工程力学第13章(应力状态分析)
《工程力学》实验应力分析

r 1 2 3 4 2(1 )M
上下表面
M
r 2(1 )
E M
E r 2(1 )
R3 R4
R2 t2
R1
B
R1
R2
A
C
R4
R3
D
21
13.3 测量电桥的接法及其应用
例2 通过应变测量(1)求偏心载荷F;(2) 求e.试确定
布片、接桥方案。截面bh
y
e
y
解:(1)测F
z x
F Fe F 分析:
Me
Me
25
13.4 二向应力状态下主应力方向已知时的应力测定
1
3
B
R1
R2
A
C
R4
R3
D
解: 应力分析
1 3
沿与轴线成450方向为主方向,
故沿主应力方向布片.
采用全桥接法.
r 1 2 3 4 41
1
r
4
26
13.4 二向应力状态下主应力方向已知时的应力测定
1
3
B
R1
R2
A
C
R4
工程力学
第13章 实 验 应 力 分 析
1
第13章 实验应力分析
§13.1 概述 §13.2 电测应力分析的基本原理 §13.3 测量电桥的接法及应用 §13.4 二向应力状态下主应力已知时
的应力测定 §13.5 二向应力状态下主应力未知时
的应力测定
2
13.1 概 述
一. 为什么要进行实验应力分析
例1 已知E, , 测定max, 试确定布片、接桥方案。
M
R1
M
解:第一方案,
R2
工程力学中的杆件受力分析和应力分布

工程力学中的杆件受力分析和应力分布工程力学是研究物体在受力作用下的力学行为及其工程应用的学科。
在工程力学中,对于杆件的受力分析和应力分布是非常重要的内容。
杆件是指在力的作用下只能沿着轴向伸缩的直细长构件,通常用来承受拉力或压力。
在本文中,我们将探讨杆件受力分析的方法以及应力分布的计算方式。
一、杆件受力分析在杆件受力分析中,主要考虑的是杆件所受的外力作用以及杆件内部所存在的支反力。
首先,我们需要明确杆件所受的外力有哪些类型。
常见的外力包括拉力、压力、剪力和扭矩等。
在分析杆件受力时,我们通常采用自由体图的方法,即将杆件与其它部分分开,将作用在该部分上的所有外力和内力用矢量图表示出来。
对于杆件受力分析,我们需要应用平衡条件,即受力平衡和力矩平衡条件。
受力平衡条件要求受力杆件在平衡状态下,合力为零,合力矩为零。
力矩平衡条件要求受力杆件在平衡状态下,合力矩为零。
通过应用这些平衡条件,我们可以得到杆件内部的支反力以及所受外力的大小和方向。
二、应力分布计算一旦我们确定了杆件所受的外力以及杆件内部的支反力,接下来我们需要计算杆件上的应力分布情况。
应力是指杆件某一截面上内部单位面积上所承受的力的大小。
常见的应力类型有拉应力、压应力和剪应力等。
在杆件内部,由于受力的存在,会导致杆件内部存在正应力和剪应力。
正应力是指作用在截面上的力沿截面法线方向的分量,而剪应力是指作用在截面上的力沿截面切线方向的分量。
根据杆件破坏的准则,我们通过计算截面上的应力分布来评估杆件的强度是否满足要求。
在计算杆件的应力分布时,一种常用的方法是应用梁弯曲理论。
根据梁弯曲理论,我们可以通过计算杆件的弯矩和截面形状来确定截面各点上的应力分布。
杆件的弯矩可以通过受力分析和力矩平衡条件来计算,而截面形状可以通过测量或者根据设计参数确定。
另外,我们还可以利用有限元分析方法来计算杆件的应力分布。
有限元分析是一种数值计算方法,通过将复杂的结构分解为许多小的单元,然后通过数值模拟的方式来计算每个单元上的应力分布。
《工程力学》课程的知识体系和内容结构

《工程力学》课程的知识体系和内容结构1、课程的知识体系《工程力学》是一门是既与工程又与力学密切相关的技术基础课程,在基础课程和专业课程之间起桥梁作用。
通过本课程的学习,使学生掌握工程力学的理论和方法,具备从力学角度对工程问题的思维能力和初步解决此类问题的实践能力,并且获得大量的工程背景知识,为学习后续课程、掌握机械等工程设计技术打下牢固的基础。
本课程涵盖了“静力学”和“材料力学”两部分的内容。
“静力学”主要研究刚体的受力和平衡的规律;“材料力学”主要研究构件强度、刚度和稳定性的问题,在保证构件既安全适用又经济的条件下,为合理设计和使用材料提供理论依据。
静力学主要研究的问题:物体的受力分析、力系的简化和力系的平衡条件。
材料力学主要研究的问题:杆件在发生拉伸或压缩、剪切、扭转和弯曲基本变形时内力、应力和变形的计算,在各种基本变形下的强度和刚度计算;应力状态的基本理论;材料在复杂应力作用下破坏或失效规律及其应用;压杆稳定性问题。
2、课程的内容结构第一章介绍静力学的基本概念,常见的几类典型约束及约束力的特征,物体的受力分析。
第二章介绍汇交力系的简化和平衡条件。
第三章介绍力偶的概念及其对刚体的作用效应,力偶系的合成与平衡条件。
第四章介绍平面任意力系的简化、平衡条件和平衡方程,刚体系的平衡问题求解。
第五章介绍空间任意力系的简化和平衡条件。
第六章静力学专题:桁架杆件内力的求解;滑动摩擦、摩擦角和自锁现象、以及滚动摩擦的概念。
第七章介绍材料力学的研究对象、基本假设、外力和内力、应力和应变的概念。
第八章介绍拉压杆的内力、应力、变形及材料在拉伸与压缩时的力学性能,拉压杆的强度和刚度问题,简单静不定问题,拉压杆连接部分的强度计算。
第九章介绍圆轴扭转的外力、内力、应力与变形,圆轴的强度和刚度计算,静不定轴的扭转问题。
第十章介绍梁的外力和内力(剪力与弯矩),内力图的绘制。
第十一章介绍对称弯曲时梁的正应力、切应力、强度计算和梁的合理强度设计。
应力分析(Stress Analysis)

推导原理: 静力平衡条件: 静力矩平衡条件:
X 0, Y 0, Z 0
M
x
0, M y 0, M z 0
2 1 f ( x ) 1 f ( x) 泰勒级数展开: f ( x dx) f ( x) ...... 2 1! x 2! x
2 2 P 总应力 8 8 8 八面体上的正应力与塑性变形无关,剪应力与塑性变形有 关。
八面体应力的求解思路:
ij (i, j x, y, z) 1, 2 , 3 8 , 8
I1, I 2
因为
2 2 8 ( I1 3I 2 ) 3
ij ij m
' ij
(i,j=x,y,z)
为柯氏符号。
1 其中 m ( x y z ) 即平均应力, 3
即
' x xy xz x xy xz 1 0 0 . . ' 0 1 0 y yz y yz m ' . . . . z z 0 0 1
' ' ' ' ' ' I1' x y z 1 2 3 0
' ' ' ' ' ' I2 1 2 2 3 3 1' (体现变形体形状改变的程度)
' ' ' ' I3 1 2 3 const
§1.4 应力平衡微分方程
直角坐标下的应力平衡微分方程* ij 0 i
讨论:1. 等效的实质? 是(弹性)应变能等效(相当于)。 2. 什么与什么等效? 复杂应力状态(二维和三维)与简单应力状态(一维)等效 3. 如何等效? 等效公式(注意:等效应力是标量,没有作用面)。 4. 等效的意义? 屈服的判别、变形能的计算、简化问题的分析等。
工程力学-应力状态

sy
n
例1 已知 sx= –100MPa、sy =50MPa 、tx = – 60MPa,a = –30º
cos[2 ( 30)] ( 60)sin[2 ( 30)]
114.5MPa
τ 30
上海应用技术学院
τ T WP
此时不适用基本变形下的强度条件,应同时考虑s 、t 的影响。 又如:受内压容器筒壁
上海应用技术学院
sy
A 筒壁某点A处应力: sx 、sy,为双向受拉状态。 又如:火车车轮与铁轨接触处表层
4
sx
s s
A
s
A点应力:为三向受压状态。 此外:在通过A点不同斜截面上的应力是不同的,将影响到构 件的破坏形式。
s
OC CFcos2 α DFsin2 α σx σy σx σy cos2 α τ x sin2 α σ α 2 2
上海应用技术学院
证明: H点横坐标: OM 纵坐标: MH CD与s 轴夹角为2a0
OM σx σy 2 σx σy 2 cos2 α τ x sin2 α σ α
ty
e
cos2 α τ x sin2 α
b
sy
切线方向上: Σ F 0 τ
τ α d A (σ x d A cos α )sin α ( τ x d A cos α )cos α (σ y d A sin α )cos α ( τ y d A sin α )sin α 0
∴ τ α σ x sin α cos α σ y sin α cos α τ x cos2 α τ y sin 2 α
上海应用技术学院
名师讲义【段乐珍】工程力学第13章 梁的挠度和刚度计算

2
2 EIw(l) 0
EIw
1 6
qx3
ql 4
x2
C1
1 24
ql 4
ql 12
l3
C1l
D1
0
EIw
1 24
qx 4
ql 12
x3
C1x
D1
C1
ql 3 24
5 梁的转角方程和挠曲线方程
EIq 1 qx3 ql x2 ql3
6
4 24
EIw 1 qx4 ql x3 ql3 x 24 12 24
l
D2
C2l
C2l D2 0
D2
7ql 4 24 16
,
C2
7ql 3 24 16
C1
q 48
4
l3
7ql 3 24 16
9ql 3 24 16
EIw1
q 24
x4
3ql 48
x3
C1x
D1
EIw2
1 48
ql
l
x3
C2 x
D2
EIw1
l 2
q 24 16
l4
3ql 48 8
l3
C1
l 2
when w1 0
Fb x2 Fb l2 b2 0 2l 6l
l2 b2 a l b a a 2b
x
3
3
3
if a b then x a
wmax
w1(x )
9
Fb 3EIl
l2 b2 3
if a b then x a
wmax
Fl 3 48EI
例、试用积分法求图示梁的转角方程和挠曲线方程,并求 A
载荷分解如图eipapaeiqaqa24qcqlpcpa叠加qapaeipapaeiqaqaeiqlqc24eipaqapaeieiqaqaqleieieiqaqleiei27155256qlplqleieiei3511309256qlqlqleieiei136用逐段刚性法求阶梯悬臂梁自由端的挠度和转角把变形后的ac刚性化把未变形cb刚性化fleieieieieieiflei求cb的变形把变形后的ac刚化此时cb可看成以c为固定端的悬臂梁fleieieiei把变形后的ac刚性化b截面的位移等于ac段变形引起cb的刚性位移和cb自身弯曲引起的位移之和482416flflfleieieiqlqlqleieiei137用逐段刚性法求解简支外伸梁的挠度把未变形bc刚性化把变形后的ab刚性化faleileifaleieieiei求bc的变形把变形后的ab刚化此时bc可看成以b为固定端的悬臂梁c截面的位移等于ab段变形引起bc的刚性位移和bc自身弯曲引起的位移alfaeieieialfaeieiea抗扭刚度135梁的刚度条件与合理刚度设计1353511309256qlqlqleieiei三种计算max设计截面尺寸设计载荷a01m200mm例空心圆杆d40mmd80mme210gpa工程规定c点的wl000001b点的q0001弧度校核此杆的刚度
应力状态分析和强度理论

03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。
工程力学-材料力学之应力应变状态分析

求:(1)A点处的主应变 1, 2 , 3
(2)A点处的线应变 x , y , z
F1 b A F2 z b=50mm h=100mm
Hale Waihona Puke 19F2al
解:梁为拉伸与弯曲的组合变形. A点有拉伸引起的正应力
和弯曲引起的切应力.
铜块横截面上的压应力mpa3010300analysiessst155mpa铜块的主应力为mpampa30最大切应力mpa2510951010034analysiessst例题11一直径d20mm的实心圆轴在轴的的两端加力矩m126n45方向的应变analysiessstanalysiessst外径d60mm的薄壁圆筒在表面上k点与其轴线成45y两方向分别贴上应变片然后在圆筒两端作用矩为的扭转力偶如图所示已知圆筒材料的弹性常数为若该圆筒的变形在弹性范围内且analysiessst从圆筒表面k点处取出单元体其各面上的应力分量如图所示可求得mpa80maxmpa80maxanalysiessstmaxmaxmax10拉应变圆筒表面上k点处沿径向z轴的应变和圆筒中任一点该点到圆筒横截面中心的距离为maxmax因此该圆筒变形后的厚度并无变化仍然为t10mmanalysiessstb50mmh100mm例题13已知矩形外伸梁受力f作用
在任意形式的应力状态下, 各向同性材料内一点处的体
积应变与通过该点的任意三个相互垂直的平面上的正应力之
和成正比, 而与切应力无关.
11
例题10 边长 a = 0.1m 的铜立方块,无间隙地放入体积较大, 变形可略去
不计的钢凹槽中, 如图所示. 已知铜的弹性模量 E=100GPa,泊松比 =0.34, 当受到F=300kN 的均布压力作用时,求该铜块的主应力、体积应变以及最
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tan 21
x 2 x
y
tan
20
2 x x
y
即τmax 、τmin 作用面是互相垂直的面,为α1截面和
α1+90o截面,且α1=α0+45o 。
2. ( x y )cos 21 2 x sin 21 0
1
x
2
y
x
2
y
cos 21
x
cos 2
x
y
2
x
y
2
cos 2
x
sin 2
x
y
2
sin 2
x
cos 2
⑴ σx 、τx 是法线与x 轴平行的面上的正应力与切应力,即x
面上的正应力与切应力;σy 、τy 是法线与y 轴平行的面上的正应 力与切应力,即y 面上的正应力与切应力。
D
FN A
F
dt
20 103 50 2106
63.7MPa
d 0 d
( x y )cos 21 2 x sin 21 0
解得:
tan 21
x 2 x
y
可确定两个相互垂直
的截面 1,1 90
代入平面应力状态下任意斜截面上切应力表达式
max min
(
x
2
y
)2
2 x
1.
CH sin(20 2) CH sin 20 cos 2 CH cos 20 sin 2
(CDsin20)cos 2 (CDcos 20)sin2
x
2
y
sin
2
x
cos
2
2.确定主应力的大小及主平面的方位 A、B点对应的横坐标分别表示对应主平面上的主应力。
x y
1 33.69o 3 56.31o
D 点最大切应力
max
1
3
2
114.6 (50.9) 2
82.75MPa
§13-3 平面应力状态应力分
一、应力圆方程
析的图解法
x
y
2
x
y
2
cos 2
x
sin 2
x
y
第十三章 应力状态分析 §13-1 引言
一、应力状态的概念
1. 点的应力状态 过受力构件内一点所作各截面上的应力情况,即
过受力构件内一点所有方位面上的应力总体。
2. 一点应力状态的描述 以该点为中心取无限小正六面体(单元体)为研
究对象,单元体三对互相垂直的面上的应力可描述 一点应力状态。
单元体三对面的应力已知 ,单元体平衡
单元体
转向相同
例:一薄壁圆筒受扭转和拉伸同时作用如图。已知圆筒的平 均直径d = 50mm,壁厚t = 2mm,外力偶M = 600N·m,拉力F
= 20kN。薄壁管截面的抗扭系数可近似取为WP= πd2t / 2。试用
图解法求过点D 指定斜截面上的应力、点的主应力和主方向及 最大切应力。
解:⑴ 求D 点在横截面上的正应力、切应力
x
y
2
x
y
2
cos 2
x
sin 2
1.04 1.04 cos 80o 0.469 sin 80o
2
2
1.07MPa
x
y
2
sin 2
x
cos 2
1.04 sin 80o 0.469 cos 80o 2
0.59MPa
)
3 50103 2 200 600106
(1
4 1502 106 6002 106
)
0.469MPa
C 1.04MPa C 0.469MPa
⑶ 作出C 点的应力状态图
x 1.04MPa y 0 x 0.469MPa
40o
H点横坐标
OC CH cos(20 2) OC CH cos 20 cos 2 CH sin20 sin2
OC (CDcos 20 )cos 2 (CDsin 20)sin 2
x
2
y
x
2
y
cos 2
x
sin 2
H点纵坐标
解:⑴ 求C 点所在截面的剪力、弯矩 F
FS 2 50kN M Fl 25kN m
8 ⑵ 求C 点在横截面上的正应力、切应力
C
M Iz
y
25103 600103 / 4 200 6003 1012 / 12
1.04MPa
C
3FS 2bh
(1
4 y2 h2
2
x
y
2
cos 2
x sin 2
x
y
2
sin 2
x
cos 2
(
x
2
y
)2
2
(
x
2
y
)2
2 x
⑴ 以σ 、τ为横、纵坐标轴,则上式表示以
(
x
y
,0)
2
为圆心,
(
x
2
y
)2
为 x2 半径的应力圆。
⑵ 应力圆上一点坐标对应单元体某斜截面的应力值,所
WP WP
作应力状态图
x y 0
x
max min
x
y
2
(
x
y
2
)2
2 x
0
1 2
arctan(
2 x x
y
)
45o
45o
圆轴扭转时表面各点σmax所在平面连成倾角为45o的螺旋面, 由于铸铁抗拉强度低,所以试件沿此螺旋面断裂破坏。
2 x x
y
可确定两个相互垂直
的截面 0 ,0 90
代入平面应力状态下任意斜截面上正应力表达式,得:
max min
x
y
2
(
x
2
y
)2
2 x
1.
x
2
y
sin
20
x
cos
20
0
0 0
即σmax 、σmin 作用面上τ = 0,即α0截面为主平面,σmax、 σmin为主应力。
dA ( xdAcos )cos ( xdAcos )sin ( ydAsin )cos ( xdAsin )sin 0
平面应力状态下任意斜截面上应力表达式
x
y
2
x
y
2
cos 2
x
sin 2
x
y
2
sin 2
⑴ A、B点对应正应力的极值
max min
OC
CA
x
y
2
(
x
2
y
)2
2 x
⑵ CA、CB夹角为180o,所以两主平面的夹角为90o。
⑶ σmax作用面方位角度α0
tan0
FD BF
x
x min
x max y
tan 20
x
sin 21
即τmax 、τmin作用面上
1
x
y
2
3.
max min
x
y
2
(
x
2
y
)2
2 x
max
max
min
2
例:讨论圆轴扭转时的应力状态,并分析铸铁试件受扭时的 破坏现象。
解:圆轴扭转时横截面边缘处切应力最大
T M
二、主应力及主平面位置
求与z 轴平行所有截面上的最大(小)正应力及方位
x
y
2
x
y
2
cos 2
x
sin 2
d 0 d
x
2
y
(2 sin
20 )
x (2cos
20 )
0
解得:
x
2
y
sin
20
x
cos
20
0
tan 20
⑵ 正应力:拉应力为正,压应力为负;切应力:对单元体 内任意点的矩顺时针为正,反之为负。
⑶ 斜截面角度:从x 轴正向转到斜截面外法线所转过的角度, 逆时针转为正,顺时针转为负。
例:矩形截面简支梁在跨中作用集中力F。已知F =100kN,l = 2m ,b = 200mm ,h = 600mm ,α =40o,求离支座l /4 处截面C点 在斜截面n-n上的应力。