SPSS-单因素方差分析 案例解析

合集下载

SPSS-单因素方差分析(ANOVA) 案例解析培训资料

SPSS-单因素方差分析(ANOVA) 案例解析培训资料

S P S S-单因素方差分析(A N O V A)案例解析SPSS-单因素方差分析(ANOVA) 案例解析2011-08-30 11:10这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下:继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察鼠死亡和存活情况。

研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?样本数据如下所示:(a代表雄性老鼠 b代表雌性老鼠 0代表死亡 1 代表着 tim 代表注射毒液后,经过多长时间,观察结果)点击“分析”——比较均值———单因素AVOVA, 如下所示:从上图可以看出,只有“两个变量”可选, 对于“组别(性别)”变量不可选,这里可能需要进行“转换”对数据重新进行编码,点击“转换”—“重新编码为不同变量” 将a,b"分别用8,9进行替换,得到如下结果”此时的8 代表a(雄性老鼠) 9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表框内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:“ 勾选“将定方差齐性”下面的 LSD 选项,和“未假定方差齐性”下面的Tamhane's T2选项点击继续点击“选项”按钮,如下所示:勾选“描述性”和“方差同质检验” 以及均值图等选项,得到如下结果:结果分析:方差齐性检验结果,“显著性”为0,由于显著性0<0.05 所以,方差齐性不相等,在一般情况下,不能够进行方差分析但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,由于此样本组少于三组,不能够进行多重样本对比从结果来看“单因素ANOVA” 分析结果,显著性0.098,由于0.098>0.05 所以以得出结论:生存结局受性别的影响不显著很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法通过“Kruskal-Wallis ”检验方法,我们得出“sig=0.098"跟我们先前分析的结果一样,都0.098,事实得到论证。

SPSS中的单因素方差分析(One-Way Anova)

SPSS中的单因素方差分析(One-Way Anova)

SPSS统计分析软件应用一、SPSS中的单因素方差分析(One-Way Anova) (一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。

(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。

在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。

(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。

Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。

(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。

(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。

(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。

(5)在主对话框中,单击“OK”提交进行。

(五)输出结果及分析灯泡使用寿命的单因素方差分析结果该表各部分说明如下:第一列:方差来源,Between Groups是组间变差,Within Groups 是组内变差,Total是总变差。

第二列:离差平方和,组间离差平方和为39776.46,组内离差平方和为178088.9,总离差平方和为217865.4,是组间离差平方和与组内离差平方和相加而得。

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1.sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1.sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

SPSS实验3-单因素方差分析

SPSS实验3-单因素方差分析

SPSS作业3:方差分析不同学校专业类别对报名人数的分析(一)单因素方差分析基本操作:(1)选择菜单Analyz e-Compare means―One-Way ANOVA;(2)分别选择“报名人数”“专业类别”和“报名人数”“学校”做分析,结果如下:a.专业类别对报名人数的单因素方差分析结果b.不同学校对报名人数的单因素方差分析结果1分析:提出零假设―选择检验统计量―计算检验统计量的观测值及概率p值―给出显著性水平a,做出决策。

零假设:不同专业类别对报名人数没有显著影响;备择假设:不同专业类别对报名人数有显著影响。

图a是专业类别对报名人数的单因素方差分析结果。

可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑专业类别单个因素的影响,则报名人数总变差中,专业类别可解释的变差为5.866E7,抽样误差引起的变差为2.030E8,他们的方差分别为1.955E7和1450230.159,相除所得的F统计量为13.483,对应的p值近似为0。

如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同专业类别对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。

零假设:不同学校对报名人数没有显著影响:备择假设:不同学校对报名人数有显著影响。

图b是不同学校对报名人数的单因素方差分析结果。

可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑学校单个因素的影响,则报名人数总变差中,不同学校可解释的变差为9.265E7,抽样误差引起的变差为1.690E8,他们的方差分别为5450179.739和1341587.302,相除所得的F统计量为4.062,对应的p值近似为0。

如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同学校对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。

(二)单因素方差的进一步分析基本操作:在Optio n、Post Hoc、Contrasts框中,选择所需要的计算值,结果如下:不同专业类别对报名人数的基本描述统计量及95%置信区间2分析:在4中不同专业类别中,各有36个样本,其中,经管类的报名人数最多,其次是理工类,然后是艺术类,最少的是文学类。

spss方差分析报告操作示范-步骤-例子

spss方差分析报告操作示范-步骤-例子

第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。

数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。

2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。

从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。

单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。

3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。

①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。

设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。

③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1.sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

spss 单因素方差分析例子

第一题:data0706-nutrition为地衣(lichen)、树叶成叶和嫩叶的蛋白质和可溶性碳水化合物(water soluble carbohydrate)的含量,先分析三者之间蛋白质的含量有无差异?如果有差异,具体是怎么差异的?再可溶性碳水化合物的含量有无差异?如果有差异,具体怎么差异?(1)地衣(lichen)、树叶成叶和嫩叶的蛋白质的含量差异分析;第一步:导出变量items和protein,以便删除protein中缺失数据。

第二步:打开导出数据data0706-nutrition1,先排序,然后删除缺失数据。

第三步:对data0706-nutrition1数据的正态性、异常值和极值、方差齐性进行检验,对数据做一个检查,Analyze->Descriptive Statistics->Explore;首先:如上图,把要检验的变量protein送入Dependent List,把分组变量(因素变量)items送入Factor List。

其次:如下图,点击Plots打开:选择Factor Levels together、Stem-and-leaf、Histogram、Normality plots with tests,下方Spread vs Level with Levene Test可以提供方差齐性的检验,选择Untransformed(不对数据进行转换)。

输出结果:第一组是尽管sig=0.935,但由于样本数太小,正态一般;第二组正态性不好。

第三组中,p较小,也只是近似正态。

基于平均数的计算(Based on Mean),各组方差有差异(p=0.044)。

由直方图可以看出,在第二组和第三组存在一些极值,数据分布不均匀,连续性不好。

由茎叶图可知,第二组和第三组分别存在4个,3个极值。

由qq图和QQ图不能得到一些较有用的信息,因为正态性之前已经判断。

箱图并与茎叶图一致,在第二组标识了4个异常值,第三组标识了3个异常值。

SPSS-单因素方差分析(ANOVA)案例解析word版本

S P S S-单因素方差分析(A N O V A)案例解析SPSS-单因素方差分析(ANOVA) 案例解析2011-08-30 11:10这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下:继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察鼠死亡和存活情况。

研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?样本数据如下所示:(a代表雄性老鼠 b代表雌性老鼠 0代表死亡 1 代表活着 tim 代表注射毒液后,经过多长时间,观察结果)点击“分析”——比较均值———单因素AVOVA,如下所示:从上图可以看出,只有“两个变量”可选,对于“组别(性别)”变量不可选,这里可能需进行“转换”对数据重新进行编码,点击“转换”—“重新编码为不同变量”将a,b"分别用8,9进行替换,得到如下结果”此时的8 代表a(雄性老鼠) 9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表”内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:“勾选“将定方差齐性”下面的 LSD 选项,和“未假定方差齐性”下面的Tamhane's T2选项点击继续点击“选项”按钮,如下所示:勾选“描述性”和“方差同质检验”以及均值图等选项,得到如下结果:结果分析:方差齐性检验结果,“显著性”为0,由于显著性0<0.05 所以,方差齐性不相等,一般情况下,不能够进行方差分析但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,由于此样本组少于三组,不能够进行多重样本对比从结果来看“单因素 ANOVA”分析结果,显著性0.098,由于0.098>0.05所可以得出结论:生存结局受性别的影响不显著很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法)通过“Kruskal-Wallis ”检验方法,我们得出“sig=0.098"跟我们先前分析的结果一样,都是0.098,事实得到论证。

spss单因素方差分析例子

第一题:data0706-nutrition为地衣(lichen)、树叶成叶和嫩叶的蛋白质和可溶性碳水化合物(water soluble carbohydrate)的含量,先分析三者之间蛋白质的含量有无差异?如果有差异,具体是怎么差异的?再可溶性碳水化合物的含量有无差异?如果有差异,具体怎么差异?(1)地衣(lichen)、树叶成叶和嫩叶的蛋白质的含量差异分析;第一步:导出变量items和protein,以便删除protein中缺失数据。

第二步:打开导出数据data0706-nutrition1,先排序,然后删除缺失数据。

第三步:对data0706-nutrition1数据的正态性、异常值和极值、方差齐性进行检验,对数据做一个检查,Analyze->Descriptive Statistics->Explore;首先:如上图,把要检验的变量protein送入Dependent List,把分组变量(因素变量)items送入Factor List。

其次:如下图,点击Plots打开:选择Factor Levels together、Stem-and-leaf、Histogram、Normality plots with tests,下方Spread vs Level with Levene Test可以提供方差齐性的检验,选择Untransformed(不对数据进行转换)。

输出结果:第一组是尽管sig=0.935,但由于样本数太小,正态一般;第二组正态性不好。

第三组中,p较小,也只是近似正态。

基于平均数的计算(Based on Mean),各组方差有差异(p=0.044)。

由直方图可以看出,在第二组和第三组存在一些极值,数据分布不均匀,连续性不好。

由茎叶图可知,第二组和第三组分别存在4个,3个极值。

由qq图和QQ图不能得到一些较有用的信息,因为正态性之前已经判断。

箱图并与茎叶图一致,在第二组标识了4个异常值,第三组标识了3个异常值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011-08-30 11:10
这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下:
继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。

研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?
样本数据如下所示:(a代表雄性老鼠 b代表雌性老鼠 0代表死亡 1 代表活着 tim 代表注射毒液后,经过多长时间,观察结果)
点击“分析”——比较均值———单因素AVOVA, 如下所示:
从上图可以看出,只有“两个变量”可选, 对于“组别(性别)”变量不可选,这里可能需要进行“转换”对数据重新进行编码,
点击“转换”—“重新编码为不同变量” 将a,b"分别用8,9进行替换,得到如下结果”
此时的8 代表a(雄性老鼠) 9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表”框内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:
“ 勾选“将定方差齐性”下面的 LSD 选项,和“未假定方差齐性”下面的Tamhane's T2选项点击继续
点击“选项”按钮,如下所示:
勾选“描述性”和“方差同质检验” 以及均值图等选项,得到如下结果:
结果分析:方差齐性检验结果,“显著性”为0,由于显著性0< 所以,方差齐性不相等,在一般情况下,不能够进行方差分析
但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,
由于此样本组少于三组,不能够进行多重样本对比
从结果来看“单因素ANOVA” 分析结果,显著性,由于> 所以可以得出结论:
生存结局受性别的影响不显著
很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下面我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法)
通过“Kruskal-Wallis ”检验方法,我们得出“sig="跟我们先前分析的结果一样,都是,事实得到论证。

相关文档
最新文档