材料力学应力状态分析
材料力学8-3-平面应力状态分析-课件

02
平面应力状态分析的基本概念
应力状态
1 2
定义
应力状态是指物体在某一点处的应力分布情况。
表示方法
通常采用主应力、应力张量和应力矩阵来表示。
3
分类
根据应力分量的变化规律,可分为平面应力状态、 空间应力状态和轴对称应力状态。
平面应力状态
定义
平面应力状态是指物体在某一平面内 的应力分布情况,其应力分量只有三 个,即σx、σy和τxy。
材料力学8-3-平面应力状 态分析-课件
• 引言 • 平面应力状态分析的基本概念 • 平面应力状态的分类与表示 • 平面应力状态的平衡方程与几何方程 • 平面应力状态分析的实例 • 总结与展望
01
引言
平面应力状态分析的定义
平面应力状态分析是材料力学中一个重要的概念,它主要研究物体在受力时,其内 部应力的分布情况。
特点
在平面应力状态下,物体内的剪切力分 量τxy与正应力分量σx、σy成比例关系, 即剪切力分量与正应力分量成正比。
应力分量与主应力
定义
主应力与材料性质的关系
应力分量是指物体在某一点处各个方 向的应力值,而主应力则是应力分量 中的最大和最小值。
主应力的大小反映了材料在该点所受 的应力和应变状态,与材料的弹性模 量、泊松比等性质有关。
应力集中系数
为了描述应力集中的程度,引入了应力集中系数,该系数反映了孔 边应力和平均应力的比值。
弯曲梁的平面应力状态分析
弯曲梁
当梁受到垂直于轴线的力矩作用时,梁发生 弯曲变形。
平面应力状态
在弯曲梁的横截面上,剪应力和正应力的分布情况 。
弯矩和剪力的关系
通过分析剪应力和正应力的分布和大小,可 以确定梁的弯矩和剪力之间的关系,从而进 行受力分析和设计。
材料力学应力分析(共143张PPT)

Mz Wz
17
y
1
4
z
2
x
3
S平面
18
y
1
FQy
1
4
4 Mz
x
z
2
Mx
3
3
19
应力状态的概念
主平面:单元体中剪应力等于零的平面。
主单元体:在单元体各侧面只有正应力而
无剪应力
3
2
主应力:主平面上的正应力。
主方向:主平面的法线方向。
约定:
1
12 320
应力状态的分类
3
2
1
1
2
3
单向应力状态:三个主应力中,只有一个主应力不等于零的情况。
3
一、什么是应力状态?
〔一〕、应力的点的概念:
最大正应力所在的面上切应力一定是零; 它与塑性较好材料的试验结果比第三强度理论符合得更好; 7-2 二向应力状态分析--解析法 面将单元体截为两局部, 并注意到 化简得 三、如何描述一点的应力状态 应力圆上一点( , ) 7-8 广义胡克定律 该单元体的三个主应力按其代数值的大小顺序排列为 解: 该单元体有一个主应力 例2:纯剪切状态的主应力 它与塑性较好材料的试验结果比第三强度理论符合得更好;
5
F
F
A
F
co2s
2
sin2
过同一点不同方向面上的应力各不相同, 即应力的面的概念
6
应力的点的概念与面的概念
应力
指明
哪一个面上? 哪一点?
哪一点? 哪个方向面?
应力状态: ——过同一点不同方向面上应力的集合,称为
这一点的应力状态;
7
二、为什么要研究应力状态?
材料力学第8章应力状态分析

点。设想以A点为中心,用相互垂直的6个截面截取一个边长无限小的立方
体,我们将这样的立方体称为单元体。取决于截取平面的倾角变化,围绕同 一个点,可以截取出无数个不同的单元体,
图8.1(b)为依附着杆件横截面所截取单元体(图8.1(c)为其平面图形式),而 图8.1(d)为依附着45°斜截面所截取的单元体。由于杆件轴向拉伸时,横 截面上只有正应力,且与杆件轴向平行的截面没有应力,因此,图8.1(b) 中的单元体只在左右两个面上有正应力作用。对于图8.1(d)中的单元体, 根据拉压杆斜截面应力分析(2.3节)可知,其4个面上既有正应力又有切应 力。
又有切应力。围绕A,B,C三点截取单元体如图8.2(d)所示,单元体的前后
两面为平行于轴线的纵向截面,在这些面上没有应力,左右两面为横截面的 一部分,根据切应力互等定理,单元体B和C的上下两面有与横截面数值相等
的切应力。至此,单元体各面上的应力均已确定。注意到图8.2(d)各单元
体前后面上均无应力,因此也可用其平面视图表示(见图8.2(e))。
图8.2
从受力构件中截取各面应力已知的单元体后,运用截面法和静力平衡条件, 可求出单元体任一斜截面上的应力,从而可以确定出极值应力。
围绕构件内一点若从不同方向取单元体,则各个截面的应力也各不相同。其
中切应力为零的截面具有特殊的意义,称为主平面;主平面上的正应力称为 主应力。一般情况下,过构件内任一点总能找到3个互相垂直的主平面,因
图8.3
运用截面法可以求出与 z 截面垂直的任意斜截面 ac 上的应力(见图 8.3
( a ))。设斜截面 ac 的外法线 n 与 x 轴的夹角为 α (斜截面 ac 称 为 α 截面),并规定从 x 轴正向逆时针转到斜截面外法线 n 时 α 角为正
材料力学:第八章-应力应变状态分析

正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态
材料力学应力状态分析强度理论

断裂力学用于研究材料发生断裂时的力学行为,包括断裂韧性和断裂韧性指标。
断裂模式分析
通过对材料断裂模式的分析,了解材料在受到外力作用时如何发生破裂。
材料的强度
应力。 材料在受力过程中开始产生塑性变形的应力值。
材料在受到大幅度应力作用时发生破裂的强度。
由强度理论推导的材料设计
根据材料的强度特性,可以进行材料设计,以确保材料在使用过程中不超过其强度极限。
考虑材料疲劳的应力分析
1
疲劳寿命评估
扭转应力分析
扭转应力是材料在受扭转力作 用下的应力分布,对材料的扭 转能力和疲劳寿命影响较大。
应力分布分析
1 梁的应力分布
梁的应力分布分析可以 帮助了解梁在受力过程 中的强度和变形情况。
2 压力容器的应力分析 3 板的应力分布
压力容器的应力分析是 为了确保容器在承受压 力时不会发生破裂或变 形。
板的应力分布分析可用 于评估板在受力状态下 的强度和变形性能。
材料力学应力状态分析强 度理论
材料力学应力状态分析强度理论是研究材料受力情况及其强度特性的理论体 系,包括弹性理论、横向状态分析、应力分布分析等内容。
弹性理论
基本原理
材料在受力过程中 会发生变形,弹性 理论用于描述材料 的弹性性质和应变 的产生与传递。
弹性模量
弹性模量是衡量材 料对应力的响应能 力,不同材料具有 不同的弹性模量。
应力-应变关 系
弹性理论可以通过 应力-应变关系来描 述材料受力后的变 形情况。
限制条件
弹性理论是在一定 条件下适用的,需 要考虑材料的线性 弹性和小变形假设。
横向状态分析
横向力
横向状态分析用于研究材料在 受横向力作用下的变形和应力 分布。
材料力学应力状态分析

材料力学应力状态分析材料力学是研究物质内部力学性质和行为的学科,其中应力状态分析是材料力学中的重要内容之一。
应力状态分析是指对材料内部受力情况进行分析和研究,以揭示材料在外力作用下的应力分布规律和应力状态特征,为工程设计和材料选用提供依据。
本文将从应力状态的基本概念、分类和分析方法等方面展开讨论。
首先,我们来介绍一下应力状态的基本概念。
应力是指单位面积上的力,是描述物体内部受力情况的物理量。
在材料力学中,通常将应力分为正应力和剪应力两种基本类型。
正应力是指垂直于截面的应力,而剪应力是指平行于截面的应力。
在实际工程中,材料往往同时受到多种应力的作用,因此需要对应力状态进行综合分析。
其次,我们将对应力状态进行分类。
根据应力的作用方向和大小,可以将应力状态分为拉应力状态、压应力状态和剪应力状态三种基本类型。
拉应力状态是指材料内部受到拉力作用的状态,压应力状态是指材料内部受到压力作用的状态,而剪应力状态是指材料内部受到剪切力作用的状态。
这三种应力状态在工程实践中都具有重要的意义,需要我们进行深入的分析和研究。
接下来,我们将介绍应力状态分析的方法。
应力状态分析的方法有很多种,常用的有应力分析法、应变分析法和能量方法等。
应力分析法是通过应力分布的计算和分析来揭示应力状态的特征,应变分析法则是通过应变分布的计算和分析来揭示应力状态的特征,而能量方法则是通过能量原理和平衡条件来揭示应力状态的特征。
这些方法各有特点,可以根据具体情况选择合适的方法进行分析。
最后,我们需要注意的是,在进行应力状态分析时,需要考虑材料的本构关系、边界条件和载荷情况等因素,以确保分析结果的准确性和可靠性。
同时,还需要注意应力状态分析的结果对工程实践的指导意义,以便更好地指导工程设计和材料选用。
总之,材料力学应力状态分析是一个复杂而重要的课题,需要我们进行深入的研究和分析。
只有深入理解应力状态的特征和规律,才能更好地指导工程实践,为实际工程问题的解决提供科学依据。
材料力学 第八章:应力状态分析

2 )2
材料力学
整理可得:
(
x
2
y
)2
2
(
x
2
y
)2
x2
(3)
(3)式为以 、为变量的圆方程。
圆心坐标
(
x
y
,0)
横坐标为平均应力
2
半径
(
x
2
y
)2
2 x
为最大剪应力
材料力学
x x
y
x y
2
(
x
2
y
)2
2 x
材料力学
方法一:
27.5
x
2
y
x
y
2
cos(2 27.5) x
sin(2 27.5)
70 70 cos55 50sin 55 22
96MPa
96MPa
27.5
70MPa
62.5 50MPa 26MPa
117.5
x
上的应力对应-坐标系中的Dy点。Dy
点的横坐标
OF
、纵坐标
y
FDy
y
;连接
Dx、Dy与轴的交点C为圆心 , CDx 或
CDy 为半径画一圆,这个圆是该单元
体所对应的应力圆。
材料力学
n
y
x
y
x
x
y
F o
Dy
(y,y)
Dx(x,x) CK
材料力学
证明:
DxCK DyCF (对顶角) Dy FC DxKC (直角)
了解材料力学中的应力分析方法

了解材料力学中的应力分析方法材料力学是研究材料行为及其力学特性的学科,应力分析方法是其中的重要内容之一。
在材料力学中,应力是描述物体内部受力情况的力学参数,而应力分析方法则是利用各种数学和物理手段来确定物体内部应力分布的过程。
本文将介绍几种常见的应力分析方法,并探讨其适用范围和基本原理。
1. 等效应力法等效应力法是最常用的应力分析方法之一,其基本原理是将复杂的三维应力状态简化为等效应力的一维问题。
等效应力通常使用了一些特定的理论假设,如弹性体材料的等效应力假设和受力高度假设。
通过计算等效应力,可以得出物体是否会发生破裂或变形的结论,从而指导工程实践。
2. 应力分量法应力分量法是应力分析的另一种常见方法,它将应力状态表示为各个坐标轴方向上的应力分量。
常见的应力分量包括正应力、切应力和主应力等。
通过计算和分析这些应力分量,可以更直观地理解和描述物体的内部应力状态,准确判断材料的强度和破坏机制。
3. 应变能法应变能法是一种基于能量原理的应力分析方法。
它假定物体的变形过程是一种能量的转化过程,通过计算和分析物体在外力作用下的应变能量和应力能量的变化情况,可以得出物体的内部应力分布。
应变能法在分析复杂的弹性和塑性变形问题时具有一定的优势,被广泛应用于材料力学和结构力学领域。
4. 有限元法有限元法是一种基于数值计算的应力分析方法,它通过将物体划分为无数个小区域,将连续的应力分析问题转化为离散的微分方程组。
通过求解这个方程组,可以得到物体各个小区域的应力状态,进而得出整体的应力分布情况。
有限元法具有计算精度高、适用范围广的优点,是现代材料力学研究中最常用的方法之一。
综上所述,材料力学中的应力分析方法有很多种,每种方法都有其独特的优点和适用范围。
在实际工程中,应根据具体情况选择合适的方法,结合实际问题进行应力分析,为材料设计和工程实践提供科学的依据。
通过深入了解和掌握应力分析方法,可以更好地解决材料力学中的问题,推动科学技术的进步和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的就是主应力;但除此之外,
图a所示单元体上平行于xy平面 的面上也是没有切应力的,所 以该截面也是主平面,只是其 上的主应力为零。
24
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
在弹性力学中可以证明, 受力物体内一点处无论是什么 应力状态必定存在三个相互垂 直的主平面和相应的三个主应 力。对于一点处三个相互垂直
垂直面上的应力来确定,故受力物体内一点处的应力状
态(state of stress)可用一个单元体(element)及其上的应力 来表示。
2
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
p cos 0 cos2 0 p sin sin 2
1
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
§7-1 概述
在第二章和第三章中曾讲述过杆受拉压时和圆截面
杆受扭时杆件内一点处不同方位截面上的应力,并指出: 一点处不同方位截面上应力的集合(总体)称之为一点处 的应力状态。由于一点处任何方位截面上的应力均可根 据从该点处取出的微小正六面体── 单元体的三对相互
的主应力,根据惯例按它们的
代数值由大到小的次序记作1,
2,3。图b所示应力圆中标
出了1和2,而3=0。
25
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
当三个主应力中有二个主应力不等于零时为平面应力状态; 平面应力状态下等于零的那个主应力如下图所示,可能是
1,也可能是2或3,这需要确定不等于零的两个主应力
状态的一些特征,可使上述计算公式以图形即所称的应力
圆(莫尔圆)(Mohr’s circle for stresses)来表示。 先将上述两个计算公式中的第一式内等号右边第一项 移至等号左边,再将两式各自平方然后相加即得:
x
x y
2
2
2
x y 2
6
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
§7-2 平面应力状态的应力分析· 主应力
平面应力状态是指,如果受力物体内一点处在众多不 同方位的单元体中存在一个特定方位的单元体,它的一对
平行平面上没有应力,而另外两对平行平面上都只有正应
力而无切应力这种应力状态。等直圆截面杆扭转时的纯剪 切应力状态就属于平面应力状态(参见§3-4的“Ⅱ.斜截面 上的应力”)。
料发生滑移所致;又如铸铁圆截面杆的扭转破坏是由于在
45˚ 方向拉应力最大从而使材料发生断裂(fracture)所致。
2. 在不可能总是通过实验测定材料
极限应力的复杂应力状态下,如图所示, 应力状态分析是建立关于材料破坏规律 的假设(称为强度理论)(theory of strength, failure criterion)的基础。
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
§7-1 概述 §7-2 平面应力状态的应力分析· 主应力 §7-3 空间应力状态的概念
§7-4 应力与应变间的关系
§7-5 空间应力状态下的应变能密度
§7-6 强度理论及其相当应力
*§7-7 莫尔强度理论及其相当应力 §7-8 各种强度理论的应用
其中, OC 为应力圆圆心的横座标, CA CD 为应力 1 1
圆的半径。故得
1 x y 2 4 x2 1 2 2 x y 1 2 2 x y 4 x2 2 2
27
x y
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
x y
2
sin 2
19
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
讨论: 1. 表达图示各单元体 斜截面上应力随角变化的应
力圆是怎样的?这三个单元体所表示的都是平面应力状态 吗?
20
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
2. 对于图示各单元体,表示与纸面垂直的斜截面上 应力随 角变化的应力圆有什么特点? =±45˚两个斜截
cos 2 x sin 2
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
E点纵座标
EF CE sin 2 0 2 CD1 sin 2 0 cos 2 CD1 cos 2 0 sin 2 x cos 2
2 单向应力状态
3
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
sin 2
cos 2
纯剪切应力状态
4
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
研究杆件受力后各点处,特别是危险点处的应力状态可以: 1. 了解材料发生破坏的力学上的原因,例如低碳钢拉伸 时的屈服(yield)现象是由于在切应力最大的45˚ 斜截面上材
17
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
E点横座标
OF OC CF OC CE cos2 0 2 OC CE cos 2 0 cos 2 CE sin 2 0 sin 2 OC CD1 cos 2 0 cos 2 CD1 sin 2 0 sin 2
C
(a)
22
D1 ( , )
(b)
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
Ⅲ. 主应力与主平面 由根据图a所示单元体上的
应力所作应力圆(图b)可见,圆
周上A1和A2两点的横座标分别 代表该单元体的垂直于xy平面 的那组截面上正应力中的最大 值和最小值,它们的作用面相
第七章 应力状态和强度理论
平面应力状态最一般的表现形式如图a所示,现先 分析与已知应力所在平面xy垂直的任意斜截面(图b)上的 应力。
9
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
Ⅰ. 斜截面上的应力
图b中所示垂直于xy平面 的任意斜截面ef 以它的外法线
n与x轴的夹角 定义,且角
第七章 应力状态和强度理论
图a中所示的应力圆实际上可如图b所示作出,亦即使单元 体x截面上的应力x,x按某一比例尺定出点D1,依单元体y截面
上的应力y,y(取y = -x)定出点D2,然后连以直线,以它与
轴的交点C为圆心,并且以 CD1 或 CD2 为半径作圆得出。
D1 x , x
B1 D1 t an 2 0 C B1 1 x y 2
x
或即
2 x 2 0 arct an y x 图c示出了主应力和主平面的方位。
28
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
由于主应力是按其代数值排序记作1,2,3的,故
F
n
0, d A x d A cos sin x d A cos cos
y
d A sin cos y d A sin sin 0
x x
F 0, d A d A cos sin d A cos sin d A sin sin d A sin cos 0
以自x 轴逆时针转至外法线n为 正;斜截面上图中所示的正应 力 和切应力均为正值,即
以拉应力为正,以使其所
作用的体元有顺时针转动趋势
者为正。
10
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
由图c知,如果斜截面
ef的面积为dA,则体元左侧
面eb的面积为dA· cos,而 底面bf 的面积为dA· sin。 图d示出了作用于体元ebf 诸 面上的力。 体元的平衡方程为
元体上相应两个面之间夹角的两倍,这反映了前述,计
算公式中以2 为参变量这个前提。
16
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
利用应力圆求 斜截面(图a)上的应力,时,只
需将应力圆圆周上表示x截面上的应力的点D1所对应的半
径 C D1 按方位角的转向转动2角,得到半径 C E ,那 么圆周上E点的座标便代表了单元体斜截面上的应力。 现证明如下(参照图b):
的代数值后才能明确。
2
3
1 1
3
2
( 3 0)
26
( 2 0)
( 1 0)
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
现利用前面的图b所示应
力圆导出求不等于零的主应力 数值和主平面位置方位角0的 解析式,由于
1 O A1 O C C A1 2 O C C A1
7
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
(a)
(b) (c)
对于图a所示受横力弯曲的梁,从其中A点处以包含与梁的横 截面重合的面在内的三对相互垂直的面取出的单元体如图b(立
体图)和图c(平面图),本节中的分析结果将表明A点也处于平面
应力状态。
8
材 料 力 学 Ⅰ 电 子 教 案
2为参变量的求 斜截面上应力,的公式:
12
x y x y
2
2
2
cos 2 x sin 2
x y
sin 2 x cos 2
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
Ⅱ. 应力圆 为便于求得, ,也为了便于直观地了解平面应力
面上的,分别是多少?