多元函数积分定义
第一轮复习之多元函数积分学

f ( x, y ) ≡ 0 , ( x, y ) ∈ D 。
设 f ( x, y ) 在 D 上连续, 若在 D 内的任意子区域 D0 , 有 ∫∫ f ( x, y )dxdy = 0 ,则 f ( x, y ) ≡ 0 , ( x, y ) ∈ D 。
D0
三、
两类曲线积分之间的联系: 1) 设 L ∩ 是分段光滑的曲线,两类曲线积分的关系为:
切不可大意失荆州! 具体计算方法: 取 x 轴上一点 x0 , 做平行于 YOZ 的平面 x = x0 , 这 个 截面是以区间
[ϕ1 ( x), ϕ2 ( x)] 为底,曲线 z = f ( x, y)
ϕ2 ( x )
为曲边的曲边梯形,这个截面的面积
f ( x0 , y ) dy
AB
L∩
Qdy ∫ ( P cos α + Q cos β ) ds ∫ Pdx +=
AB
L∩
AB
cos α cos β
为曲线弧 AB 从 A 到 B 方向的切线的方
AB
∩
向余弦,P Q 是在 L ∩ 上的连续函数。 可推广到空间的情形。 2) 两类曲面积分之间的关系: 设 ∑ 为光滑的曲面,则两类曲面积分之间的关系为:
S
∫∫ Rdxdy = 0 (若 S 在垂直于 OXY 平面)
S
四、
多元积分的运算:
6
细节决定成败!
切不可大意失荆州! 1) 曲线积分化成定积分: 根据: 曲线由参数方程给出:
= ds
φ ′2 (t ) + ϕ ′2 (t )dt
r 2 (θ ) + r ′2 (θ )dθ
曲线由极坐标方程给出:
= ∫ f ( x, y, z )ds
多元函数微积分知识点

多元函数微积分知识点多元函数微积分是微积分学中的一个重要分支,主要研究有多个自变量的函数的导数、偏导数、微分、积分等问题。
它是单变量函数微积分的拓展与推广,涉及涉及多元函数的极限、连续性、可微性、可导性、偏导数与全微分、多元复合函数的求导、隐函数的求导、多重积分等内容。
本文将从多元函数的定义与性质、偏导数与全微分、多元复合函数的求导、隐函数的求导、多重积分等几个方面介绍多元函数微积分的知识点。
1.多元函数的定义与性质多元函数是指有多个自变量的函数,一般形式为f(x1, x2, ..., xn),其中x1, x2, ..., xn是自变量,f是因变量。
多元函数的定义域是自变量可能取值的集合。
在多元函数中,可以分别将每个自变量视为其他自变量的常数,对应单变量函数的概念。
多元函数的性质包括定义域、值域、可视化、极值等。
2.偏导数与全微分偏导数是多元函数在其中一变量上的导数,其他变量视为常数。
偏导数的计算与单变量函数的导数计算类似,可以通过极限或者求偏导数的定义计算。
全微分是多元函数在特定点的一个线性逼近,可以用于计算函数值的近似值。
全微分的表示为df = (∂f/∂x1)dx1 + (∂f/∂x2)dx2 + ... + (∂f/∂xn)dxn,其中∂f/∂xi表示对变量xi的偏导数。
3.多元复合函数的求导多元复合函数是指多个函数通过复合而成的函数,其中一个函数的导数是另一个函数的自变量。
类似于链式法则,多元复合函数的求导需要使用偏导数和全导数的概念。
对于函数z = f(g(x, y)),链式法则可以表示为dz = (∂z/∂x)dx + (∂z/∂y)dy = (∂f/∂g)(dg/dx)dx +(∂f/∂g)(dg/dy)dy。
4.隐函数的求导5.多重积分多重积分是多元函数的积分形式,与单变量函数的定积分类似。
多重积分有二重积分、三重积分等,分别对应二元函数、三元函数等的积分。
多重积分可以用于计算函数在区域内的面积、体积等。
高三数学知识点:多元函数和多元微积分

高三数学知识点:多元函数和多元微积分1. 多元函数1.1 定义多元函数是指含有两个或两个上面所述变量的函数。
通常表示为f(x1,x2, ..., xn),其中x1, x2, ..., xn是变量,称为自变量。
1.2 多元函数的图形多元函数的图形是多元函数的图像。
在平面上,我们可以画出二元函数的图像。
对于二元函数f(x, y),我们可以固定一个变量的值,然后画出另一个变量的值随该变量变化的曲线。
这些曲线称为等值线。
1.3 多元函数的偏导数多元函数的偏导数是指对一个变量的导数,而将其他变量视为常数。
对于函数f(x1, x2, ..., xn),其偏导数可以表示为:•∂f/∂x1:表示对x1的偏导数。
•∂f/∂x2:表示对x2的偏导数。
•∂f/∂xn:表示对xn的偏导数。
1.4 多元函数的极值多元函数的极值是指在某个区域内,函数取得最大值或最小值的情况。
通过求偏导数并解方程组,可以找到多元函数的极值。
2. 多元微积分2.1 多元积分多元积分是指对多元函数进行积分。
根据积分变量的不同,可以分为二重积分、三重积分和四重积分等。
2.1.1 二重积分二重积分是指对二元函数在某个区域上进行积分。
其一般形式为:∫∫_D f(x, y) dA其中,D表示积分区域,f(x, y)是被积函数,dA是面积元素。
2.1.2 三重积分三重积分是指对三元函数在某个区域上进行积分。
其一般形式为:∫∫∫_D f(x, y, z) dV其中,D表示积分区域,f(x, y, z)是被积函数,dV是体积元素。
2.1.3 四重积分四重积分是指对四元函数在某个区域上进行积分。
其一般形式为:∫∫∫∫_D f(x, y, z, w) dV其中,D表示积分区域,f(x, y, z, w)是被积函数,dV是体积元素。
2.2 向量微积分向量微积分包括向量的导数和向量的积分。
2.2.1 向量的导数向量的导数是指对向量场的导数。
对于向量场F(x, y, z),其导数可以表示为:∂F/∂x, ∂F/∂y, ∂F/∂z2.2.2 向量的积分向量的积分是指对向量场进行积分。
多元函数微积分汇总

多元函数微积分汇总一、多元函数的极限对于多元函数,其极限的定义与一元函数相似。
设有一个二元函数,如果对于任意的正数ε,总存在正数δ,使得当点(x,y)满足0<√[(x-a)²+(y-b)²]<δ 时,必有,f(x,y)-A,<ε成立,那么常数A是这个二元函数f(x,y)在点(x,y)处的极限,记作lim_(x,y)→(a,b)(f(x,y))=A。
类似地,也可以定义其它维度函数的极限。
二、多元函数的连续性在多元函数中,连续性的定义也与一元函数相似。
若多元函数f(x,y)在点(x0,y0)处极限存在且等于f(x0,y0),则称多元函数f(x,y)在点(x0,y0)处连续。
对于多元函数来说,全体连续点的集合称为多元函数的连续域。
三、多元函数的可微性多元函数的可微性与一元函数的可微性有一些差异。
设有一个二元函数f(x,y),如果对于任意给定的(Δx,Δy),有f(x+Δx,y+Δy)-f(x,y)=AΔx+BΔy+o(√Δx²+Δy²)其中A和B为常数,那么称二元函数f(x,y)在点(x,y)处可微。
类似地,对于三元、四元或n元函数也可以定义可微性。
四、多元函数的偏导数对于多元函数,其偏导数是指函数在其中一变量上的导数,而把其他变量视为常数。
例如,对于二元函数f(x,y),其对于变量x的偏导数记为∂f/∂x。
偏导数描述了函数在其中一方向上的变化率。
五、多元函数的全微分全微分是指多元函数的微分与偏导数之间的关系。
对于二元函数f(x,y),其全微分df可表示为df=∂f/∂x*dx+∂f/∂y*dy。
全微分可用于描述函数的微小变化。
六、多元函数的方向导数方向导数是指多元函数在其中一方向上的变化率。
给定一个二元函数f(x,y)和一个单位向量u=(cosθ, sinθ),函数f(x,y)在点(x0,y0)处沿着方向u的方向导数定义为D_uf(x0,y0)=∂f/∂x * cosθ + ∂f/∂y * sinθ七、多元函数的梯度多元函数的梯度是一个向量,其方向与函数在其中一点上变化最快的方向一致,大小为变化率的最大值。
考研数学高数9多元函数积分学

第九讲:多元函数积分学1. 定义设()f x y ,是定义在有界闭区域D 上的有界函数,如果对任意分割D 为n 个小区域12n σσσ∆∆∆,,,,对小区域()12k k n σ∆=,,上任意取一点()k k ξη,都有()01lim nk k k d k f ξησ→=∆∑,存在,(其中k σ∆又表示为小区域k σ∆的面积,k d 为小区域k σ∆的直径,而1max k k nd d ≤≤=),则称这个极限值为()f x y ,在区域D 上的二重积分,记以()Df x y d σ⎰⎰,这时就称()f x y ,在D 上可积,如果()f x y ,在D 上是有限片上的连续函数,则()f x y ,在D 上是可积的。
2. 几何意义当()f x y ,为闭区域D 上的连续函数,且()0f x y ≥,,则二重积分()Df x y d σ⎰⎰,表示以曲面()z f x y =,为顶,侧面以D 的边界曲线为准线,母线平行于z 轴的曲顶柱体的体积。
当封闭曲面S 它在xy 平面上的投影区域为D ,上半曲面方程为()2z f x y =,,下半曲面方程为()1z f x y =,,则封闭曲面S 围成空间区域的体积为()()21Df x y f x y d σ-⎡⎤⎣⎦⎰⎰,, 3. 基本性质 (1)()()() DDkf x y d k f x y d k σσ=⎰⎰⎰⎰,,为常数(2)()()()()DDDf x yg x y d f x y d g x y d σσσ±=±⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰,,,, (3)()()()12DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰,,,其中12D D D =。
除公共边界外,1D 与2D 不重叠。
(4)若()()()f x y g x y x y D ≤∈,,,,,则()()DDf x y dg x y d σσ≤⎰⎰⎰⎰,,(5)若()()m f x y M x y D ≤≤∈,,,,则 ()DmS f x y d MS σ≤≤⎰⎰,其中S 为区域D 的面积 (6)()()DDf x y d f x y d σσ≤⎰⎰⎰⎰,,(7)积分中值定理,设(),f x y 在有界闭区域D 上连续,S 为D 的面积,则存在(),D ξη∈,使得()()Df x y d f S σξη=⎰⎰,,我们也把()1Df x y d S σ⎰⎰,称为()f x y ,在D 上的积分平均值。
04高数——多元函数积分学知识点速记

多元函数积分学1、不定积分1)原函数定义定义在某区间I 上的函数()f x ,若对I 的一切x ,均有()()F x f x '=,则称()F x 为()f x 在区间I 上的原函数。
若函数()f x 存在原函数,则()f x 就有无穷多个原函数,可表示为()F x C +。
2)不定积分定义函数()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰。
若()F x 是()f x 的一个原函数,则()()d f x x F x C =+⎰(C 为任意常数)3)不定积分计算:①第一类换元积分法:设()f u 具有原函数()F u ,而()u x ϕ=可导,则有()()()()d d f x x x f u u F x C ϕϕϕ'==+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰②第二类换元积分法:设()x t ϕ=在区间[],αβ上单调可导,且()0t ϕ'≠,又设()()f t t ϕϕ'⎡⎤⎣⎦具有原函数()F t ,则有()()()()()1d d f x x f t t t F t c F x Cϕϕϕ-'⎡⎤==+=+⎡⎤⎣⎦⎣⎦⎰⎰式中,()1x ϕ-为()x t ϕ=的反函数。
高 数多元函数积分学知识点速记③分部积分法:设()u x ,()v x 可微,且()() d v x u x ⎰存在,由公式()d d d uv u v v u =+得到分部积分公式d d u v uv v u=-⎰⎰2、定积分1)两点规定:①当a b =时,()d 0b a f x x =⎰;②当a b >时,()()d d b a a b f x x f x x =-⎰⎰2)积分上限函数及其导数①()d xa f x x ⎰为积分上限函数,记作()()d x ax f x x Φ=⎰,经常写成如下形式()()()d xa f t t a x xb Φ=≤≤⎰②积分上限函数的导数()()()d x a x f t t f x '⎡⎤'Φ==⎢⎥⎣⎦⎰()a xb ≤≤③()()()()()()()d g x h x f t t f g x g x f h x h x '⎡⎤''==⋅-⋅⎡⎤⎡⎤⎣⎦⎣⎦⎢⎥⎣⎦⎰3、定积分的应用旋转体的体积:设由曲线()y f x =,直线x a =,x b =以及x 轴围成的平面图形,绕x 轴旋转一周而生成的旋转体的体积,则()2πd b x aV f x x =⎡⎤⎣⎦⎰平行截面面积为已知的立体的体积:设立体由曲面S ,以及平面x a =、x b =所围成,且对于[],a b 上任一点x 作垂直截面,截得的面积()A A x =为x 的连续函数,则()d bc V A x x =⎰4、二重积分1)二元函数(),f x y 在闭区域D 上的二重积分,记作(),d D f x y σ⎰⎰2)(),d f x y σ⎰⎰表示以曲面(),z f x y =为顶,以区域D 为底,以D 的边D界为准线,母线平行于 Oz 轴的柱面围成的曲顶柱体的体积。
多元函数微积分复习概要

第六章多元函数微积分复习要点一、基本概念及相关定理1.多元函数的极限定义:函数(,)z f x y =在区域D 有定义,当点P(x ,y )D ∈沿任意路径无限趋于点000(,)P x y (0P P ≠)时, (,)f x y 无限趋于一个确定的常数A,则称常数A 是函数(,)z f x y =当P(x ,y )趋于000(,)P x y 时的极限.记作0lim (,)x xy y f x y A →→=,或00(,)(,)lim(,)x y x y f x y A →=,或(,)f x y A →,00(,)(,)x y x y →,或lim (,)f x y A ρ→=,或(,)f x y A →,0ρ→.其中,ρ= 2.二元函数连续的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义,如果对任意0(,)()P x y U P ∈,都有0000(,)(,)lim(,)(,)x y x y f x y f x y →=(或0lim ()()P P f P f P →=),则称函数(,)z f x y =在点000(,)P x y 处连续.3.偏导数的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义.(1)函数(,)z f x y =在点000(,)P x y 处对x 的偏导数定义为00000(,)(,)lim x f x x y f x y x∆→+∆-∆,记作00x x y y zx ==∂∂,或00x x y y f x==∂∂,或00(,)x z x y ',或00(,)x f x y ',即x x y y zx==∂∂=00000(,)(,)lim x f x x y f x y x∆→+∆-∆.(2)函数(,)z f x y =在点000(,)P x y 处对y 的偏导数定义为00000(,)(,)lim y f x y y f x y y∆→+∆-∆,记作00x x y y zy ==∂∂,或00x x y y f y==∂∂,或00(,)y z x y ',或00(,)y f x y ',即x x y y zy==∂∂=00000(,)(,)lim y f x y y f x y y∆→+∆-∆.而称z x∂∂,或f x ∂∂,或(,)x z x y ',或(,)x f x y '及[z y ∂∂,或f y∂∂,或(,)y z x y ',或(,)y f x y ']为(关于x 或关于y )偏导函数.高阶偏导数:22(,)xx z zf x y x x x∂∂∂⎛⎫''== ⎪∂∂∂⎝⎭或(,)xx z x y '', 2(,)xy z zf x y y x x y∂∂∂⎛⎫''== ⎪∂∂∂∂⎝⎭或(,)xy z x y '', 2(,)yx z zf x y x y y x⎛⎫∂∂∂''== ⎪∂∂∂∂⎝⎭或(,)yx z x y '', 22(,)yyz zf x y y y y⎛⎫∂∂∂''== ⎪∂∂∂⎝⎭或(,)yy z x y ''. 同理可得,三阶、四阶、…,以及n 阶偏导数.4.全微分定义:设函数(,)z f x y =在点(,)P x y 的某一邻域()U P 有定义,若函数在点(,)x y 的全增量(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为()z A x B y ρ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,仅于x、y有关,ρ=,则称函数(,)z f x y =在点(,)x y 处可微分,称A x B y ∆+∆为函数(,)z f x y =在点(,)x y 的全微分,记为dz ,即dz A x B y =∆+∆.可微的必要条件:若函数(,)z f x y =在点(,)x y 处可微分,则(1)函数(,)z f x y =在点(,)x y 的偏导数z x ∂∂、zy∂∂必存在;(2)全微分为z z dz x y z x y z dx dy x y∂∂+∂∂∂=∆+∆=∂∂∂. 推广:函数(,,)u f x y z =在点(,,)x y z 的全微分为u u udu dx dy dz x y z∂∂∂=++∂∂∂.可微的充分条件:若函数(,)z f x y =的偏导数z x∂∂、z y∂∂在点(,)x y 处连续⇒(,)z f x y =在点(,)x y 处可微分.5.复合函数微分法(5种情况,由简单到复杂排列): (1)含有多个中间变量的一元函数(,,)z f u v w =,()u u x =,()v v x =,()w w x =,则dz z du z dv z dwdx u dx v dx w dx∂∂∂=++∂∂∂, 称此导数dzdx为全导数;(2)只有一个中间变量的二元复合函数 情形1:()z f u =,(,)u u x y =,则z dz ux du x∂∂=∂∂ ,z dz u y du y∂∂=∂∂. 情形2:(,,)z f x y u =,(,)u u x y =,则z f z u x x u x∂∂∂∂=+∂∂∂∂ ,z f z u y y u y∂∂∂∂=+∂∂∂∂. zx wv u xx zuyxzy yuxx其中,f x∂∂与z x∂∂是不同的,z x∂∂是把复合函数[,,(,)]z f x y u x y =中的y 看作不变量而对x 的偏导数;f x∂∂是把函数(,,)f x y u 中的y 及u 看作不变量而对x 的偏导数。
多元函数与多元微积分

多元函数与多元微积分多元函数是数学分析的一个重要分支,它描述了多个自变量与一个因变量之间的关系。
多元微积分则研究多元函数的导数、积分和微分方程等问题。
本文将介绍多元函数的定义、连续性和偏导数,以及多元微积分的应用。
一、多元函数的定义与连续性多元函数可以定义为具有多个自变量和一个因变量的数学函数。
例如,一个具有两个自变量x和y的多元函数可以表示为f(x, y)。
多元函数的定义域即为自变量所在的数学空间。
对于多元函数而言,连续性是一个重要的性质。
多元函数在某一点连续,意味着当自变量在该点附近发生微小改变时,函数值也会发生微小变化。
连续性可用极限来描述,即函数在某一点的极限存在且与函数在该点的取值相等。
二、多元函数的偏导数偏导数是多元函数的导数在某一点上对各个自变量的偏导数。
对于一个具有n个自变量的多元函数f(x₁, x₂, ..., xₙ),其偏导数可表示为∂f/∂x₁, ∂f/∂x₂, ..., ∂f/∂xₙ。
偏导数描述了在其他自变量保持不变的情况下,函数在某一自变量上的变化率。
例如,对于二元函数f(x, y),∂f/∂x表示当y保持不变时,函数f在x方向上的变化率。
三、多元微积分的应用多元微积分在物理学、经济学和工程学等领域中有广泛的应用。
以下是一些应用领域的例子:1. 曲面的切平面与法线:在多元微积分中,通过偏导数可以求得曲面在某一点上的切平面与法线。
这在计算机图形学、机械设计等领域中具有重要意义。
2. 二重积分与三重积分:多元函数的积分可以用于计算平面区域的面积、质心以及立体体积等问题。
例如,在物理学中,可以通过二重积分计算平面物体的质心坐标。
3. 最优化问题:多元微积分可以帮助解决最优化问题,即寻找多元函数在一定约束条件下的最大值或最小值。
这在经济学中的优化模型、工程中的最佳设计等问题中有应用。
4. 微分方程:多元微分方程是描述自然界和工程问题中的多变量关系的数学模型。
通过多元微分方程的求解,可以得到解析解或数值解,并找到问题的解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 多元函数积分的概念与性质 1. 物体质量的计算
设有一质量非均匀分布的物体, 设有一质量非均匀分布的物体,其密度 是点M的函数 是点 的函数 µ = f (M ). 已知,怎样求物体的质量呢? 如果函数 f 已知,怎样求物体的质量呢?
在定积分中, 在定积分中,一根线密度为
µ = f ( M ) = f ( x)
性质5 估值性 估值性) 性质 (估值性)
mG ≤ ∫ f ( P ) dg ≤ MG
G
这个性质可以由m ≤ f ( P ) ≤ M 利用性质3 和性质4 推出.
b a
定积分 m(b − a) ≤ ∫ f ( x)dx ≤ M(b − a) 二重积分: 二重积分: m⋅σ ≤ ∫∫ f ( x, y)dσ ≤ M ⋅σ
i i
∆σ i
二重积分的几何意义
当被积函数 f ( x , y ) ≥ 0时, 二重积分是曲面 z = f ( x, y)为顶,
z z = f ( x, y)
V D y
其投影D为底曲顶柱体的体积. 其投影 为底曲顶柱体的体积. 为底曲顶柱体的体积 o f ( x, y)dσ = V ∫∫
D
当被积函数 f ( x , y ) ≤ 0时, 二重积分是曲顶柱体的体积的负值. 二重积分是曲顶柱体的体积的负值.
D
解
z
∫∫ f ( x , y )dσ = lim ∑ f (ξ i ,ηi )∆σ i λ →0 i =1
D
n
z = f ( x, y)
曲顶柱体
o
x
D任意划分为 个子域∆σi 任意划分为n个子域 任意划分为 (ξi ,ηi ) ∆σ i y 点 ( ξ i , η i ) ∈ ∆ σ i
D
小平顶柱体体积 =f ( ξ i ,η i ) ∆σ i 高×底面积
( 或f ( P ) = f ( x , y , z ),x , y , z ) ∈ Γ,
称为对弧长的曲线积分Байду номын сангаас称为对弧长的曲线积分
n
G
( dg λ →0 ∫ f f( x ,Py))ds = lim ∑ f (ξ i ,ηi )∆si i =1 n
L
∫
Γ
f ( x , y , z )ds = lim ∑ f (ξ i ,η i , ζ i )∆si λ →0
x
∫∫ f ( x, y)dσ = −V
D
3.多元函数积分的性质 多元函数积分的性质
多元积分的存在性与定积分类似: 多元积分的存在性与定积分类似:
若函数 f 在有界闭集G上连续,
则 f 在G上可积.
当函数f ( P ), h( P )可积时,多元函数
积分有与定积分类似的性质.
性质1 线性性质) 性质1 (线性性质)
小 部 分 ∆ g i , i = 1, 2,⋯ n. ∆ g i 也 表 示 其 度 量 .
n 任取点Pi ∈ ∆gi , 作乘积 f ( Pi )∆gi , i =1,2,⋯ .
作和式 ∑ f ( Pi )∆gi
i =1
n
不 论 G怎 样 划 分 , 点 Pi 在 ∆gi中 怎 样 选 取 ,
o
【取极限】 m = lim ∑ f ( M i )∆σ i 取极限】
λ →0
i =1
n
λ = max {∆σ i的直径}
细棒的质量 m = lim
λ →0
λ →0
∑ f (ξ )∆x
i =1 n i
i =1
n
i
薄板的质量 m = lim ∑ f ( M i )∆σ i 均可由相同形式的和式极限来确定. 均可由相同形式的和式极限来确定. 一般地,设有一质量非均匀分布在某一 一般地, 几何形体G上的物体 可以是直线段 可以是直线段、 几何形体 上的物体 (G可以是直线段、 平面或空间区域、一片曲面或一段曲线 平面或空间区域、一片曲面或一段曲线), 其质量可以按照以上四个步骤来计算: 其质量可以按照以上四个步骤来计算:
D
性质6(积分中值定理) 性质 (积分中值定理)
设f ( P )在有界连通闭集G上连续,
则在G上至少存在一点M,满足等式
∫
定积分
G
f ( P )dg=f ( M ) G
∫ f ( x)dx = f (ξ )(b − a),ξ ∈[a, b]
b a
D
b b b a a a
∫∫[ f ( x, y) ± g( x, y)]dσ = ∫∫ f ( x, y)dσ ±∫∫ g( x, y)dσ
D D D
性质2(区域可加性) 性质 (区域可加性) 若G分为两部分G = G1 + G2 , G1 ∩ G2 = φ ,
则
b
∫ f ( P ) dg = ∫
特别地,由于 − f ( P) ≤ f ( P) ≤ f ( P) ,
故有
定积分
∫ f ( P ) dg ≤ ∫
G
b a
G
f ( P ) dg
∫ f ( x)dx ≤ ∫ h( x)dx
b a
D D
二重积分: 二重积分:∫∫ f ( x, y)dσ ≤ ∫∫ h( x, y)dσ
若M , m分别是f ( P ) 在G上的最大值 和最小值,则
当所有∆gi的直径的最大值λ → 0时,和式
∑ f ( P )∆g
i =1 i
n
i
都趋于同一常数,
那 么 , 称 函 数 f 在 G上 可 积 , 且 此 常 数
为多元函数 f 在G上的积分.记作
∫ f ( P )dg = lim ∑ f ( P )∆g λ
G →0 i =1 i
n
i
函数f ( p ) 在几何形体G上的积分
(1)∫ kf ( P ) dg = k ∫ f ( P ) dg
G G
为 ( k为常数 )
(2)∫ [ f ( P ) ± h( P )] dg
G
= ∫ f ( P ) dg ± ∫ h ( P )dg
G G
∫ [ f ( x) ± g( x)]dx = ∫ f ( x)dx ± ∫ g ( x)dx
∫∫ f ( x , y )dσ = lim ∑ f (ξ i ,ηi )∆σ i = V λ →0 i =1
D
n
z
f ( ξ i ,η i )
z = f ( x, y )
小柱体体积无限累加 得到以曲面为顶, 得到以曲面为顶,
y
区域D为底的曲顶 区域 为底的曲顶 为底的
o
x
D
•
的体积V. 柱体的体积 柱体的体积 (ξ ,η )
D
任意划分为n个子域 i 【分割】把D任意划分为 个子域 ∆σ(也表 分割】 任意划分为 示面积) 示面积)i = 1, 2,⋯ n, x Mi ∆σi 近似】 【近似】∀M i ∈ ∆σ i , 【求和】 求和】
n i =1
∆m i ≈ f ( M i )∆σ i
n i =1
D
y
m = ∑ ∆ m i ≈ ∑ f ( M i )∆ σ i
任意划分为n个子域 任意划分为 【分割】 把G任意划分为 个子域 ∆gi(也表 分割】 示度量) 示度量)i
= 1, 2,⋯ n,
n n
【近似】 ∆gi 上质量分布近似看作均匀 近似】 【求和】 m 求和】
∀M i ∈ ∆ g i , ∆ m i ≈ f ( M i ) ∆ g i
= ∑ ∆m i ≈ ∑ f ( M i )∆g i
G
定积分
∫
b
a
(积分区间的长度) dx = b − a 积分区间的长度)
对于二重积分来说 若在D上f ( x , y ) = 1,则有
∫∫ dσ=D的面积
D
性质4(比较性) 性质 (比较性)
如果在G上f ( P ) ≤ h ( P ) , 则有
∫ f ( P ) dg ≤ ∫ h ( P )dg
G G
i =1 i =1
【取极限】 λ = max {∆gi的直径} 取极限】 n
m = lim ∑ f ( M i )∆gi
λ →0
i =1
2. 多元函数积分的概念
定义 表示一个有界的可度量几何形体, 设G表示一个有界的可度量几何形体, 表示一个有界的可度量几何形体
函数f ( P ) 在G上有界. 将 G 任 意 划 分 为 n个
dg ∫∫ ff((Px))dx =lim ∑ f ( ξ i )∆xi λ →0 i =1
b
Ga
n
为平面有界闭区域( (2)当G为平面有界闭区域(常记为 )时, ) 为平面有界闭区域 常记为D f ( P ) = f ( x , y ),x , y ) ∈ D, 二重积分 ( 称为二重积分 称为 n
n
( P )d ∫∫ ff ( x , )ydgσ = lim ∑ f (ξ i ,ηi )∆σ i ∫G λ →0 i =1
D
Ω 就 是 积 分 域 , dv 称 为 体 积 元 素 .
Ω
G
为平面有限曲线段( (4)当G为平面有限曲线段(常记为 ) ) 为平面有限曲线段 常记为L) 或空间有限曲线段( 或空间有限曲线段(常记为 Γ)时, f ( P ) = f ( x , y ), , y ) ∈ L (x
D就 是 积 分 域 , dσ 称 为 面 积 元 素 . 为空间有界闭区域( (3)当G为空间有界闭区域(常记为 Ω)时, ) 为空间有界闭区域 f ( P ) = f ( x, y, z ), , y, z ) ∈Ω, 称为三重积分 (x 称为三重积分
y )dv ∫∫∫∫ f (fx(, P,)zdg = lim ∑ f (ξ i ,ηi ,ζ i )∆vi λ →0 i =1