数列复习——数列求和 公开课获奖课件
合集下载
高三数学最新复习课件数列求和(共42张PPT)

数列的通项的和,分别求出每个数列的和,从
而求出原数列的和.
例1
求下面数列的前 n 项和: 1 1 1 1+1,a+4, 2+7,…, n-1+3n-路点拨】
1 1 1 【解】 Sn= (1+ 1)+( + 4)+ ( 2+ 7)+…+ ( n-1+ 3n a a a - 2) 1 1 1 = (1+ + 2+…+ n-1)+ [1+4+ 7+…+(3n-2)]. a a a 1 1 1 令 Bn= 1+ + 2+…+ n-1, a a a an-1 ∴当 a= 1 时, Bn= n;当 a≠ 1 时, Bn= n n- 1, a -a 3n-1 n Cn= 1+ 4+ 7+…+(3n- 2)= . 2
【名师点评】
利用错位相减法求和时,转化为
等比数列求和.若公比是参数(字母),则应先对参
数加以讨论,一般情况下分等于1和不等于1两种
情况分别进行求和.
裂项相消法求和 裂项相消是将数列的项分裂为两项之差,通过
求和相互抵消,从而达到求和的目的.
例3 (2011 年博州质检 )已知数列 {an}中, a1= 1,
错位相减法求和 一般地,如果数列{an}是等差数列,{bn}是等比 数列,求数列{an· bn}的前n项和时,可采用错位 相减法.
例2
知数列{an}满足a1,a2-a1,a3-a2,…,an
-an-1,…是首项为1,公比为a的等比数列. (1)求an; (2)如果a=2,bn=(2n-1)an,求数列{bn}的前n项 和 S n.
等比数列,再求解.
4.裂项相消法 把数列的通项拆成两项之差求和,正负相消剩 下首尾若干项. 5.倒序相加法 把数列正着写和倒着写再相加(即等差数列求和
公式的推导过程的推广).
高考数学复习第六章数列6.4数列求和文北师大版市赛课公开课一等奖省名师优质课获奖PPT课件

3/30
-4知识梳理
双基自测
1
自测点评
2
3
(5)裂项相消法:把数列通项拆成两项之差,在求和时中间一些项
相互抵消,从而求得其和.
1
1 1 1
=
(+)
+
1
1
;
2-1 2+1
1
1
;
(+1) (+1)(+2)
常见的裂项公式:①
1
1
②
=2
(2-1)(2+1)
1
1
③(+1)(+2) = 2
0
n-1
2
=1×2 +2×2+3×2 +…+n×2
(+n=1×2+2×22+3×23+…+n×2n+n(n+1).
③-④,得-Tn=1+2+2 +2 +…+2 -n·
2
2
3
n-1
1-2
(+1)
(+1)
= -n·
2n- 2 =(1-n)·
2n-1- 2 ,
1-2
(+1)
1-
− (1-)
2
1-
(1-)
1-
关闭
1-
解析
答案
10/30
-11知识梳理
双基自测
自测点评
1.含有参数数列求和,常伴伴随分类讨论.
2.在错位相减法中,两式相减后,组成等比数列有(n-1)项,整个式
子共有(n+1)项.
3.用裂项相消法求和时,裂项相消后,前面剩下几项,后面就剩下
-4知识梳理
双基自测
1
自测点评
2
3
(5)裂项相消法:把数列通项拆成两项之差,在求和时中间一些项
相互抵消,从而求得其和.
1
1 1 1
=
(+)
+
1
1
;
2-1 2+1
1
1
;
(+1) (+1)(+2)
常见的裂项公式:①
1
1
②
=2
(2-1)(2+1)
1
1
③(+1)(+2) = 2
0
n-1
2
=1×2 +2×2+3×2 +…+n×2
(+n=1×2+2×22+3×23+…+n×2n+n(n+1).
③-④,得-Tn=1+2+2 +2 +…+2 -n·
2
2
3
n-1
1-2
(+1)
(+1)
= -n·
2n- 2 =(1-n)·
2n-1- 2 ,
1-2
(+1)
1-
− (1-)
2
1-
(1-)
1-
关闭
1-
解析
答案
10/30
-11知识梳理
双基自测
自测点评
1.含有参数数列求和,常伴伴随分类讨论.
2.在错位相减法中,两式相减后,组成等比数列有(n-1)项,整个式
子共有(n+1)项.
3.用裂项相消法求和时,裂项相消后,前面剩下几项,后面就剩下
数列求和【公开课教学PPT课件】

1 2
Tn
1 2
3 22
5 23
2n 3 2n 1
2n1
2n
(1
1 2
)Tn
2
1 2
1 22
1 23
Tn
6
2n 3 2n1
1 2n2
2n 1 2n
3
2n 3 2n
高考数学第一轮复习 第六章 数列 第4节 数列求和
已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
(2)Sn
a1(1 qn ) 1 q
2n 1, bn
an1 Sn Sn1
Sn1 Sn Sn Sn1
1 Sn
1 Sn1
Tn b1 b2 b3 bn
( 1 1 )( 1 1 ) ( 1 1 )
S1 S2
S2 S3
Sn
1 S1
高考数学第一轮复习 第六章 数列 第4节 数列求和
考点二 分组、并项求和法
例2. 设等比数列{an}的通项公式为an=3n ,等差数列{bn}的通项 公式为bn=2n+1.
(1)记cn=an+bn,求数列{cn}的前n项和Sn. (2)记dn=(-1)nbn ,求数列{dn}的前n项和Tn.
解:(1)
cn an bn,an,bn分别为等差、等比数列。
高考数学第一轮复习 第六章 数列 第4节 数列求和
考点一 倒序相加法
例1. 若数列{an}是首项为1,公差为2的等差数列.求
S Cn0a1 Cn1a2 Cn2a3 + Cnnan1
高中阶段最全的数列求和(10种)省公开课获奖课件说课比赛一等奖课件

4.处理非等差、等比数列旳求和,主要有两种思绪
(1)转化旳思想,即将一般数列设法转化为等差或等比 数列,这一思想措施往往经过通项分解或错位相减来完 毕.
(2)不能转化为等差或等比数列旳数列,往往经过裂项 相消法、错位相减法、倒序相加法等来求和.
5.“错位相减”、“裂项相消”等是数列求和最主要 旳措施.是高考要点考察旳内容,应熟练掌握.
(其中d=an+1-an).
常见旳拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
4. 1 1 ( a b) a b ab
5.
1
1[ 1
1
]
即数列an的周期是 4,
a4=-1 又 a3 2 ,
故 a1+a2 +a3 +a4 =2 , a2009 a45021 a1 ,
a1+a2 +a3 +a4 +.......+a2009 502(a1+a2 +a3 +a4 ) a2009 1003
练习:
已知在数列 an
中,
a1
2
,
an1
(3)求数列1,3+4,5+6+7,7+8+9+10, …,前n项和Sn.
例1:求和:
1. 4 6 8 ……+(2n+2)
2.
11 1 1 2 22 23
1 2n
3. x x2 xn
10看通项,是什么数列,用哪个公式; 20注意项数
例2、已知lg(xy) 2
数列求和法公开课省名师优质课赛课获奖课件市赛课一等奖课件

n
裂项法求和
例4:求数列1,
1 1
2
,
1
1 2
3
,
1
2
1
3
4
,,
1
2
1 3
n
,(n
N
*)
旳前n项和
提醒: an
1
2
1
n
2 n(n 1)
2( 1 n
1) n 1
Sn
2[1
1 2
1 2
1 3
1 n
1 n 1
21
1 n 1
2n n 1
裂项法求和
练习:求和 1 1 1
1
1 4 4 7 7 10 (3n 2)(3n 1)
Sn 2 4 6 2n n2 n
Sn
12
22
n2
1 6
n(n
1)(2n
1)
知识回忆:公式法求和
例1:求和:Sn an an1b an2b2 a2bn2 abn1 bn (n N*)
解:①当a 0时,S n b n
②当a 0且 b 0 时,Sn an
③当a b 0时,Sn (n 1)a n
错位相减法
周期法求和
其他措施:递推法、合并法
2k
和
而且S2k1 S2k a2k 2k (4k 1) 2k 1 (2k 1) 法
Sn (1)n n
其他措施求和
例8:已知数列 an
旳前n项和S n与a满n 足:
an , Sn , Sn
1 2
(n 2)成等比数列,且 a1 1,求 S n
解:由题意:
Sn2
an (Sn
1 ), 2
错位相减法
高考数学总复习第5章数列5.4数列求和文市赛课公开课一等奖省名师优质课获奖PPT课件

55
=
211
+
53
=
2101.
24/54
考向 裂项相消法求和
命题角度 1
形如 an=
1 n+k+
型 n
25/54
例 2 [2017·正定模拟]已知等差数列{an}的前 n 项和为
Sn,公差为 d,若 d,S9 为函数 f(x)=(x-2)(x-99)的两个零
点且 d<S9.
(1)求数列{an}的通项公式;
23/54
(2)由(1)可得 bn=2n+n. 所以 b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3) + …+ (210 + 10)= (2 + 22+ 23 + …+ 210)+ (1 + 2 + 3+ …+
10)
=
21-210 1-2
+
1+10×10 2
=
(211
-
2)
+
第5章 数列 第4讲 数列求和
1/54
2/54
板块一 知识梳理·自主学习
3/54
[必备知识]
考点 1 公式法与分组求和法
1.公式法
直接利用等差数列、等比数列的前 n 项和公式求和
(1)等差数列的前 n 项和公式:
Sn=na1+ 2 an= na1+nn- 2 1d
.
(2)等比数列的前 n 项和公式:
(2)若 bn=
1 an+1+
an(n∈N*),求数列{bn}的前 n 项和
Tn.
26/54
[解] (1)因为 d,S9 为函数 f(x)=(x-2)(x-99)的两个 零点且 d<S9,所以 d=2,S9=99,
又因为 Sn=na1+nn- 2 1d, 所以 9a1+9× 2 8×2=99,解得 a1=3, {an}是首项为 3,公差为 2 的等差数列. 所以 an=a1+(n-1)d=2n+1.
高考数学复习第六章数列6.4数列求和理市赛课公开课一等奖省名师优质课获奖PPT课件

37/85
考点 4 裂项相消法求和
38/85
裂项相消法 (1)把数列的通项拆成两项之差,在求和时中间的一些项可以 相互抵消,从而求得其和.
39/85
(2)常见的裂项技巧:
①nn1+1=1n-n+ 1 1.
②nn1+2=121n-n+ 1 2.
③2n-112n+1=122n1-1-2n1+1.
④
24/85
考点 3 错位相减法求和
25/85
错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的 对应项之积构成的,那么这个数列的前 n 项和即可用此法来求, 如等比数列的前 n 项和公式就是用此法推导的.
26/85
(1)[教材习题改编]数列 1,1+1 2,1+12+3,…,1+2+1…+n 2n
34/85
[2015·天津卷]已知{an}是各项均为正数的等比数列,{bn}是 等差数列,且 a1=b1=1,b2+b3=2a3,a5-3b2=7.
(1)求{an}和{bn}的通项公式; (2)设 cn=anbn,n∈N*,求数列{cn}的前 n 项和.
35/85
解:(1)设数列{an}的公比为 q,数列{bn}的公差为 d,由题 意知 q>0.
32/85
2Tn=23+(30+3-1+3-2+…+32-n)-(n-1)×31-n =23+11- -331--1n-(n-1)×31-n =163-62n×+33n , 所以 Tn=1132-64n×+33n , 经检验,n=1 时也适合. 综上知,Tn=1132-64n×+33n .
33/85
设数列{an}
的前 n 项和为 Sn,则 S9=___3_7_7___.
18/85
[典题 2] 已知数列{an}的通项公式是 an=2·3n-1+(-1)n·(ln 2-ln 3)+(-1)nnln 3,求其前 n 项和 Sn.
考点 4 裂项相消法求和
38/85
裂项相消法 (1)把数列的通项拆成两项之差,在求和时中间的一些项可以 相互抵消,从而求得其和.
39/85
(2)常见的裂项技巧:
①nn1+1=1n-n+ 1 1.
②nn1+2=121n-n+ 1 2.
③2n-112n+1=122n1-1-2n1+1.
④
24/85
考点 3 错位相减法求和
25/85
错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的 对应项之积构成的,那么这个数列的前 n 项和即可用此法来求, 如等比数列的前 n 项和公式就是用此法推导的.
26/85
(1)[教材习题改编]数列 1,1+1 2,1+12+3,…,1+2+1…+n 2n
34/85
[2015·天津卷]已知{an}是各项均为正数的等比数列,{bn}是 等差数列,且 a1=b1=1,b2+b3=2a3,a5-3b2=7.
(1)求{an}和{bn}的通项公式; (2)设 cn=anbn,n∈N*,求数列{cn}的前 n 项和.
35/85
解:(1)设数列{an}的公比为 q,数列{bn}的公差为 d,由题 意知 q>0.
32/85
2Tn=23+(30+3-1+3-2+…+32-n)-(n-1)×31-n =23+11- -331--1n-(n-1)×31-n =163-62n×+33n , 所以 Tn=1132-64n×+33n , 经检验,n=1 时也适合. 综上知,Tn=1132-64n×+33n .
33/85
设数列{an}
的前 n 项和为 Sn,则 S9=___3_7_7___.
18/85
[典题 2] 已知数列{an}的通项公式是 an=2·3n-1+(-1)n·(ln 2-ln 3)+(-1)nnln 3,求其前 n 项和 Sn.
高考专题复习数学数列求和 PPT课件 图文

设 n N * , xn 是曲线 y x2n2 1 在点 (1,2)
处的切线与 x 轴交点的横坐标.
(1)求数列 {xn} 的通项公式;
(2)记Tn x12x32
x2 2n1
,证明
Tn
1 4n
.
在数 1 和 100 之间插入 n 个实数,使得这 n 2 个数 构成递增的等比数列,将这 n 2 个数的乘积记作Tn , 再令 an lg Tn, n≥1.
(2)求数列an 的通项公式;
(3)是否存在实数 a ,使不等式
(1 1 )(1 1 ) (1 1 ) 2a2 3
a1
a2
an 2a 2n 1
对一切正整数 n 都成立?若存在,
求出 a 的取值范围;若不存在,请说明理由.
设数列an 的前 n 项和为 Sn ,满足
2Sn an1 2n1 1 , n N* ,
则数列
1
的前10
项和为_________
an
设数列an,其前 n 项和 Sn 3n2 ,
bn为单调递增的等比数列, b1b2b3 512 , a1 b1 a3 b3
(1)求数列an, bn的通项公式;
(2)若 cn
bn
bn
2 bn
1 n
bn
bn1
1(n
N* )
.
(1)求 an 与 bn ;(2)记数列{anbn} 的前 n 项和为Tn ,求Tn .
已知数列an ,bn , an 3n 1,bn 2n
记 Tn anb1 an1b2 a1bn , n N * ,求:Tn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后作业
《学案》P.62 单元检测题.
湖南省长沙市一中卫星远程学校
思考题
1.
求数列:2 1 ,
1 4
,
6
1
,
前n项的和.
4 8 16
2.
在数列{an }中:an
1 n1
2 n1
n ,
n1
又bn
2 ,
an an1
求数列{bn }的前n项的和.
3. 在各项均为正数的等比数列中, 若a5a6 9, 求log 3 a1 log 3 a2 log 3 a10的值.
,
前n项和为Sn,且
210S30-(210+1)S20+S10 =0.
(1) 求{an}的通项; (2) 求{nSn}的前n项和Tn.
数列求和的方法:
3. 分组法求和:
例5. 求数列 1, 1 a, 1 a a2 ,,1 a a2 an1, 的前n项和Sn.
数列求和的方法:
4. 裂项法求和:
(3) 倒序相加法: 对前后项有对称性的数列 求和;
(4) 错位相减法: 对等比数列与等差数列组 合数列求和;
课堂小结
常用数列求和方法有:
(5) 并项求和法: 将相邻n项合并为一项求 和;
(6) 分部求和法:将一个数列分成n部分 求和;
(7) 裂项相消法:将数列的通项分解成两 项之差,从而在求和时产生相消为零 的项的求和方法.
数列求和的方法:
2. 错位相减法: 例2. 求和:
x 3x2 5x3 (2n 1)xn ( x 0).
数列求和的方法:
3. 分组法求和:
例3. 求数列
1 1,
1 2,
1 3,
4
1
,
2 4 8 16
的前n项和.
数列求和的方法:
3. 分组法求和:
例4.
设正项等比数列{an}的首项
a1
1 2
湖南省长沙市一中卫星远程学校
•
蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,。
湖南省长沙市一中卫星远程学校
•
蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
湖南省长沙市一中卫星远程学校
蔡琰(作者有待考证)的《胡笳十八 拍》 郭璞的《游仙诗》
鲍照的《拟行路难》 庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了 ,就不 贴了or z。 最后还想推一下萧绎的《幽逼诗》四 首:
【南史曰:元帝避建邺则都江陵,外 迫强敌 ,内失 人和。 魏师至 ,方征 兵四方 ,未至 而城见 克。在 幽逼求 酒,饮 之,制 诗四绝 。后为 梁王詧 所害。 】 南风且绝唱,西陵最可悲。今日还蒿 里,终 非封禅 时。 人世逢百六,天道异贞恒。何言异蝼 蚁,一 旦损鲲 鹏。 松风侵晓哀,霜雰当夜来。寂寥千载 后,谁 畏轩辕 台。 夜长无岁月,安知秋与春。原陵五树 杏,空 得动耕 人。
数列复习 ——数列求和
主讲老师:陈震
数列求和的方法:
1. 倒序相加法:
例1. 求和:
12
12 102
22 22 92
32 32 82
102 102 12
.
数列求和的方法:
1. 倒序相加法:
例1. 求和:
12
12 102
22 22 92
32 32 82
102 102 12
.
对某些前后具有对称性的数列, 可运用倒序相加法求其前n项和.
例6. 求和:
1
1
1
2
1
1 2
3
1
2
1
n
.
数列求和的方法:
4. 裂项法求和:
例7. 求数列 1 , 1 , ,
1 2 2 3
的前n项和Sn.
1
,
n n1
课堂小结
常用数列求和方法有:
(1) 公式法: 直接运用等差数列、等比数列 求和公式;
(2) 化归法: 将已知数列的求和问题化为等 差数列、等比数列求和问题;