)抛物线C 的顶点D 的坐标为________; (2)请判断点D 是否在直线l 上,并说明理由;(3)记函数2442,22x x x y kx k x ⎧-+≤=⎨->⎩,,的图象为G ,点(0,)M t ,过点M 垂直于y 轴的直线与图象G 交于点11()P x y ,,22()Q x y ,.当13t <<时,若存在t 使得124x x =+成立,结合图象,求k 的取值范围.55 5xx xx 527.对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≤,则称1d 为点P 的“引力值”;若12d d >,则称2d 为点P 的“引力值”.特别地,若点P 在坐标轴上,则点P 的“引力值”为0.例如,点P (2-,3)到x 轴的距离为3,到y 轴的距离为2,因为23<,所以点P 的“引力值”为2.(1)①点A (1,4-)的“引力值”为________;②若点B (a ,3)的“引力值”为2,则a 的值为________;(2)若点C 在直线24y x =-+上,且点C 的“引力值”为2,求点C 的坐标;(3)已知点M 是以D (3,4)为圆心,半径为2的圆上的一个动点,那么点M 的“引力值”d 的取值范围是 .28.在Rt△ABC中,斜边AC的中点M关于BC的对称点为点O,将△ABC绕点O顺时针旋转至△DCE,连接BD,BE,如图所示.(1)在①∠BOE,②∠ACD,③∠COE中,等于旋转角的是________(填出满足条件的的角的序号);(2)若∠A=α,求∠BEC的大小(用含α的式子表示);(3)点N是BD的中点,连接MN,用等式表示线段MN与BE之间的数量关系,并证明.E DNMB CAO初三第一学期期中学业水平调研数 学 参 考 答 案 2017.11一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分)9.(1,2-) 10.答案不唯一,例如2y x = 11.110° 12.2 13.(0,1) 14.> 15.816.①到线段两端点距离相等的点在线段的垂直平分线上;②直径所对的圆周角是直角;③两点确定一条直线. (注:写出前两个即可给3分,写出前两个中的一个得2分,其余正确的理由得1分)三、解答题(本题共72分) 17.解法一:解:2441x x -+=,()221x -=, ………………2分21x -=±,11x =,23x =. ………………4分解法二:解:()()130x x --=, ………………2分 10x -=或30x -=,11x =,23x =. ………………4分 18.解:∵ △ABC 是等边三角形, ∴ AB =BC =AC ,∠BAC =60°.∴ ∠1+∠3=60°. ………………1分∵ △ADE 是等边三角形, ∴ AD =AE ,∠DAE =60°.∴ ∠2+∠3=60°. ………………2分 ∴ ∠1=∠2. 在△ABD 与△ACE 中12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∴ △ABD ≌ △ACE (SAS ). ∴ CE =BD . ………………4分 ∵ BC =3,CD =2, ∴ BD =BC -CD =1.∴ CE =1. ………………5分 19.解:∵ m 是方程2310x x -+=的一个根,∴ 2310m m -+=. ………………2分∴ 231m m -=-.∴ 原式22694m m m =-++- ………………4分()2235m m =-+3=. ………………5分20.方法1:321EDCBA证明:∵ 在⊙O 中,»»AB CD =, ∴ ∠AOB =∠COD . ………………2分 ∵ OA =OB ,OC =OD ,∴ 在△AOB 中,1902B AOB ∠=︒-∠,在△COD 中,1902C COD ∠=︒-∠. ………………4分∴ ∠B =∠C . ………………5分方法2:证明:∵ 在⊙O 中,»»AB CD =, ∴ AB =CD . ………………2分 ∵ OA =OB ,OC =OD ,∴ △AOB ≌ △COD (SSS ). ………………4分 ∴ ∠B =∠C . ………………5分21.解:(1)22416y x x =-++(或()()442y x x =-+) ………………3分(2)由题意,原正方形苗圃的面积为16平方米,得2241616x x -++=.解得:12x =,20x =(不合题意,舍去). ………………5分 答:此时BE 的长为2米. 22.解:(1)∵ 方程()222110xm x m +-+-=有两个不相等的实数根,∴ ()()224141880m m m ∆=---=-+>,∴ 1m <. ………………2分 (2)存在实数m 使得120x x =.120x x =,即是说0是原方程的一个根,则210m -=. ………………3分解得:1m =- 或 1m =. ………………4分当1m =时,方程为20x =,有两个相等的实数根,与题意不符,舍去.∴ 1m =-. ………………5分23.通过不同的方式来表示大正方形的面积,可以将原方程化为()25 x + ………………1分39 25 =+ ………………3分从而得到此方程的正根是 3 . ………………5分24.(1)点B 的坐标为(3,0),点C 的坐标为(0,3); ………………2分 (2)方法1:设抛物线的解析式为2y ax bx c =++. 因为 它经过A (1,0),B (3,0),C (0,3),则0,930,3.a b c a b c c ++=⎧⎪++=⎨⎪=⎩………………4分解得 1,4,3.a b c =⎧⎪=-⎨⎪=⎩………………6分∴ 经过,,A B C 三点的抛物线的表达式为243y x x =-+. ………………7分 方法2:抛物线经过点A (1,0),B (3,0),故可设其表达式为(1)(3)(0)y a x x a =--≠. ………………4分 因为 点C (0,3)在抛物线上,所以 ()()01033a --=,得1a =. ………………6分 ∴经过,,A B C 三点的抛物线的表达式为243y x x =-+. ………………7分 方法3:抛物线经过点A (1,0),B (3,0),则其对称轴为2x =.设抛物线的表达式为()22y a x k =-+. ………………4分 将A (1,0),C (0,3)代入,得 0,4 3.a k a k +=⎧⎨+=⎩解得 1,1.a k =⎧⎨=-⎩ ………………6分∴经过,,A B C 三点的抛物线的表达式为243y x x =-+. ………………7分 25.(1)证明:∵ 在⊙O 中,OD ⊥BC 于E ,∴ CE =BE . ………………1分 ∵ CD ∥AB ,∴ ∠DCE =∠B . ………………2分 在△DCE 与△OBE 中,,.DCE B CE BE CED BEO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △DCE ≌ △OBE (ASA ). ∴ DE =OE .∴ E 为OD 的中点. ………………4分(2)解: 连接OC .∵ AB 是⊙O 的直径, ∴ ∠ACB =90°.∵ OD ⊥BC ,∴ ∠CED =90°=∠ACB .∴ AC ∥OD . ………………5分 ∵ CD ∥AB ,∴ 四边形CAOD 是平行四边形. ∵ E 是OD 的中点,CE ⊥OD , ∴ OC =CD . ∵ OC =OD , ∴ OC =OD =CD .∴ △OCD 是等边三角形.∴ ∠D =60°. ………………6分 ∴ ∠DCE =90°-∠D =30°. ∴ 在Rt △CDE 中,CD =2DE .ABAB∵ BC =6, ∴ CE =BE =3.∵ 22224CE DE CD DE +==,∴ DE CD =.∴ OD CD ==∴ CAOD S OD CE =⋅=四边形………………7分26.(1)(2,0); ………………2分 (2)点D 在直线l 上,理由如下: 直线l 的表达式为2(0)y kx k k =->,∵ 当2x =时,220y k k =-=, ………………3分 ∴ 点D (2,0)在直线l 上. ………………4分注:如果只有结论正确,给1分.(3)如图,不妨设点P 在点Q 左侧.由题意知:要使得124x x =+成立,即是要求点P 与点Q 关于直线2x =对称.又因为 函数244y x x =-+的图象关于直线2x =对称,所以 当13t <<时,若存在t 使得124x x =+成立,即要求点Q 在244(2,13)y x x x y =-+><<的图象上. ………………6分根据图象,临界位置为射线2(0,2)y kx k k x =->>过244(2)y x x x =-+>与1y =的交点(3,1)A 处,以及射线2(0,2)y kx k k x =->>过244(2)y x x x =-+>与3y =的交点(2B 处.此时1k =以及k =k的取值范围是1k << (8)分27.(1)① 1,② 2±; ………………2分注:错一个得1分.(2)解:设点C 的坐标为(x ,y ).由于点C 的“引力值”为2,则2x =或2y =,即2x =±,或2y =±. 当2x =时,240y x =-+=,此时点C 的“引力值”为0,舍去; 当2x =-时,248y x =-+=,此时C 点坐标为(-2,8);当2y =时,242x -+=,解得1x =,此时点C 的“引力值”为1,舍去; 当2y =-时,242x -+=-,3x =,此时C 点坐标为(3,-2);综上所述,点C 的坐标为(2-,8)或(3,2-). (5)分注:得出一个正确答案得2分.(3)1d≤≤. (8)分注:答对一边给2分;两端数值正确,少等号给2分;一端数值正确且少等号给1分.28.(1)③;………………1分(2)连接BM,OB,OC,OE.∵ Rt△ABC中,∠ABC=90°,M为AC的中点,∴MA=MB=MC=12AC. ………………2分∴∠A=∠ABM.∵∠A=α,∴∠BMC=∠A+∠ABM=2α.∵点M和点O关于直线BC对称,∴∠BOC=∠BMC=2α. ………………3分∵OC=OB=OE,∴点C,B,E在以O为圆心,OB为半径的圆上.∴12BEC BOCα∠=∠=. ………………4分(3)12MN BE=,证明如下:连接BM并延长到点F,使BM=MF,连接FD.∵∠A=α,∠ABC=90°,∴∠ACB=90°-∠A=90°-α.∴∠DEC=∠ACB=90°-α.∵∠BEC=α,∴∠BED=∠BEC+∠DEC=90°.∵BC=CE,∴∠CBE=∠CEB=α.∵MB=MC,OMNABDCEBD∴∠MBC=∠ACB=90°-α.∴∠MBE=∠MBC+∠CBE=90°.∴∠MBE+∠BED=180°.∴BF∥DE. ………………6分∵BF=2BM,AC=2BM,∴BF=AC.∵AC=DE,∴BF=DE.∴四边形BFDE是平行四边形. ………………7分∴DF=BE.∵BM=MF,BN=ND,∴MN=12 DF.∴MN =12BE. ………………8分注:如果只有结论正确,给1分.解答题解法不唯一,如有其它解法相应给分.。
2018北京海淀初三(上)期中英语

2018北京海淀初三(上)期中英语2018.11学校姓名准考证号一、听后选择(共20分,每小题2分)听对话或独白,根据对话或独白的内容,从下面各题所给的A、B、C三个选项中选择最佳选项。
每段对话或独白你将听两遍。
请听一段对话,完成第1至第2小题。
1.Where is the plan going?A. To the Science Museum.B. To Green Land.C. To Fun Times Park.2. How can the man get there?A. On foot.B. By bus.C. By car.请听一段对话,完成第3至第4小题。
3. When will Mike arrive?A. At 6 pm.B. At 7pm.C. At 8 pm.4. What will Mike take?A. Some flowers.B. A box of candies.C. A bottle of red wine.请听一段对话,完成第5至第6小题。
5. What's the boy's problem?A. He can't remember new words.B. He can't get the pronunciation rightC. He can follow his English teacher.6. What's the woman's advice?A. Joining an English Club.B. Watching English moviesC. Listening to English songs.请听一段对话,完成第7至第8小题。
7. What is the man's research about?A. British history.B. Chinese festivals.C. American culture.8. Where are the speakers?A. In the street.B. At the library.C. At a bank.请听一段独白,完成第9至第10小题。
2018北京市海淀区初三(上)期中数学

18.(1)问题发现:如图 1,如果△ACB 和△CDE 均为等边三角形,点 A、D、E 在同一直线上,连接 BE.则 AD 与 BE
的数量关系为
;∠AEB 的度数为
度.
(2)拓展探究:如图 2,如果△ACB 和△CDE 均为等腰三角形,∠ACB=∠DCE=90°,点 A、D、E 在同一直线上,连
接 BE,判断线段 AE 与 BE 的位置关系,并说明理由.
∴S= BQ·BP=
=-t2+3t(0≤t≤3),
观察只有 C 选项符合, 故选 C. 【点睛】本题考查了二次函数的应用,动点问题的函数图象,熟练掌握二次函数的图象及性质是解题的关键. 二.填空题(共 8 小题,满分 24 分,每小题 3 分) 9. 【答案】(﹣1,2). 【解析】 试题分析:根据“平面直角坐标系中任意一点 P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点, 横纵坐标都变成相反数”解答. 解:根据关于原点对称的点的坐标的特点, ∴点(1,﹣2)关于原点过对称的点的坐标是(﹣1,2). 故答案为:(﹣1,2). 考点:关于原点对称的点的坐标. 10. 【答案】y=﹣x2+4.
= (x2﹣12x)+21
= [(x﹣6)2﹣36]+21
= (x﹣6)2+3,
故 y= (x﹣6)2+3,向左平移 2 个单位后,
得到新抛物线的解析式为:y= (x﹣4)2+3. 故选 D. 【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关 键. 3. 【答案】D 【解析】
3 / 23
22.已知关于 x 的方程 x2﹣2x+m=0 有两个不相等的实数根 x1、x2 (1)求实数 m 的取值范围; (2)若 x1﹣x2=2,求实数 m 的值. 23.解方程:x2+6x﹣2=0. 24.在平面直角坐标系中,平行四边形 ABOC 如图放置,点 A、C 的坐标分别是(0,4),(﹣1,0),将此平行四边形 绕点 O 顺时针旋转 90°,得到平行四边形 A′B′C′D′. (1)若抛物线经过点 C、A、A′,求此抛物线的解析式; (2)点 M 是第一象限内抛物线上的一动点,为点 M 在何处时,△AMA′的面积最大?最大面积是多少?并求出此到 点 M 的坐标.
北京市海淀区2018年-2018年学年度第一学期初三年级第一学期期中学业水平调..

初三第一学期期中学业水平调研英语2017.11学校_______________ 姓名_______________ 准考证号_________________听力理解(共30)一、听后选择(共(共12分,每小题1.5分)一、听后选择听对话或独白,根据对话或独白的内容,从下面各题所给的A、B、C三个选项中选择最佳选项。
每段对话或独白你将听两遍。
请听一段对话,完成第1至第2小题。
1 . What does the man want to buy?A.A scarfB. A sweaterC. A skirt2 . How much does the man pay at last ?A. 30 dollarsB. 40 dollarsC.6 0 dollars请听一段对话,完成第3至第4小题。
3 . What’s the matter with the boy ?A.He has a bad coldB. He lets his parents downC. He worries about atest.4 . What does the girl advise Jim to do ?A. Go to the doctor’sB. Study with friendsC. Take some exercise.请听一段对话,完成第5至第6小题。
5 . Where is the woman going?A.To the libraryB. To the museumC. To the hospital.6 . How long will it take the woman to get there by subway ?A . About 10 minutes B. About 20 minutes C.About 30 minutes请听一段对话,完成第7至第8小题。
7 . Who will take you to the airport ?A. A guideB. A pilotC.A teacher .8 . What is the speech mainly about?A. What to do on the plane.B. When to fly to another city.C. How to deal with fears of flying.二、听后回答(共10分,每小题2分)听对话,根据对话内容笔头回答问题。
2017-2018学年北京市海淀区九年级上期中数学试题含答案

第 1 页 共 14 页初三第一学期期中学业水平调研数学2017.11学校班级___________姓名成绩 一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.一元二次方程3610x x --=的二次项系数、一次项系数、常数项分别是 A .3,6,1B .3,6,1-C .3,6-,1D .3,6-,1-2.把抛物线2y x =向上平移1个单位长度得到的抛物线的表达式为 A .21y x =+ B .21y x =- C .21y x =-+D .21y x =--3.如图,A ,B ,C 是⊙O 上的三个点. 若∠C =35°,则∠AOB 的 大小为 A .35° B .55° C .65° D .70° 4.下列手机手势解锁图案中,是中心对称图形的是A B C D 5.用配方法解方程2420x x -+=,配方正确的是 A .()222x -= B.()222x +=C .()222x -=-D .()226x -=6.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n °后能与原来的图案重合,那么n 的值可能是A .45B .60C .90D .120第 1 页 共 14 页7.二次函数21y ax bx c =++与一次函数2y mx n =+2ax bx c mx n ++>+的x 的取值范围是A .30x -<<B .3x <-或0x >C .3x <-或1x >D .03x <<8.如图1,动点P 从格点A 出发,在网格平面内运动,设点P 走过的路程为s ,点P 到直线l 的距离为d . 已知d 与s 的关系如图2所示.下列选项中,可能是点P 的运动路线的是A B C D二、填空题(本题共24分,每小题3分)9.点P (1-,2)关于原点的对称点的坐标为________. 10.写出一个图象开口向上,过点(0,0)的二次函数的表达式:________.11.如图,四边形ABCD 内接于⊙O ,E 为CD 的延长线上一点. 若∠B =110°,则∠ADE 的大小为________. 12.抛物线21y x x =--与x 轴的公共点的个数是________. 13.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别 为(0,2),(1-,0),将线段AB 绕点O 顺时针旋转,若点A 的对应点A '的坐标为(2,0),则点B 的对应点B '的 坐标为________.14.已知抛物线22y x x =+经过点1(4)y -,,2(1)y ,,则1y ________2y (填“>”,“=”,或“<”).15.如图,⊙O 的半径OA 与弦BC 交于点D ,若OD =3,AD =2, BD =CD ,则BC 的长为________.lllll。
2018-2019学年北京市海淀区九年级(上)期中数学试卷含答案解析

2018-2019学年北京市海淀区九年级(上)期中数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.(2分)(2019•武汉模拟)抛物线y=x2+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=0D.直线y=1 2.(2分)(2018秋•门头沟区期末)点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)3.(2分)(2018秋•海淀区期中)下列App图标中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.4.(2分)(2018秋•海淀区期中)用配方法解方程x2﹣2x﹣4=0,配方正确的是()A.(x﹣1)2=3B.(x﹣1)2=4C.(x﹣1)2=5D.(x+1)2=3 5.(2分)(2018秋•上杭县期末)如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点.若大圆半径为2,小圆半径为1,则AB的长为()A.2B.2C.D.26.(2分)(2018秋•克东县期末)将抛物线y=(x+1)2﹣2向上平移a个单位后得到的抛物线恰好与x轴有一个交点,则a的值为()A.﹣1B.1C.﹣2D.27.(2分)(2018秋•槐荫区期末)如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A.B.C.D.8.(2分)(2018秋•海淀区期中)已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定二、填空题(本题共16分,每小题2分)9.(2分)(2018秋•海淀区期中)写出一个以0和2为根的一元二次方程:.10.(2分)(2001•济南)若二次函数y=ax2+bx+c的图象如图所示,则ac0(填“>”或“=”或“<”).11.(2分)(2018秋•海淀区期中)若关于x的方程x2﹣4x+k﹣1=0有两个不相等的实数根,则k的取值范围是.12.(2分)(2018秋•海淀区期中)如图,四边形ABCD内接于⊙O,E为直径CD延长线上一点,且AB∥CD,若∠C=70°,则∠ADE的大小为.13.(2分)(2018秋•海淀区期中)已知O为△ABC的外接圆圆心,若O在△ABC外,则△ABC是(填“锐角三角形”或“直角三角形”或“钝角三角形”).14.(2分)(2018秋•海淀区期中)在十三届全国人大一次会议记者会上,中国科技部部长表示,2017年我国新能源汽车保有量已居于世界前列.2015年和2017年我国新能源汽车保有量如图所示.设我国2015至2017年新能源汽车保有量年平均增长率为x,依题意,可列方程为.15.(2分)(2018秋•冷水江市期末)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c 与x轴交于(1,0),(3,0)两点,请写出一个满足y<0的x的值.16.(2分)(2018秋•海淀区期中)如图,⊙O的动弦AB,CD相交于点E,且AB=CD,∠BED=α(0°<α<90°).在①∠BOD=α,②∠OAB=90°﹣α,③∠ABCα中,一定成立的是(填序号).三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题5分;第27~28小题,每小题5分)17.(5分)(2018秋•海淀区期中)解方程:x(x+2)=3x+6.18.(5分)(2018秋•海淀区期中)如图,将△ABC绕点B旋转得到△DBE,且A,D,C 三点在同一条直线上.求证:DB平分∠ADE.19.(5分)(2018秋•上杭县期末)下面是小董设计的“作已知圆的内接正三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正三角形.作法:如图,①作直径AB;②以B为圆心,OB为半径作弧,与⊙O交于C,D两点;③连接AC,AD,CD.所以△ACD就是所求的三角形.根据小董设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:在⊙O中,连接OC,OD,BC,BD,∵OC=OB=BC,∴△OBC为等边三角形()(填推理的依据).∴∠BOC=60°.∴∠AOC=180°﹣∠BOC=120°.同理∠AOD=120°,∴∠COD=∠AOC=∠AOD=120°.∴AC=CD=AD()(填推理的依据).∴△ACD是等边三角形.20.(5分)(2018秋•海淀区期中)已知﹣1是方程x2+ax﹣b=0的一个根,求a2﹣b2+2b的值.21.(5分)(2018秋•海淀区期中)生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O为圆心AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为0.8a,顶棚到路面的距离是3.2a,点B到路面的距离为2a.请你求出路面的宽度l.(用含a的式子表示)22.(5分)(2018秋•海淀区期中)如图,在平面直角坐标系xOy中,抛物线y=x2+ax+b 经过点A(﹣2,0),B(﹣1,3).(1)求抛物线的解析式;(2)设抛物线的顶点为C,直接写出点C的坐标和∠BOC的度数.23.(6分)(2016秋•东丽区期末)如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为x m,窗户的透光面积为y m2(铝合金条的宽度不计).(1)求出y与x的函数关系式;(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.24.(6分)(2018秋•海淀区期中)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.(1)求证:DE与⊙O相切;(2)若CD=BF,AE=3,求DF的长.25.(6分)(2018秋•海淀区期中)有这样一个问题:探究函数y的图象与性质.小东根据学习函数的经验,对函数y的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当x≥3时,y=,当x<3时y=;(2)根据(1)中的结果,请在所给坐标系中画出函数y的图象;(3)结合画出的函数图象,解决问题:若关于x的方程ax+1只有一个实数根,直接写出实数a的取值范围:.26.(6分)(2018秋•海淀区期中)在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧).(1)当a=﹣1时,求A,B两点的坐标;(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.①当a=2时,求PB+PC的值;②若点B在直线l左侧,且PB+PC≥14,结合函数的图象,直接写出a的取值范围.27.(7分)(2018秋•海淀区期中)已知∠MON=α,P为射线OM上的点,OP=1.(1)如图1,α=60°,A,B均为射线ON上的点,OA=1,OB>OA,△PBC为等边三角形,且O,C两点位于直线PB的异侧,连接AC.①依题意将图1补全;②判断直线AC与OM的位置关系并加以证明;(2)若α=45°,Q为射线ON上一动点(Q与O不重合),以PQ为斜边作等腰直角△PQR,使O,R两点位于直线PQ的异侧,连接OR.根据(1)的解答经验,直接写出△POR的面积.28.(7分)(2018秋•海淀区期中)在平面直角坐标系xOy中,点A是x轴外的一点,若平面内的点B满足:线段AB的长度与点A到x轴的距离相等,则称点B是点A的“等距点”.(1)若点A的坐标为(0,2),点P1(2,2),P2(1,﹣4),P3(,1)中,点A 的“等距点”是;(2)若点M(1,2)和点N(1,8)是点A的两个“等距点”,求点A的坐标;(3)记函数y x(x>0)的图象为L,⊙T的半径为2,圆心坐标为T(0,t).若在L上存在点M,⊙T上存在点N,满足点N是点M的“等距点”,直接写出t的取值范围.2018-2019学年北京市海淀区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.(2分)(2019•武汉模拟)抛物线y=x2+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=0D.直线y=1【解答】解:∵抛物线y=x2+1,∴抛物线对称轴为直线x=0,即y轴,故选:C.2.(2分)(2018秋•门头沟区期末)点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)【解答】解:点P(2,﹣1)关于原点对称的点P′的坐标是(﹣2,1),故选:A.3.(2分)(2018秋•海淀区期中)下列App图标中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【解答】解:A.此图案是轴对称图形,不符合题意;B.此图案既不是中心对称图形也不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是中心对称图形,不符合题意;故选:B.4.(2分)(2018秋•海淀区期中)用配方法解方程x2﹣2x﹣4=0,配方正确的是()A.(x﹣1)2=3B.(x﹣1)2=4C.(x﹣1)2=5D.(x+1)2=3【解答】解:∵x2﹣2x﹣4=0∴x2﹣2x=4∴x2﹣2x+1=4+1∴(x﹣1)2=5故选:C.5.(2分)(2018秋•上杭县期末)如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点.若大圆半径为2,小圆半径为1,则AB的长为()A.2B.2C.D.2【解答】解:如图:连接OP,AO∵AB是⊙O切线∴OP⊥AB,∴AP=PB AB在Rt△APO中,AP∴AB=2故选:A.6.(2分)(2018秋•克东县期末)将抛物线y=(x+1)2﹣2向上平移a个单位后得到的抛物线恰好与x轴有一个交点,则a的值为()A.﹣1B.1C.﹣2D.2【解答】解:新抛物线的解析式为:y=(x+1)2﹣2+a=x2+2x﹣1+a,∵新抛物线恰好与x轴有一个交点,∴△=4﹣4(﹣1+a)=0,解得a=2.故选:D.7.(2分)(2018秋•槐荫区期末)如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A.B.C.D.【解答】解:A.此图案绕中心旋转36°或36°的整数倍能与原来的图案重合,此选项不符合题意;B.此图案绕中心旋转45°或45°的整数倍能与原来的图案重合,此选项符合题意;C.此图案绕中心旋转60°或60°的整数倍能与原来的图案重合,此选项不符合题意;D.此图案绕中心旋转72°或72°的整数倍能与原来的图案重合,此选项不符合题意;故选:B.8.(2分)(2018秋•海淀区期中)已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定【解答】解:∵二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,且y3<y2<y4,∴抛物线开口向上,对称轴在0和1之间,∴P1(﹣3,y1)离对称轴的距离最大,P3(1,y3)离对称轴距离最小,∴y3最小,y1最大,故选:A.二、填空题(本题共16分,每小题2分)9.(2分)(2018秋•海淀区期中)写出一个以0和2为根的一元二次方程:x2﹣2x=0.【解答】解:∵0+2=2,0×2=0,所以以0和2为根的一元二次方程为x2﹣2x=0,故答案为:x2﹣2x=0.10.(2分)(2001•济南)若二次函数y=ax2+bx+c的图象如图所示,则ac<0(填“>”或“=”或“<”).【解答】解:∵抛物线的开口向下,∴a<0,∵与y轴的交点为在y轴的正半轴上,∴c>0,∴ac<0.故答案为<.11.(2分)(2018秋•海淀区期中)若关于x的方程x2﹣4x+k﹣1=0有两个不相等的实数根,则k的取值范围是k<5.【解答】解:根据题意得△=(﹣4)2﹣4(k﹣1)>0,解得k<5.故答案为k<5.12.(2分)(2018秋•海淀区期中)如图,四边形ABCD内接于⊙O,E为直径CD延长线上一点,且AB∥CD,若∠C=70°,则∠ADE的大小为110°.【解答】解:∵∠C=70°,AB∥CD,∴∠B=110°∴∠ADE=110°.故答案为:110°.13.(2分)(2018秋•海淀区期中)已知O为△ABC的外接圆圆心,若O在△ABC外,则△ABC是钝角三角形(填“锐角三角形”或“直角三角形”或“钝角三角形”).【解答】解:∵锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.又∵O为△ABC的外接圆圆心,若O在△ABC外,∴△ABC是钝角三角形,故答案为钝角三角形.14.(2分)(2018秋•海淀区期中)在十三届全国人大一次会议记者会上,中国科技部部长表示,2017年我国新能源汽车保有量已居于世界前列.2015年和2017年我国新能源汽车保有量如图所示.设我国2015至2017年新能源汽车保有量年平均增长率为x,依题意,可列方程为45.1(1+x)2=172.9.【解答】解:设我国2015至2017年新能源汽车保有量年平均增长率为x,根据题意得:45.1(1+x)2=172.9.故答案为:45.1(1+x)2=172.9.15.(2分)(2018秋•冷水江市期末)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c 与x轴交于(1,0),(3,0)两点,请写出一个满足y<0的x的值2(答案不唯一).【解答】解:∵在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于(1,0),(3,0)两点,∴当y<0的x的取值范围是:1<x<3,∴x的值可以是2.故答案是:2(答案不唯一).16.(2分)(2018秋•海淀区期中)如图,⊙O的动弦AB,CD相交于点E,且AB=CD,∠BED=α(0°<α<90°).在①∠BOD=α,②∠OAB=90°﹣α,③∠ABCα中,一定成立的是①③(填序号).【解答】解:如图,连接OC,设OB交CD于K.∵AB=CD,OD=OC=OB=OA,∴△AOB≌△COD(SSS),∴∠CDO=∠OBA,∵∠DKO=∠BKE,∴∠DOK=∠BEK=α,即∠BOD=α,故①正确,不妨设,∠OAB=90°﹣α,∵OA=OB,∴∠OAB=∠OBA,∴∠OBE+∠BEK=90°,∴∠BKE=90°,∴OB⊥CD,显然不可能成立,故②错误,∵CD=AB,∴,∴,∴∠ABC∠DOBα,故③正确.故答案为①③.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题5分;第27~28小题,每小题5分)17.(5分)(2018秋•海淀区期中)解方程:x(x+2)=3x+6.【解答】解:x(x+2)﹣3(x+2)=0,(x+2)(x﹣3)=0,x+2=0或x﹣3=0,所以x1=﹣2,x2=3.18.(5分)(2018秋•海淀区期中)如图,将△ABC绕点B旋转得到△DBE,且A,D,C 三点在同一条直线上.求证:DB平分∠ADE.【解答】证明:∵将△ABC绕点B旋转得到△DBE,∴△ABC≌△DBE∴BA=BD.∴∠A=∠ADB.∵∠A=∠BDE,∴∠ADB=∠BDE.∴DB平分∠ADE.19.(5分)(2018秋•上杭县期末)下面是小董设计的“作已知圆的内接正三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正三角形.作法:如图,①作直径AB;②以B为圆心,OB为半径作弧,与⊙O交于C,D两点;③连接AC,AD,CD.所以△ACD就是所求的三角形.根据小董设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:在⊙O中,连接OC,OD,BC,BD,∵OC=OB=BC,∴△OBC为等边三角形(三条边都相等的三角形是等边三角形)(填推理的依据).∴∠BOC=60°.∴∠AOC=180°﹣∠BOC=120°.同理∠AOD=120°,∴∠COD=∠AOC=∠AOD=120°.∴AC=CD=AD(在同圆或等圆中,相等的圆心角所对的弦相等)(填推理的依据).∴△ACD是等边三角形.【解答】(1)解:如图,△ACD为所作;(2)证明:在⊙O中,连接OC,OD,BC,BD,∵OC=OB=BC,∴△OBC为等边三角形(三条边都相等的三角形是等边三角形).∴∠BOC=60°.∴∠AOC=180°﹣∠BOC=120°.同理∠AOD=120°,∴∠COD=∠AOC=∠AOD=120°.∴AC=CD=AD(在同圆或等圆中,相等的圆心角所对的弦相等),∴△ACD是等边三角形.故答案为三条边都相等的三角形是等边三角形;在同圆或等圆中,相等的圆心角所对的弦相等.20.(5分)(2018秋•海淀区期中)已知﹣1是方程x2+ax﹣b=0的一个根,求a2﹣b2+2b的值.【解答】解:∵﹣1是方程x2+ax﹣b=0的一个根,∴1﹣a﹣b=0,∴a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.21.(5分)(2018秋•海淀区期中)生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O为圆心AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为0.8a,顶棚到路面的距离是3.2a,点B到路面的距离为2a.请你求出路面的宽度l.(用含a的式子表示)【解答】解:如图,连接OC,AB交CD于E,由题意知:AB=0.8a+3.2a+2a=6a,所以OC=OB=3a,OE=OB﹣BE=3a﹣2a=a,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE2a,∴CD=2CE=4a,所以路面的宽度l为4a.22.(5分)(2018秋•海淀区期中)如图,在平面直角坐标系xOy中,抛物线y=x2+ax+b 经过点A(﹣2,0),B(﹣1,3).(1)求抛物线的解析式;(2)设抛物线的顶点为C,直接写出点C的坐标和∠BOC的度数.【解答】解:(1)∵抛物线y=x2+ax+b经过点A(﹣2,0),B(﹣1,3),∴,解得,∴y=x2+6x+8.(2)∵y=x2+6x+8=(x+3)2﹣1,∴顶点C坐标为(﹣3,﹣1),∵B(﹣1,3).∴OB2=12+32=10,OC2=32+12=10,BC2=[(﹣3)﹣(﹣1)]2+(﹣1﹣3)2=20,∴OB2+OC2=BC2,则△OBC是以BC为斜边的直角三角形,∴∠BOC=90°.23.(6分)(2016秋•东丽区期末)如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为x m,窗户的透光面积为y m2(铝合金条的宽度不计).(1)求出y与x的函数关系式;(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.【解答】解:(1)∵大长方形的周长为6m,宽为xm,∴长为m,∴y=x•(0<x<2),(2)由(1)可知:y和x是二次函数关系,a<0,∴函数有最大值,当x时,y最大m2.答:窗框的长和宽分别为1.5m和1m时才能使得窗户的透光面积最大,此时的最大面积为1.5m2.24.(6分)(2018秋•海淀区期中)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.(1)求证:DE与⊙O相切;(2)若CD=BF,AE=3,求DF的长.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,又∵AB=AC,∴∠1=∠2,∵OA=OD,∴∠2=∠ADO,∴∠1=∠ADO,∴OD∥AC,∵DE⊥AC,∴∠ODF=∠AED=90°,∴OD⊥ED,∵OD过0,∴DE与⊙O相切;(2)解:∵AB=AC,AD⊥BC,∴∠1=∠2,CD=BD,∵CD=BF,∴BF=BD,∴∠3=∠F,∴∠4=∠3+∠F=2∠3,∵OB=OD,∴∠ODB=∠4=2∠3,∵∠ODF=90°,∴∠3=∠F=30°,∠4=∠ODB=60°,∵∠ADB=90°,∴∠2=∠1=30°,∴∠2=∠F,∴DF=AD,∵∠1=30°,∠AED=90°,∴AD=2ED,∵AE2+DE2=AD2,AE=3,∴AD=2,∴DF=2.25.(6分)(2018秋•海淀区期中)有这样一个问题:探究函数y的图象与性质.小东根据学习函数的经验,对函数y的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当x≥3时,y=x,当x<3时y=3;(2)根据(1)中的结果,请在所给坐标系中画出函数y的图象;(3)结合画出的函数图象,解决问题:若关于x的方程ax+1只有一个实数根,直接写出实数a的取值范围:a<0或a≥1或a.【解答】解:(1)当x≥3时,y x;当x<3时,y3;故答案为x,3;(2)根据(1)中的结果,画出函数y的图象如下:(3)根据画出的函数图象,当a<0时,直线y=ax+1与函数y只有一个交点;当a≥1时,直线y=ax+1与函数y=3(x<3)的图象有一个交点,与函数y=x(x ≥3)无交点;当a时,直线y x+1经过点(3,3).故若关于x的方程ax+1只有一个实数根,实数a的取值范围:a<0或a≥1或a,故答案为a<0或a≥1或a.26.(6分)(2018秋•海淀区期中)在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧).(1)当a=﹣1时,求A,B两点的坐标;(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.①当a=2时,求PB+PC的值;②若点B在直线l左侧,且PB+PC≥14,结合函数的图象,直接写出a的取值范围.【解答】解:(1)当a=﹣1时,有y=﹣x2﹣2x.令y=0,得:﹣x2﹣2x=0.解得x1=0,x2=﹣2.∵点A在点B的左侧,∴A(﹣2,0),B(0,0).(2)①当a=2时,有y=2x2﹣2x.令y=0,得2x2﹣2x=0.解得x1=0,x2=1.∵点A在点B的左侧,∴A(0,0),B(1,0).∴PB=2.当x=3时,y C=2×9﹣2×3=12.∴PC=12.∴PB+PC=14.②点B在直线l左侧,∵PB+PC≥14,∴3﹣x+ax2﹣2x≥14,可得:a或a≥2,由题意得A(0,0),B(,0)又A在B的左侧,所以a只可能大于0结合图象和①的结论,可得:a>0时,a≥2,27.(7分)(2018秋•海淀区期中)已知∠MON=α,P为射线OM上的点,OP=1.(1)如图1,α=60°,A,B均为射线ON上的点,OA=1,OB>OA,△PBC为等边三角形,且O,C两点位于直线PB的异侧,连接AC.①依题意将图1补全;②判断直线AC与OM的位置关系并加以证明;(2)若α=45°,Q为射线ON上一动点(Q与O不重合),以PQ为斜边作等腰直角△PQR,使O,R两点位于直线PQ的异侧,连接OR.根据(1)的解答经验,直接写出△POR的面积.【解答】解:(1)①如图所示:②结论:AC∥OM..理由:连接AP∵OA=OP=1,∠POA=60°,∴△OAP是等边三角形.∴OP=P A,∠OP A=∠OAP=60°,∵△PBC是等边三角形,∴PB=PC,∠BPC=60°,∴∠OP A+∠APB=∠BPC+∠APB,即∠OPB=∠APC,∴△OBP≌△ACP(SAS).∴∠P AC=∠O=60°,∴∠OP A=∠P AC,∴AC∥OM.(2)作PH⊥OQ于H,取PQ的中点K,连接HK,RK.∵∠PHQ=∠PRQ=90°,PK=KQ,∴HK=PK=KQ=RK,∴P,R,Q,H四点共圆,∴∠RHQ=∠RPQ=45°,∴∠RHQ=∠POQ=45°,∴RH∥OP,∴S△POR=S△POH.28.(7分)(2018秋•海淀区期中)在平面直角坐标系xOy中,点A是x轴外的一点,若平面内的点B满足:线段AB的长度与点A到x轴的距离相等,则称点B是点A的“等距点”.(1)若点A的坐标为(0,2),点P1(2,2),P2(1,﹣4),P3(,1)中,点A 的“等距点”是P1,P3;(2)若点M(1,2)和点N(1,8)是点A的两个“等距点”,求点A的坐标;(3)记函数y x(x>0)的图象为L,⊙T的半径为2,圆心坐标为T(0,t).若在L上存在点M,⊙T上存在点N,满足点N是点M的“等距点”,直接写出t的取值范围.【解答】解:(1)∵AP1=2﹣0=2,AP2,AP32,∴点A的“等距点”是P1,P3.故答案为:P1,P3.(2)∵点M(1,2)和点N(1,8)是点A的两个“等距点”,∴AM=AN,∴点A在线段MN的垂直平分线上.设MN与其垂直平分线交于点C,点A的坐标为(m,n),如图1所示.∵点M(1,2),点N(1,8),∴点C的坐标为(1,5),AM=AN=n=5,∴CM=3,AC4,∴m=1﹣4=﹣3或m=1+4=5,∴点A的坐标为(﹣3,5)或(5,5).(3)依照题意画出图象,如图2所示.①当⊙T1过点O时,⊙T1与L没有交点,∵⊙T1的半径为2,∴此时点T1的坐标为(0,﹣2);②当⊙T2上只有一个点M的“等距点”时,过点T2作T2M⊥图象L于点M,交⊙T2于点N,过点M作MD⊥x轴于点D,∵图象L的解析式为y x(x>0),∴∠MOT=60°,∠OT2M=30°.∵点T2的坐标为(0,t),∴OM t,DM OM t,T2M t.由“等距点”的定义可知:MN=T2M﹣T2N=DM,即t﹣2t,解得:t.综上所述:t的取值范围为﹣2<t.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年海淀区初三第一学期期中学业水平调研数 学2018.11一、选择题 (本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.抛物线21y x =+的对称轴是 A .直线1x =- B .直线1x = C .直线0x =D .直线1y =2.点(21)P -,关于原点对称的点P '的坐标是A .(21)-,B .(21)--,C .(12)-,D .(12)-,3.下列App 图标中,既不是中心对称图形也不是轴对称图形的是A B C D 4.用配方法解方程2240x x --=,配方正确的是 A .()213x -=B .()214x -=C .()215x -=D .()213x +=5.如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点. 若大圆半径为2,小圆半径为1,则AB 的长为A .B .CD .26.将抛物线2(1)2y x =+-向上平移a 个单位后得到的抛物线恰好与x 轴有一个交点,则a 的值为 A .1-B .1C .2-D .27.下图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是A B C D8.已知一个二次函数图象经过11(3)P y -,,22(1)P y -,,33(1)P y ,,44(3)P y ,四点,若324y y y <<,则1234y y y y ,,,的最值情况是A .3y 最小,1y 最大B .3y 最小,4y 最大C .1y 最小,4y 最大D .无法确定二、填空题(本题共16分,每小题2分)9.写出一个以0和2为根的一元二次方程:________.10.函数2y ax bx c =++的图象如图所示,则ac 0.(填“>”,“=”,或“<”)11.若关于x 的方程2410x x k -+-=有两个不相等的实数根,则k的取值范围是 .12.如图,四边形ABCD 内接于⊙O ,E 为直径CD 延长线上一点,且AB ∥CD ,若∠C =70°,则∠ADE 的大小为________.13.已知O 为△ABC 的外接圆圆心,若O 在△ABC 外,则△ABC 是________(填“锐角三角形”或“直角三角形”或“钝角三角形”).14.在十三届全国人大一次会议记者会上,中国科技部部长表示,2017年我国新能源汽车保有量已居于世界前列.2015年和2017年我国新能源汽车保有量如图所示.设我国2015至2017年新能源汽车保有量年平均增长率为x ,依题意,可列方程为 .15.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于(1,0),(3,0)两点,请写出一个满足0y <的x的值 .2015年和2017年我国新能源汽车保有量统计图保有量/EC16.如图,⊙O 的动弦AB ,CD 相交于点E ,且AB CD =,BED α∠=(090)α︒<<︒.在①BOD α∠=,②90OAB α∠=︒-,③12ABC α∠=中,一定成立的 是 (填序号).三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分) 17.解方程:()236x x x +=+.18.如图,将ABC △绕点B 旋转得到DBE △,且A ,D ,C三点在同一条直线上. 求证:DB 平分ADE ∠.19.下面是小董设计的“作已知圆的内接正三角形”的尺规作图过程.已知:⊙O .求作:⊙O 的内接正三角形.OEDCBA作法:如图,① 作直径AB ;② 以B 为圆心,OB 为半径作弧,与⊙O 交于C ,D 两点; ③ 连接AC ,AD ,CD . 所以△ACD 就是所求的三角形.根据小董设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:在⊙O 中,连接OC ,OD ,BC ,BD ,∵ OC =OB =BC ,∴ △OBC 为等边三角形(___________)(填推理的依据). ∴ ∠BOC =60°.∴ ∠AOC =180°-∠BOC =120°. 同理 ∠AOD =120°,∴ ∠COD =∠AOC =∠AOD =120°.∴ AC =CD =AD (___________)(填推理的依据). ∴ △ACD 是等边三角形.20.已知1-是方程20x ax b +-=的一个根,求222a b b -+的值.21.生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O 为圆心AB 为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A 到顶棚的距离为0.8a ,顶棚到路面的距离是3.2a ,点B 到路面的距离为2a .请你求出路面的宽度l .(用含a 的式子表示)22.如图,在平面直角坐标系xOy 中,抛物线2y x ax b =++经过点()20A -,,()13B -,. (1)求抛物线的解析式;(2)设抛物线的顶点为C ,直接写出点C 的坐标和BOC ∠的度数.23.用长为6米的铝合金条制成如图所示的窗框,若窗框的高为x 米,窗户的透光面积为y平方米(铝合金条的宽度不计).(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围); (2)如何安排窗框的高和宽,才能使窗户的透光面积最大?并求出此时的最大面积.x米24.如图,在△ABC 中,AB AC =,以AB 为直径作⊙O 交BC 于点D ,过点D 作AC 的垂线交AC 于点E ,交AB 的延长线于点F . (1)求证:DE 与⊙O 相切;(2)若CD BF =,3AE =,求DF 的长.25.有这样一个问题:探究函数332x x y -++=的图象与性质.小东根据学习函数的经验,对函数332x x y -++=的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当3x ≥时,y =___________,当3x <时y =____________; (2)根据(1)中的结果,请在所给坐标系中画出函数332x x y -++=的图象;备用图(3)结合画出的函数图象,解决问题:若关于x 的方程3312x x ax -+++=只有一个实数根,直接写出实数a 的取值范围:___________________________.xy–5–4–3–2–1123456–4–3–2–1123456O xy–5–4–3–2–1123456–4–3–2–1123456O26.在平面直角坐标系xOy 中,抛物线22(0)y ax x a =-≠与x 轴交于点A ,B (点A 在点B 的左侧).(1)当1a =-时,求A ,B 两点的坐标; (2)过点(30)P ,作垂直于x 轴的直线l ,交抛物线于点C .①当2a =时,求PB PC +的值;②若点B 在直线l 左侧,且14PB PC +≥,结合函数的图象,直接写出a 的取值范围.27. 已知∠MON =α,P 为射线OM 上的点,OP =1.(1)如图1,︒=60α,A ,B 均为射线ON 上的点,OA =1,OB >OA ,△PBC 为等边三角形,且O ,C 两点位于直线PB 的异侧,连接AC . ①依题意将图1补全;②判断直线AC 与OM 的位置关系并加以证明;(2)若︒=45α,Q 为射线ON 上一动点(Q 与O 不重合),以PQ 为斜边作等腰直角△PQR ,使O ,R 两点位于直线PQ 的异侧,连接OR . 根据(1)的解答经验,直接写出△POR 的面积.图1 备用图28.在平面直角坐标系xOy 中,点A 是x 轴外的一点,若平面内的点B 满足:线段AB的长度与点A 到x 轴的距离相等,则称点B 是点A 的“等距点”.(1)若点A 的坐标为(0,2),点1P (2,2),2P (1,4-),3P (1)中,点A 的“等距点”是_______________;(2)若点M (1,2)和点N (1,8)是点A 的两个“等距点”,求点A 的坐标;(3)记函数3y x =(0x >)的图象为L ,T 的半径为2,圆心坐标为(0,)T t .若在L 上存在点M ,T 上存在点N ,满足点N 是点M 的“等距点”,直接写出t 的取值范围.2018年海淀区初三第一学期期中学业水平调研数 学 参 考 答 案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.220-=x x (答案不唯一) 10.< 11.5<k 12.110° 13.钝角三角形 14.245.1(1)172.9+=x 15.2 (答案不唯一) 16.①③(注:每写对一个得1分) 三、解答题(本题共68分) 17.解法一:解:(2)3(2)x x x +=+,(2)3(2)0+-+=x x x ,(2)(3)0+-=x x , 20x +=或30x -=,12=-x ,23x =.解法二:解:方程化为 260x x --=. 2425b ac ∆=-=.1522b x a -±==, 12=-x ,23x =.18.证明:∵ 将△ABC 绕点B 旋转得到△DBE , ∴△ABC ≌△DBE∴BA=BD .∴∠A =∠ADB . ∵∠A =∠BDE , ∴ ∠ADB =∠BDE . ∴ DB 平分∠ADE .EDCBA19. 解:(1)(2)三条边都相等的三角形是等边三角形.在同圆或等圆中,相等的圆心角所对的弦相等.20.解:∵1-是方程20+-=x ax b 的一个根, ∴ 10--=a b . ∴1+=a b . ∴222a b b -+()()2a b a b b =+-+2a b b =-+a b =+ 1= .21.解:如图,连接OC .由题意知0.8 3.226=++=AB a a a a .3OC OB a ∴==. ∴=-=OE OB BE a .由题意可知AB CD ⊥于E,∴2CDCE =.在Rt OCE △中,===CE .CD ∴=.22.解:(1)∵抛物线2y x ax b =++经过点(20)(13)A B --,,,, ∴4201 3.a b a b -+=⎧⎨-+=⎩,解得68.a b=⎧⎨=⎩,∴268y x x =++.(2)(3,1)C --,90BOC ∠=︒.23.(1)2332=-+y x x ; 注:没有化简不扣分.(2)当31322()2b x a =-=-=⨯-时,y 有最大值24933424()2ac b a --==⨯-. 答:当窗框的高为1米,宽为32米时,窗户的透光面积最大,最大面积为32平方米. 24.(1)证明:连接OD .∵AB 是⊙O 的直径, ∴90ADB ∠=°. ∴AD BC ⊥. 又∵AB AC =, ∴12∠=∠. ∵OA OD =, ∴2ADO ∠=∠. ∴1ADO ∠=∠. ∴OD ∥AC . ∵DE AC ⊥于点E , ∴=90ODF AED =︒∠∠. ∴OD ⊥ED . ∴DE 与⊙O 相切. (2)∵AB AC =,AD BC ⊥,∴12∠=∠,CD BD =. ∵CD BF =, ∴=BF BD . ∴3F =∠∠.∴4323F =∠+∠=∠∠. ∵OB OD =, ∴5=423=∠∠∠. ∵90ODF =︒∠,∴330F ==︒∠∠,4560=∠=︒∠. ∵90ADB =︒∠, ∴2130∠=∠=︒.∴2F =∠∠. ∴ DF AD =.∵130=︒∠,90AED =︒∠, ∴2AD ED =.∵222AE DE AD +=,3AE =,∴AD =∴DF =25.(1)化简函数解析式,当3x ≥时,y =x ,当3x <时y = 3 ;(2)根据(1)中的结果,画出函数332x x y -++=的图象如下:(3)0<a 或1≥a 或23=a . (注:每得出一个正确范围得1分) 26.(1)当1=-a 时,有22y x x =--.令0y =,得220x x --=. 解得120,2x x ==-. ∵点A 在点B 的左侧, ∴(20)A -,,(00)B ,.(2)①当2=a 时,有222y x x =-.令0y =,得2220x x -=.解得1201x x ==,. ∵点A 在点B 的左侧, ∴(00)A ,,(10)B ,. ∴2PB =.当3=x 时,292312=⨯-⨯=c y . ∴12PC =. ∴14PB PC +=. ②59≤-a 或2≥a . 27.(1)①依题意,将图1补全;②AC OM ∥.证明:连接AP∵1OA OP ==,︒=60α ,∴△OAP 是等边三角形. ∴=60OP PA OPA OAP ==︒,∠∠. ∵△PBC 是等边三角形, ∴=60PB PC BPC =︒,∠.∴OPA APB BPC APB +=+∠∠∠∠.即OPB APC =∠∠. ∴△OBP ≌△ACP . ∴60PAC O ==︒∠∠. ∴OPA PAC =∠∠. ∴AC OM ∥.(2)14POR S =△. 28.(1)1P ,3P ;(2)∵点()12M ,和点()18N ,是点A 的两个“等距点” , NCMPB A O OABPMCN∴AM AN =.∴点A 在线段MN 的垂直平分线上.设MN 与其垂直平分线交于点C ,()A A A x y ,,∴(15)C ,,==5A AM AN y =. ∴=3CM .∴4AC ==.∴点A 的坐标为(35)-,或(55),. (3)24t -<≤.。