双级主减速器课件
双级主减速器课件.

9
结构型式
特
点
应用
1、单 级式
按 齿 轮 副 数 目 分
结构简单、质量小、成本低;但 i0≤7 的 轿 车 中 i0增大受离地间隙限制 轻型货车
2 双 级 式
在保证离 (a)第一级锥齿轮+第二级圆柱齿轮 地间隙相 同时可获 整 得较大的 (b) 第一级锥齿轮+第二级行星齿轮 体 i0,但结 式 构复杂、 质量大、 (c)第一级圆柱齿轮+第二级锥齿轮 成本较高
从动齿轮:调垫片6
(将卸下的垫片加到13 以保证中间轴承原先调好的预紧度不被破坏。)
分开式双级主减速器:轮边减速器
主要用于一些要求传动比和离地间隙较大的越野车,重型货车上。把双级主
减速器的第二级减速齿轮机构制成同样的两套,分装在两侧驱动轮边。 第一级是螺旋锥齿轮: i1= Z从锥 / Z主锥
第二级是行星齿轮机构: i行= 1+Z固定 / Z主动
行星架 轮毂
8
采用轮边减速器的优点:
Z Z 9 i总= i1× i行= × (1+ 6 ) Z8 Z3
行星齿轮轴
行星齿轮机构
1、可使驱动桥的主减速器(第一级)尺寸减小,
保证了足够的离地间隙。 2、可获得较大 的主传动比。(i总= i1× i行) 3、由于半轴在轮边减速器(第二级)之前,所以承受的 转矩大为减小,因而半轴和差速器等零件尺寸可以减小。 缺点:需要两套轮边减速器,结构较复杂,制造成本较高。
行星齿轮机构
轮毂
整体式 3.分类: 分开式
分开式特点: 部分零件(半轴、差速器)承载小, ∴ 结构尺寸可做小些。
整体式双级主减速器: 第一级:螺旋锥齿轮 第二级:斜齿园柱齿轮
1、支承方式——悬臂式。原因:(1)第一级 i小,从动齿轮直径小,轴承 布置困难。(2)第一级 i小,主动锥齿轮及轴颈有可能做得较大,同时
双级主减速器设计资料

第1章绪论1.1概述1.1.1主减速器的概述主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。
对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。
由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力[1]。
对于载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而主减速器在传动系统中起着非常重要的作用。
随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于重型载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的, 装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N m以上,百公里油耗是一般都在34L左右。
为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。
因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的传动系便成了有效节油的措施之一。
所以设计新型的主减速器已成为了新的课题。
1.1.2主减速器设计的要求驱动桥中主减速器的设计应满足如下基本要求:1、所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。
2、外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件工作平稳,噪音小。
3、在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。
4、在保证足够的强度、刚度条件下,应力求质量小,以改善汽车平顺性。
5、结构简单,加工工艺性好,制造容易,拆装、调整方便。
本设计主要研究双级主减速器的结构与工作原理,并对其主要零部件进行了强度1-半轴2-圆锥滚子轴承3-支承螺栓4-主减速器从动锥齿轮5-油封6 —主减速器主动锥齿轮7 —弹簧座8—垫圈9—轮毂10-调整螺母图1.1驱动桥1.1.3主减速器型式及其现状主减速器的结构形式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安装(1)主减速器齿轮的类型在现代汽车驱动桥中,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。
双级主减速器驱动桥

目录1前言 (2)2 总体方案论证 (3)2.1非断开式驱动桥 (3)2.2断开式驱动桥 (4)2.3多桥驱动的布置 (5)3 主减速器设计 (6)3.1主减速器结构方案分析 (7)3.2主减速器主、从动锥齿轮的支承方案 (8)3.3主减速器锥齿轮设计 (9)3.4主减速器锥齿轮的材料 (12)3.5主减速器锥齿轮的强度计算 (12)3.6主减速器锥齿轮轴承的设计计算 (14)4 差速器设计 (19)4.1差速器结构形式选择 (20)4.2普通锥齿轮式差速器齿轮设计 (20)4.3差速器齿轮的材料 (23)4.4普通锥齿轮式差速器齿轮强度计算 (23)5 驱动车轮的传动装置设计 (24)5.1半轴的型式 (24)5.2半轴的设计与计算 (25)5.3半轴的结构设计及材料与热处理 (27)6 驱动桥壳设计 (28)6.1桥壳的结构型式 (29)6.2桥壳的受力分析及强度计算 (29)7 结论 (31)致谢 (31)附件清单 (32)1前言本课题是对货车驱动桥的结构设计。
故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。
驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。
汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。
汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。
另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。
例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。
主减速器.ppt

一、普通差速器
• 1.型式:锥齿轮式 结构简单、紧凑、工作平稳。 最广泛应用。图11、12
柱齿轮式 图18、19 • 2.锥齿轮式构造:12-13
3.工作原理
• ①当汽车直线行驶时 GIF-20
• 路面阻力反映到差速机构上,使得行星齿轮与半 轴齿轮啮合点A、B受相等(PA=PB),由于行星齿 轮相当于一个等臂的杠杆,则
悬臂式 ∧∧
2.主动锥齿轮支承形式:跨置式
•∧ ∧
• 轿车上使用的都是单级主减速器 • 图7-7上海桑塔纳轿车单级主减速
器 • 图7-8奥迪100轿车单级主减速器
第三节 差速器
• 1.为什么要装差速器?GIF-17 • ①原因:转弯、路面不平会造成两轮滚动距离不同。 • ②形式:
• a.轮间差速器 • 满足左右两轮实现不同转速 • b.轴间差速器 • 满足前后两轴实现不同转速
n2=n0 - △n , 但仍有n1+ n2=2n0
4.差速器运动特性方程式n1+ n2=2n0
• ⑴ n1=0, n2 =2n0(如一个车轮掉入泥坑 打滑,另一个车轮在地面不转或一边 半轴断)
• ⑵n0=0, n1=-n2(如顶起汽车,传动 轴制动,顺时针转动一侧车轮,另一 个车轮会以相同的转速逆时针转动)
• MA=PA×r • MB=PB×r • MA=MB (大小相等,方向相反) • 所以,行星齿轮没有自转,
• 只有公转,差速器不起差速作用 。
此时,n1=n2=n0 且,n1=n2=2n0
②当汽车转弯行驶时
• 路面阻力反映到差速机构上,使得行星齿 • 轮与半轴齿轮啮合点A、B受力不相等 • 如图汽车右转弯,(PA<PB), • 由于行星齿轮相当于一个 等臂的杠杆,则 • MA=PA×r ,MB=PB×r • MA<MB 在MB-MA的作用下, 行星齿轮发生自转, 同时也有公转,差速器起差速作用 。 此时,n1=n0+△n
双级主减速器汇总

人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
行星架 轮毂
8
采用轮边减速器的优点:
Z Z 9 i总= i1× i行= × (1+ 6 ) Z8 Z3
行星齿轮轴
行星齿轮机构
1、可使驱动桥的主减速器(第一级)尺寸减小,
保证了足够的离地间隙。 2、可获得较大 的主传动比。(i总= i1× i行) 3、由于半轴在轮边减速器(第二级)之前,所以承受的 转矩大为减小,因而半轴和差速器等零件尺寸可以减小。 缺点:需要两套轮边减速器,结构较复杂,制造成本较高。
双级主减速器
教学目标
• 知识目标:掌握CA1091型载货汽车双级主 减速器的结构 • 能力目标:认识双级主减速器
复习导入:
• 1.主减速器有何功用?它可以分为几种类型?
由两对传动齿轮组成, i0大( i0= 712), 1.特点: hmin 。但结构较复杂,尺寸、质量较大, 制造、维修难度↑ , 成本较高 2.应用: 用于中、重型货车,越野车,大客车
9
结构型式
特
点
应用
1、单 级式
按 齿 轮 副 数 目 分
结构简单、质量小、成本低;但 i0≤7 的 轿 车 中 i0增大受离地间隙限制 轻型货车
2 双 级 式
在保证离 (a)第一级锥齿轮+第二级圆柱齿轮 地间隙相 同时可获 整 得较大的 (b) 第一级锥齿轮+第二级行星齿轮 体 i0,但结 式 构复杂、 质量大、 (c)第一级圆柱齿轮+第二级锥齿轮 成本较高
机械设计课程设计-减速器双级ppt课件

40d1 60
(3)、低速级齿轮传动中心距与高速级齿轮传动中大齿轮 齿顶圆直径的关系要求:
a2da2/230 .
4、另外注意指导书中的其它相关要求:
1)各级传动件的尺寸应协调、结构匀称合理; 2)若采用斜齿圆柱齿轮传动,中心距为0或5结尾的整数; 3)尽量使传动装置外廓尺寸紧奏或重量轻,且最好装配图能按1: 1的比例在0号图上能画出;
.
阶段及主要 工作
1.设计准备
2.传动装置的 总体设计
3.主要传动零 件设计计算
4.装配草图设 计与绘制 5.装配工作图 绘制 6.零件工作图 设计与绘制 7.编写设计计 算说明书
8.总结与答辩
机械设计课程设计进度表
2011-2012学年第2学期(2012.06.25-2012.07.13)
1
2
3
.
设计对象:齿轮减速器 减速器是连接原动机和工作机的中间独立
的机械传动装置,用来降低转速、增大扭矩, 常见类型及各自特点参见教材和机设指导书。
设计题目:带式输送机的机械传动装置 ——展开式二级圆柱齿轮减速器
.
具体工作:
1.减速器装配草图和装配正图各1张 (0号图纸);
2.重要零件图若干张(轴、齿轮等); 3.设计计算说明书一份(≥20页)。
.
第一部分 第二部分 第三部分 第四部分 第五部分 第六部分
概述 传动装置的总体设计 传动零件设计 装配草图绘制 装配正图及零件图绘制 计算说明书
.
此设计是工科专业在学习《机械设计》后进行的一 次较全面的综合设计训练,其目的是:
1.巩固所学理论知识,应用于解决实际工程问题; 2.掌握常用机械零件、机械传动装置的设计过程和 方法; 3.进行计算、绘图、正确应用设计资料、手册、标 准和规范以及使用经验数据的能力训练。
重型汽车双级主减速器设计

1 引言1.1 概述主减速器是汽车驱动桥中的重要部件。
驱动桥主要包括主减速器总成、差速器、驱动桥壳等。
主减速器的功用是将输入的转矩增大并相应降低转速,以及当发动机纵向布置时还具有改变旋转方向的作用。
为满足不同的使用要求,主减速器的结构形式也是不同的。
按参加减速传动的齿轮副数目分,有单级式主减速器和双级式主减速器,在双级式主减速器中,若第二级减速器齿轮有两对,并分置于两侧车轮附近,实际上成为独立部件,则称为轮边减速器。
按主减速器传动比挡数分,有单速式减速器和双速式减速器,前者的传动比是固定的,后者有两个传动比供驾驶员选择,以适应不同行驶条件的需要。
按齿轮副结构形式分,减速器有圆柱齿轮式、圆锥齿轮式和准双曲面齿轮式等。
1.2 主减速器发展趋势20世纪70-80年代,世界上减速器技术有了很大的发展,且与新技术革命的发展紧密结合。
通用减速器的发展趋势如下:①高水平、高性能。
圆柱齿轮普遍采用渗碳淬火、磨齿,承载能力提高4倍以上,体积小、重量轻、噪声低、效率高、可靠性高。
②积木式组合设计。
基本参数采用优先数,尺寸规格整齐,零件通用性和互换性强,系列容易扩充和花样翻新,利于组织批量生产和降低成本。
③型式多样化,变型设计多。
摆脱了传统的单一的底座安装方式,增添了空心轴悬挂式、浮动支承底座、电动机与减速器一体式联接,多方位安装面等不同型式,扩大使用范围。
促使减速器水平提高的主要因素有:①理论知识的日趋完善,更接近实际(如齿轮强度计算方法、修形技术、变形计算、优化设计方法、齿根圆滑过渡、新结构等)。
②采用好的材料,普遍采用各种优质合金钢锻件,材料和热处理质量控制水平提高。
③结构设计更合理。
④加工精度提高到ISO5-6级。
⑤轴承质量和寿命提高。
⑥润滑油质量提高。
自20世纪60年代以来,我国先后制订了JB1130-70《圆柱齿轮减速器》等一批通用减速器的标淮,除主机厂自制配套使用外,还形成了一批减速器专业生产厂。
目前,全国生产减速器的企业有数百家,年产通用减速器25万台左右,对发展我国的机械产品作出了贡献。
双级减速机

注意事项
双级减速机安装的方式可分卧式减速机与立式减速机两种,其中卧式减速机又分为蜗杆止置式与下置式两种 形式,其传动比一般在1/10~1/80之间。当蜗杆圆周速度小于4m/s时,通常采用蜗杆在下形式。当蜗杆圆周速度 大于4m/s时,通常采用蜗杆在上的形式。当蜗杆在下时,油面高度应当低于蜗杆螺纹的根部,并不超过蜗杆轴上 滚动轴承的最低滚珠中心,以免增加功率损耗。当蜗杆在上时,蜗轮浸入油中深度也以超齿高不多为限。
因为减速机又为分单级与双级两种,因此速比就会不相同。 速比:1/10~1/80单级型速比:1/100~1/3600双级型 而RV系列减速机的速比,单级与双级的速比都同为:7.5、10、15、20、25、30、40、50、60、80、100等。
双级减速器的齿轮类型
螺旋锥齿轮传动 双曲面齿轮传动
圆柱齿轮传动 蜗杆传动
由此可见。润滑是保证蜗轮蜗杆减速机正常工作的最基本条件,因为润滑油能在蜗轮蜗杆的接触面上形成油 膜,从而避免金属间的直接接触,能有效地降低磨损。这对于降低磨损,提高传动效率,延长蜗轮蜗杆减速机的 使用寿命,保证减速机平稳的工作。
谢谢观看
3、双曲面齿轮传动的主动齿轮直径及螺旋角都较大,所以相啮合轮齿的当量曲率半径较相应的螺旋锥齿轮为 大,其结果使齿面的接触强度提高。
4、双曲面主动齿轮的啮合角变大,则不产生根切的最小齿数可减少,故可选用较少的齿数,有利于增加传动 比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
7 < i0≤12 的 中 、重型货车、 越野汽车和大 客车
分 开 式
(d)中央主减速器 + 轮边减速器
保证具有较大传动比条件下, 越野车、重型 驱动桥中央部分尺寸较小,离 矿用自卸车、 地间隙较大 重型车
a
b
c
d
小结
• 1.CA1092型载货汽车双级主减速器第一级 传动为( )和( );第二级传动 为( )和( )。 • 2.双级主减速器可以分为( )和( )。
从动齿轮:调垫片6
(将卸下的垫片加到13 以保证中间轴承原先调好的预紧度不被破坏。)
分开式双级主减速器:轮边减Fra bibliotek器主要用于一些要求传动比和离地间隙较大的越野车,重型货车上。把双级主
减速器的第二级减速齿轮机构制成同样的两套,分装在两侧驱动轮边。 第一级是螺旋锥齿轮: i1= Z从锥 / Z主锥
第二级是行星齿轮机构: i行= 1+Z固定 / Z主动
行星架 轮毂
8
采用轮边减速器的优点:
Z Z 9 i总= i1× i行= × (1+ 6 ) Z8 Z3
行星齿轮轴
行星齿轮机构
1、可使驱动桥的主减速器(第一级)尺寸减小,
保证了足够的离地间隙。 2、可获得较大 的主传动比。(i总= i1× i行) 3、由于半轴在轮边减速器(第二级)之前,所以承受的 转矩大为减小,因而半轴和差速器等零件尺寸可以减小。 缺点:需要两套轮边减速器,结构较复杂,制造成本较高。
双级主减速器
教学目标
• 知识目标:掌握CA1091型载货汽车双级主 减速器的结构 • 能力目标:认识双级主减速器
复习导入:
• 1.主减速器有何功用?它可以分为几种类型?
由两对传动齿轮组成, i0大( i0= 712), 1.特点: hmin 。但结构较复杂,尺寸、质量较大, 制造、维修难度↑ , 成本较高 2.应用: 用于中、重型货车,越野车,大客车
9
结构型式
特
点
应用
1、单 级式
按 齿 轮 副 数 目 分
结构简单、质量小、成本低;但 i0≤7 的 轿 车 中 i0增大受离地间隙限制 轻型货车
2 双 级 式
在保证离 (a)第一级锥齿轮+第二级圆柱齿轮 地间隙相 同时可获 整 得较大的 (b) 第一级锥齿轮+第二级行星齿轮 体 i0,但结 式 构复杂、 质量大、 (c)第一级圆柱齿轮+第二级锥齿轮 成本较高
行星齿轮机构
轮毂
整体式 3.分类: 分开式
分开式特点: 部分零件(半轴、差速器)承载小, ∴ 结构尺寸可做小些。
整体式双级主减速器: 第一级:螺旋锥齿轮 第二级:斜齿园柱齿轮
1、支承方式——悬臂式。原因:(1)第一级 i小,从动齿轮直径小,轴承 布置困难。(2)第一级 i小,主动锥齿轮及轴颈有可能做得较大,同时
尽可能将两轴承的距离加大,可得到足够的支承刚度。
2、轴承预紧度调整: (1)主动齿轮:调垫片8。 (2)中轴:调垫片6、13。
啮和印迹 调整垫 片7
轴承调整垫片 8
加垫片:预 减垫片:预
轴承调整垫片 6、13 (3)差速器上从动齿轮:调螺母3 。 加垫片:预 减垫片:预 轴承调整螺母 3 旋进:预
3、啮和调整:主动齿轮:调垫片7;旋出:预