第七章 材料力学-应力状态分析强度理论
合集下载
材料力学第七章应力状态和强度理论

2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
材料力学 第07章 应力状态分析与强度理论

2
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
工程力学c材料力学部分第七章 应力状态和强度理论

无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
材料力学应力状态分析强度理论

断裂力学
断裂力学用于研究材料发生断裂时的力学行为,包括断裂韧性和断裂韧性指标。
断裂模式分析
通过对材料断裂模式的分析,了解材料在受到外力作用时如何发生破裂。
材料的强度
应力。 材料在受力过程中开始产生塑性变形的应力值。
材料在受到大幅度应力作用时发生破裂的强度。
由强度理论推导的材料设计
根据材料的强度特性,可以进行材料设计,以确保材料在使用过程中不超过其强度极限。
考虑材料疲劳的应力分析
1
疲劳寿命评估
扭转应力分析
扭转应力是材料在受扭转力作 用下的应力分布,对材料的扭 转能力和疲劳寿命影响较大。
应力分布分析
1 梁的应力分布
梁的应力分布分析可以 帮助了解梁在受力过程 中的强度和变形情况。
2 压力容器的应力分析 3 板的应力分布
压力容器的应力分析是 为了确保容器在承受压 力时不会发生破裂或变 形。
板的应力分布分析可用 于评估板在受力状态下 的强度和变形性能。
材料力学应力状态分析强 度理论
材料力学应力状态分析强度理论是研究材料受力情况及其强度特性的理论体 系,包括弹性理论、横向状态分析、应力分布分析等内容。
弹性理论
基本原理
材料在受力过程中 会发生变形,弹性 理论用于描述材料 的弹性性质和应变 的产生与传递。
弹性模量
弹性模量是衡量材 料对应力的响应能 力,不同材料具有 不同的弹性模量。
应力-应变关 系
弹性理论可以通过 应力-应变关系来描 述材料受力后的变 形情况。
限制条件
弹性理论是在一定 条件下适用的,需 要考虑材料的线性 弹性和小变形假设。
横向状态分析
横向力
横向状态分析用于研究材料在 受横向力作用下的变形和应力 分布。
断裂力学用于研究材料发生断裂时的力学行为,包括断裂韧性和断裂韧性指标。
断裂模式分析
通过对材料断裂模式的分析,了解材料在受到外力作用时如何发生破裂。
材料的强度
应力。 材料在受力过程中开始产生塑性变形的应力值。
材料在受到大幅度应力作用时发生破裂的强度。
由强度理论推导的材料设计
根据材料的强度特性,可以进行材料设计,以确保材料在使用过程中不超过其强度极限。
考虑材料疲劳的应力分析
1
疲劳寿命评估
扭转应力分析
扭转应力是材料在受扭转力作 用下的应力分布,对材料的扭 转能力和疲劳寿命影响较大。
应力分布分析
1 梁的应力分布
梁的应力分布分析可以 帮助了解梁在受力过程 中的强度和变形情况。
2 压力容器的应力分析 3 板的应力分布
压力容器的应力分析是 为了确保容器在承受压 力时不会发生破裂或变 形。
板的应力分布分析可用 于评估板在受力状态下 的强度和变形性能。
材料力学应力状态分析强 度理论
材料力学应力状态分析强度理论是研究材料受力情况及其强度特性的理论体 系,包括弹性理论、横向状态分析、应力分布分析等内容。
弹性理论
基本原理
材料在受力过程中 会发生变形,弹性 理论用于描述材料 的弹性性质和应变 的产生与传递。
弹性模量
弹性模量是衡量材 料对应力的响应能 力,不同材料具有 不同的弹性模量。
应力-应变关 系
弹性理论可以通过 应力-应变关系来描 述材料受力后的变 形情况。
限制条件
弹性理论是在一定 条件下适用的,需 要考虑材料的线性 弹性和小变形假设。
横向状态分析
横向力
横向状态分析用于研究材料在 受横向力作用下的变形和应力 分布。
材料力学第七章 应力状态

主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y
材料力学-应力状态分析

+
σ x σ y
2
cos 2α τ x sin 2α
sin 2α + τ x cos 2α
注意: 的正负号, 注意:1)σx 、σy 、τx 和 α的正负号, 2) 公式中的切应力是τx ,而非τy, 而非 的正负号。 3) 计算出的σα和τα 的正负号。
τα τ α>0
τα τ α<0
图示圆轴中, 已知圆轴直径d=100mm, 轴向拉 例 : 图示圆轴中 , 已知圆轴直径 , 力 F=500kN,外力矩Me=7kNm。求 C点α = 30°截 , 外力矩 。 点 ° 面上的应力。 面上的应力。 y
σy
τ
D
x
τx τy
σx
o A2
C
A1
σ
D
y
σ1 =
σ x +σ y
2
σ x +σ y + 2
2 +τ x
2
2
σ2 =
σ x +σ y
2
σ x +σ y 2 +τ x 2
σy
τ
D
x
τx τy
σx
o A2
2α0
C
A1
σ
D
y
2τ x 2α 0 = arctan σ x σ y
σ x σ y R= 2
+τ x2
2
σ x +σ y σ α 2
σy
σ x σ y 2 2 + τα = +τ x 2 τ
2 2
D
x
τx τy
σx
o
C D
y
σ
50MPa
材料力学 第七章 应力状态和强度理论

y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。
材料力学第七章

若应力状态由主应力表示,并且在max 0 和 min 0 的情况下,则式(7-7) 成为
max min
max
min
2
1 3
2
进一步讨论,由式(7-4)和式(7-6)可知
tan
21
1 tan 20
上式表明1 与 0 之间有如下关系:
1
0
4
可见,切应力取得极值的平面与主平面之间的夹角为 45 。
若三个主应力中,只有一个主应力不等于零,这样的应力状态称为 单向应力状态。若三个主应力中有两个不等于零,称为二向应力状态或 平面应力状态。若三个主应力皆不为零,称为三向应力状态或空间应力 状态。
第二节 平面应力状态分析——解析法
一、斜截面上的应力
图 7-1 所示为平面应力状态的最一般情况。已知 x , y , xy 和 yx 。现 在研究图中虚线所示任一斜截面上的应力,设截面上外法向 n 与 x 轴的夹角 为 。
令 d /d 0 ,由式(7-1)可得
x
2
y
sin
2
xy
cos 2
0
解得
(7-3)
tan 20
2 xy x y
通过运算,可以得到斜截面上正应力的极值为
(7-4)
max min
x
y 2
x
2
y
2
2 xy
(7-5)
由式(7-4)可知, 取得极值的角0 有两个,二者相差 90 ,即最大正应 力 max 和最小正应力 min ,二者分别作用在两个相互垂直的截面上。当 0 , 取得极值时,该斜截面上的切应力 0 ,即正应力就是主应力。
(a)
(b) 图7-6
例 7-4 悬臂梁受力如图 7-7(a)所示。试求截面 n n 上 A 点处的主应力 大小和方向,并按主平面画出单元体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
t
s
z
s3
s2
s1
2、三向应力分析 y
t
t max
s1 s2 s3
s
s3
x
图a
s2
s1
图b
z
弹性理论证明,图a单元体内任意一点任意截面上的应
力都对应着图b的应力圆上或阴影区内的一点。
整个单元体内的最大剪应力为:
t max
s 1 s 3
2
例4 求图示单元体的主应力和最大剪应力。(MPa) y 建立应力坐标系如
t yx
C M C
解:确定危险点并画其原
始单元体
t xy
txy
s x s y 0 Mn t xy t WP
求极值应力
tyx
y O
s x s y 2 2 s 1 s x s y ( )t xy 2 2 s 2
2 t xy t
x
s 1t ;s 2 0;s 3 t
sy
y
sz
z
txy
sx
x
四、普遍状态下的应力表示
五、剪应力互等定理(Theorem of Conjugate Shearing Stress): 过一点的两个正交面上,如果有与相交边垂直的剪应力分
量,则两个面上的这两个剪应力分量一定等值、方向相对或相
离。
证明 : 单元体平衡
sy
y
M
z
0
(t xydydz)dx(t yxdzdx)dy0
s
B(sy ,tyx)
sy
s t
y
n
三、单元体与应力圆的对应关系 面上的应力(s ,t ) 应力圆上一点(s ,t )
sx
txy
面的法线
x t n D( s , t C O 2 O x
应力圆的半径
A(sx ,txy)
两面夹角 且转向一致。
两半径夹角2 ;
s
着该点的拉主应力方位(或压主应力方位)。
实线表示拉主应力迹线; 虚线表示压主应力迹线。 拉力
s3
s1
压力
y
1 a 2 b c d 3 4 i n
主应力迹线的画法:
x
1 2 3 4 截面截面截面截面
i 截面
n 截面
q
s1
s3
§7–5 三向应力状态研究——应力圆法 1、空间应力状态 y
s1 s2 s3
sz
z
txy
sx
x
t xy t yx
六、原始单元体(已知单元体):
例1 P 画出下列图中的A、B、C点的已知单元体。 A P
sx
A
sx t yx
y
B z P M
sx
tzx
C
x
B
txz
sx
C
t xy
七、主单元体、主面、主应力:
y
sy sx
主单元体(Principal bidy): 各侧面上剪应力均为零的单元体。 主面(Principal Plane): x
s x s y 2 2 t max ( )t xy t 2 t min
破坏分析
tg2 0
2t xy
s x s y
0 45
s x s y tg21 0 10 2t xy
低碳钢 : s s 240MPa;t s 200MPa
sx
tzx
B
txz
sx
sx
A
sx
§7–2 平面应力状态分析——解析法 y
sy
等价
sy sx
y x O x
txy
z
sx
txy
sy sx
y
一、任意斜截面上的应力 规定:s 截面外法线同向为正;
txy
x
图1
t 绕研究对象顺时针转为正;
逆时针为正。 设:斜截面面积为S,由分离体平衡得:
O
s
1
t
s3 s3
D1 A2 C A1 D2 O
s
D1
A2
D1 D1
20 C O
t
A1
D2
s1
3
0 s3
–45°
s
t
20= –90°
C O D2
s t
A2 O
D2 20 C
s1
s3 0 t
D2 A2 C O
D1 A1
s
s1
5
s1
A1 D1
s
主应力迹线(Stress Trajectories): 主应力方向线的包络线——曲线上每一点的切线都指示
xy
x y
2t xy
s x s y
tg2 0
四、平面状态下的应力---应变关系: E s x x y 2 1 E s y y x 2 1
s z t yz t zx 0
t xy G xy
主应力与主应变方向一致?
xy tg2 0 tg2 0 s x s y E [( )(1 )] ( x y ) x y 1 2
第七章 应力状态分析
§7–1 应力状态的概念
§7–2 平面应力状态分析——解析法
§7–3 平面应力状态分析——图解法 §7–4 梁的主应力及其主应力迹线
§7–5 三向应力状态研究——应力圆法 §7–6 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律) §7–7
作业
复杂应力状态下的变形比能
灰口铸铁 : s Lb 98~280MPa
低碳钢
s yb 640~960MPa;t b 198 ~300MPa
铸铁
§7–3
平面应力状态分析——图解法
一、应力圆( Stress Circle)syLeabharlann sxy O xtxy
s
s x s y s x s y s cos2 t xy sin2 2 2 t s x s y sin2 t cos2 xy 2
2
tg2 0
2t xy
sx sy sx sy 2 sm´ 2 ax t ± ( ) xy ´ s 2 2 m in
t 0 极值正应力就是主应力 !
0
s x s y sy
sx
y O x
txy
s max ; s2 s min s1
s1在剪应力相对的项限内,
同理:
O
s
sx
y
sy
x
txy
图2
t
s x s y t sin 2 t xy cos2 2
n
O
t
二、极值应力
ds 令: s x s y sin2 0 2t xy cos2 0 0 d 0
由此的两个驻点:
01、( 01 )和两各极值:
B A
30 z
t (MPa )
C 40 50
B
t max
图,画应力圆和 点s1′,得: 10
x
s s2 s1 (MPa)
解:由单元
s3
体图知:y
z面为主面 A
50 s1
s 1 58 s 2 50 s 3 27 t max 44
§7–6 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律)
且偏向于sx 及sy大的一侧。 y
sy
主 单元体
s2
sx
txy s 1
x
dt 令: d
0
1
s x s y tg21 2t xy
O
sx sy 2 2 tmax ± ( )tx y 2 tmin
0 1
4 , 即极值剪应力面与主面成450
例2 分析受扭构件的破坏规律。
圆心,以C为圆心, 以AC为半径画
s3
2s0
C
O s2
s1
圆——应力圆
(MPa)
s
主应力及主平面如图
s 1 120 s 2 20 s 3 0
25 3
s2
45 B
150°
95
A
0
25 3
s1
0 30
t (MPa)
B A 20MPa
s3
2s0
C
O s2
s1
(MPa)
s
解法2—解析法:分析——建立坐标系如图
xy
t xy
yz G t zx zx
G
t yz
G
主应力 --- 主应变关系
1 s 1 s 2 s 3 E 1 2 s 2 s 3 s 1 E
1
3
1 s 3 s 2 s 1 E
方向一致
tg2 0
§7–1 应力状态的概念 一、引言 1、铸铁与低碳钢的拉、压、扭试验现象是怎样产生的? P M 低碳钢 铸铁拉伸 铸铁压缩 P
铸铁
P P
2、组合变形杆将怎样破坏? M
二、一点的应力状态:
过一点有无数的截面,这一点的各个截面上应力情况的集合, 称为这点的应力状态(State of Stress at a Given Point)。 三、单元体:单元体——构件内的点的代表物,是包围被研究点 的无限小的几何体,常用的是正六面体。 单元体的性质——a、平行面上,应力均布; b、平行面上,应力相等。
sz
z
剪应力为零的截面。
主应力(Principal Stress ):
s2 s1
主面上的正应力。
主应力排列规定:按代数值大小,
s3
s 1s 2 s 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。 二向应力状态(Plane State of Stress): 一个主应力为零的应力状态。 单向应力状态(Unidirectional State of Stress): 一个主应力不为零的应力状态。
t
s
z
s3
s2
s1
2、三向应力分析 y
t
t max
s1 s2 s3
s
s3
x
图a
s2
s1
图b
z
弹性理论证明,图a单元体内任意一点任意截面上的应
力都对应着图b的应力圆上或阴影区内的一点。
整个单元体内的最大剪应力为:
t max
s 1 s 3
2
例4 求图示单元体的主应力和最大剪应力。(MPa) y 建立应力坐标系如
t yx
C M C
解:确定危险点并画其原
始单元体
t xy
txy
s x s y 0 Mn t xy t WP
求极值应力
tyx
y O
s x s y 2 2 s 1 s x s y ( )t xy 2 2 s 2
2 t xy t
x
s 1t ;s 2 0;s 3 t
sy
y
sz
z
txy
sx
x
四、普遍状态下的应力表示
五、剪应力互等定理(Theorem of Conjugate Shearing Stress): 过一点的两个正交面上,如果有与相交边垂直的剪应力分
量,则两个面上的这两个剪应力分量一定等值、方向相对或相
离。
证明 : 单元体平衡
sy
y
M
z
0
(t xydydz)dx(t yxdzdx)dy0
s
B(sy ,tyx)
sy
s t
y
n
三、单元体与应力圆的对应关系 面上的应力(s ,t ) 应力圆上一点(s ,t )
sx
txy
面的法线
x t n D( s , t C O 2 O x
应力圆的半径
A(sx ,txy)
两面夹角 且转向一致。
两半径夹角2 ;
s
着该点的拉主应力方位(或压主应力方位)。
实线表示拉主应力迹线; 虚线表示压主应力迹线。 拉力
s3
s1
压力
y
1 a 2 b c d 3 4 i n
主应力迹线的画法:
x
1 2 3 4 截面截面截面截面
i 截面
n 截面
q
s1
s3
§7–5 三向应力状态研究——应力圆法 1、空间应力状态 y
s1 s2 s3
sz
z
txy
sx
x
t xy t yx
六、原始单元体(已知单元体):
例1 P 画出下列图中的A、B、C点的已知单元体。 A P
sx
A
sx t yx
y
B z P M
sx
tzx
C
x
B
txz
sx
C
t xy
七、主单元体、主面、主应力:
y
sy sx
主单元体(Principal bidy): 各侧面上剪应力均为零的单元体。 主面(Principal Plane): x
s x s y 2 2 t max ( )t xy t 2 t min
破坏分析
tg2 0
2t xy
s x s y
0 45
s x s y tg21 0 10 2t xy
低碳钢 : s s 240MPa;t s 200MPa
sx
tzx
B
txz
sx
sx
A
sx
§7–2 平面应力状态分析——解析法 y
sy
等价
sy sx
y x O x
txy
z
sx
txy
sy sx
y
一、任意斜截面上的应力 规定:s 截面外法线同向为正;
txy
x
图1
t 绕研究对象顺时针转为正;
逆时针为正。 设:斜截面面积为S,由分离体平衡得:
O
s
1
t
s3 s3
D1 A2 C A1 D2 O
s
D1
A2
D1 D1
20 C O
t
A1
D2
s1
3
0 s3
–45°
s
t
20= –90°
C O D2
s t
A2 O
D2 20 C
s1
s3 0 t
D2 A2 C O
D1 A1
s
s1
5
s1
A1 D1
s
主应力迹线(Stress Trajectories): 主应力方向线的包络线——曲线上每一点的切线都指示
xy
x y
2t xy
s x s y
tg2 0
四、平面状态下的应力---应变关系: E s x x y 2 1 E s y y x 2 1
s z t yz t zx 0
t xy G xy
主应力与主应变方向一致?
xy tg2 0 tg2 0 s x s y E [( )(1 )] ( x y ) x y 1 2
第七章 应力状态分析
§7–1 应力状态的概念
§7–2 平面应力状态分析——解析法
§7–3 平面应力状态分析——图解法 §7–4 梁的主应力及其主应力迹线
§7–5 三向应力状态研究——应力圆法 §7–6 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律) §7–7
作业
复杂应力状态下的变形比能
灰口铸铁 : s Lb 98~280MPa
低碳钢
s yb 640~960MPa;t b 198 ~300MPa
铸铁
§7–3
平面应力状态分析——图解法
一、应力圆( Stress Circle)syLeabharlann sxy O xtxy
s
s x s y s x s y s cos2 t xy sin2 2 2 t s x s y sin2 t cos2 xy 2
2
tg2 0
2t xy
sx sy sx sy 2 sm´ 2 ax t ± ( ) xy ´ s 2 2 m in
t 0 极值正应力就是主应力 !
0
s x s y sy
sx
y O x
txy
s max ; s2 s min s1
s1在剪应力相对的项限内,
同理:
O
s
sx
y
sy
x
txy
图2
t
s x s y t sin 2 t xy cos2 2
n
O
t
二、极值应力
ds 令: s x s y sin2 0 2t xy cos2 0 0 d 0
由此的两个驻点:
01、( 01 )和两各极值:
B A
30 z
t (MPa )
C 40 50
B
t max
图,画应力圆和 点s1′,得: 10
x
s s2 s1 (MPa)
解:由单元
s3
体图知:y
z面为主面 A
50 s1
s 1 58 s 2 50 s 3 27 t max 44
§7–6 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律)
且偏向于sx 及sy大的一侧。 y
sy
主 单元体
s2
sx
txy s 1
x
dt 令: d
0
1
s x s y tg21 2t xy
O
sx sy 2 2 tmax ± ( )tx y 2 tmin
0 1
4 , 即极值剪应力面与主面成450
例2 分析受扭构件的破坏规律。
圆心,以C为圆心, 以AC为半径画
s3
2s0
C
O s2
s1
圆——应力圆
(MPa)
s
主应力及主平面如图
s 1 120 s 2 20 s 3 0
25 3
s2
45 B
150°
95
A
0
25 3
s1
0 30
t (MPa)
B A 20MPa
s3
2s0
C
O s2
s1
(MPa)
s
解法2—解析法:分析——建立坐标系如图
xy
t xy
yz G t zx zx
G
t yz
G
主应力 --- 主应变关系
1 s 1 s 2 s 3 E 1 2 s 2 s 3 s 1 E
1
3
1 s 3 s 2 s 1 E
方向一致
tg2 0
§7–1 应力状态的概念 一、引言 1、铸铁与低碳钢的拉、压、扭试验现象是怎样产生的? P M 低碳钢 铸铁拉伸 铸铁压缩 P
铸铁
P P
2、组合变形杆将怎样破坏? M
二、一点的应力状态:
过一点有无数的截面,这一点的各个截面上应力情况的集合, 称为这点的应力状态(State of Stress at a Given Point)。 三、单元体:单元体——构件内的点的代表物,是包围被研究点 的无限小的几何体,常用的是正六面体。 单元体的性质——a、平行面上,应力均布; b、平行面上,应力相等。
sz
z
剪应力为零的截面。
主应力(Principal Stress ):
s2 s1
主面上的正应力。
主应力排列规定:按代数值大小,
s3
s 1s 2 s 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。 二向应力状态(Plane State of Stress): 一个主应力为零的应力状态。 单向应力状态(Unidirectional State of Stress): 一个主应力不为零的应力状态。