多边形内角和优秀教案

合集下载

优秀数学教案:多边形的内角和

优秀数学教案:多边形的内角和

优秀数学教案:多边形的内角和教学目标:1. 理解多边形的内角和的概念。

2. 学会计算多边形的内角和。

3. 能够应用多边形的内角和解决实际问题。

教学重点:1. 多边形的内角和的概念。

2. 计算多边形的内角和的方法。

教学难点:1. 理解多边形内角和的推导过程。

2. 应用多边形的内角和解决实际问题。

教学准备:1. 教学课件或黑板。

2. 多边形的模型或图片。

3. 练习题。

教学过程:一、导入(5分钟)1. 引入多边形的概念,让学生回顾多边形的特征。

2. 提问:多边形有多少个内角?引导学生思考多边形的内角和。

二、探究多边形的内角和(15分钟)1. 介绍多边形的内角和的概念。

2. 通过实物展示或模型演示,让学生直观地理解多边形的内角和。

3. 引导学生探究多边形的内角和的计算方法。

4. 讲解多边形内角和的推导过程,让学生理解并掌握计算方法。

三、练习计算多边形的内角和(10分钟)1. 给学生发放一些多边形的模型或图片,让学生计算它们的内角和。

2. 引导学生运用所学的方法,进行计算并得出答案。

3. 检查学生的计算结果,给予及时的反馈和指导。

四、应用多边形的内角和解决实际问题(10分钟)1. 给学生发放一些实际问题题目,让学生运用多边形的内角和来解决问题。

2. 引导学生理解问题的背景,应用所学的方法进行解答。

3. 检查学生的解答结果,给予及时的反馈和指导。

五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结多边形的内角和的概念和计算方法。

2. 引导学生反思自己在学习过程中的收获和不足,提出改进的方法。

3. 结束本节课的教学。

教学延伸:1. 让学生进一步研究多边形的内角和与边数的关系,探究多边形内角和的规律。

2. 让学生应用多边形的内角和解决更复杂的实际问题,提高学生的应用能力。

教学反思:本节课通过导入、探究、练习、应用和总结的过程,让学生掌握了多边形的内角和的概念和计算方法。

在教学过程中,要注意引导学生积极参与,培养学生的观察能力和思维能力。

《多边形的内角和》教案(通用14篇)

《多边形的内角和》教案(通用14篇)

《多边形的内角和》教案(通用14篇)《多边形的内角和》篇1一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理.2.了解四边形的不稳定性及它在实际生产,生活中的应用.(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.2.通过推导四边形内角和定理,对学生渗透化归思想.3.会根据比较简单的条件画出指定的四边形.4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美.二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.第2课时七、教学步骤复习提问1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9, 求的度数(打出投影).引入新课前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.讲解新课1.四边形的外角与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.2.外角和定理例1 已知:如图4-11,四边形abcd的四个内角分别为,每一个顶点处有一个外角,设它们分别为 .求 .(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).(2)教给学生一组外角的画法——同向法.即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.证得:360°外角和定理:四边形的外角和等于360°3.四边形的不稳定性①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的外形和大小,已知一边一夹角,作三角形你会吗?(学生回答)②若以为边作四边形abcd.提示画法:①画任意小于平角的 .②在的两边上截取 .③分别以a,c为圆心,以12mm,18mm为半径画弧,两弧相交于d 点.④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.大家比较一下,所作出的图形的外形一样吗?这是为什么呢?因为的大小不固定,所以四边形的外形不确定.③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的外形改变了,这说明四边形没有稳定性.教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:①四边形改变外形时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的外形就固定了,如教材p125中2的第h问,为克服不稳定性提供了理论根据.(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.总结、扩展1.小结:(1)四边形外角概念、外角和定理.(2)四边形不稳定性的应用和克服不稳定性的理论根据.2.扩展:如图4-15,在四边形abcd中, ,求四边形abcd的面积八、布置作业教材p128中4.九、板书设计十、随堂练习教材p124中1、2补充:(1)在四边形abcd中, , 是四边形的外角,且 ,则度.(2)在四边形abcd中,若分别与相邻的外角的比是1:2:3:4,则度, 度, 度, 度(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.《多边形的内角和》教案篇2七年级数学下册《多边形的内角和》教案黑龙江省宾县宾西镇第二中学杨显英设计理念:众所周知,数学课堂是以学生为中心的活动的课堂。

多边形的内角和教案(优秀范文5篇)[修改版]

多边形的内角和教案(优秀范文5篇)[修改版]

第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

这(n-2)个三角形的内角和正好是这个n边形的内角和。

由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。

例2:如果一个多边形的内角和是2160度,求这个多边形的边数。

五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。

多边形内角和教学设计3篇

多边形内角和教学设计3篇

多边形内角和教学设计3篇多边形内角和教学设计1《多边形内角和》教学设计一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标1、知识目标:(1)使学生了解多边形的有关概念。

(2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。

2、能力目标(1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。

(2)通过变式练习,培养学生动手、动脑的实践能力。

3、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法五、教具、学具及辅助教学媒体教具:多媒体课件学具:三角板、量角器教学媒体:大屏幕、实物投影六、教学过程:(一)创设情境,设疑激思1、以疑导入,引发求知欲。

先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。

由此激发学生自己要设计,怎样设计的求知欲。

然后提出具体问题。

2、复习提问,知识巩固。

(1)三角形内角和等于多少度?(2)四边形内角和定理以及推导方法。

3、引入新课上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180o的和是540o。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。

结果得540o。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。

我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。

八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。

教学重、难点:教学重点:1、多边形内角和公式。

2、计算多边形的内角和及依据内角和确定多边形边数。

教学难点:多边形内角和公式的推导。

一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。

(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。

)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。

5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。

(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。

)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。

多边形的内角和教学教案

多边形的内角和教学教案

多边形的内角和教学教案多边形的内角和教案篇一一、教学目标知识与技能目标:能够说出多边形的内角和公式并会运用过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

二、教学重难点教学重点:多边形的内角和公式教学难点:多边形内角和公式三、教学方法讲解法、练习法、分小组讨论法四、教学过程结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、生成新知、深化新知、巩固新知、小结作业。

1. 导入新知首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。

由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。

这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

多边形内角和教案

多边形内角和教案

多边形内角和教案一、教学目标1. 让学生理解多边形的内角和的概念。

2. 引导学生通过观察、操作、推理等方法探索多边形的内角和定理。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 多边形的内角和的概念。

2. 多边形的内角和定理的探索。

三、教学重点与难点1. 教学重点:多边形的内角和的概念,多边形的内角和定理的探索。

2. 教学难点:多边形的内角和定理的理解和应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、操作、推理等方法探索多边形的内角和定理。

2. 利用多媒体辅助教学,直观展示多边形的内角和的概念和定理。

五、教学准备1. 多边形的模型或图片。

2. 多边形的内角和定理的PPT课件。

【教学活动】1. 引入:通过展示多边形的模型或图片,引导学生观察多边形的内角,并提出问题:“你们认为多边形的内角和是什么?”2. 讲解:讲解多边形的内角和的概念,并给出定义。

3. 探索:引导学生通过观察、操作、推理等方法探索多边形的内角和定理。

可以分组讨论,每组尝试找出一种方法来计算多边形的内角和。

4. 展示:每组展示他们的探索结果,并解释他们的方法。

5. 总结:总结多边形的内角和定理,并给出证明。

6. 练习:给出一些多边形的内角和的问题,让学生独立解决。

7. 作业:布置一些相关的练习题,让学生回家后巩固所学内容。

六、教学活动1. 巩固:通过PPT课件复习上节课所学的多边形的内角和定理。

2. 实践:让学生分组,每组选择一个多边形,使用工具(如剪刀、纸张)制作该多边形的模型,并测量其内角和。

3. 分享:每组将测量结果和制作过程进行分享,讨论在实践过程中遇到的问题和解决方法。

4. 讲解:针对学生分享的内容,进行点评和讲解,纠正可能的错误理解,加深学生对多边形内角和定理的理解。

七、教学活动1. 拓展:引导学生思考,除了正多边形,其他类型的多边形内角和是否有规律可循。

2. 探索:学生分组讨论,尝试找出不同类型多边形内角和的规律。

《多边形及其内角和》教案

《多边形及其内角和》教案

《多边形及其内角和》教案《多边形及其内角和》教案1一、教学目标1、掌握多边形的内角和公式,并能熟练运用。

2、通过探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力,体会从特殊到一般的认识问题的方法。

3、通过探索多边形内角和公式,尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

4、通过猜想,推理等数学活动,感受数学活动充满探索以及数学结论的确定性,提高学生的学习热情。

二、教学重点、难点重点:探索多边形的内角和公式。

难点:探索多边形内角和时,如何把多边形转化成三角形,利用三角形内角和180度求出多边形内角和。

三、教学方法:学生自主探究、合作交流与教师启发引导相结合.四、教具准备①每个小组一张“探究实验报告单”(活动1)②每人一张“类比探索五边形、六边形、七边形的内角和的答题纸”(活动2)③多媒体课件五、教学过程(一)创设情境,引入新课问题1:把一个长方形纸片剪去一个角还剩几个角。

【学生给出的答案可能是---三个角、四个角、五个角,教师演示动画。

】问题2:你知道所得图形的内角和吗。

你知道102边形的内角和吗。

【根据学生的回答,教师指出本课内容,板书课题: 多边形的内角和。

】(二)合作交流,探索新知活动1:猜想验证四边形的内角和问题:(1)任意四边形的内角和等于多少度。

(2)你是怎样得到的。

你能找到几种方法。

【问题(1)学生很容易猜到360°,问题(2)组织学生四人一组拿出课前老师发给每个小组的探究实验报告,讨论并记录探究方法。

在讨论的过程中,教师给出合格、良好、优秀的“自我评价标准”,每个小组对照评价表给出自我评价,教师深入到学生讨论中,以“边听—边问—边导”的形式,适时对各小组进行点拨。

讨论结束后,小组学生代表用实物投影展示探究实验报告,说明求四边形内角和的方法,并讲述想法。

教师对学生找到的不同方法都给予肯定和评价,并加以总结,归纳学生提出的探究方法:度量、剪拼、分割。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.3.多边形的内角和
一、教学目标:
1、知识与技能:
①掌握多边形内角和公式,并能熟练运用;
②通过把多边形转化成三角形的运用,体会从特殊到一般认识问题的方法。

③体会几何中不等关系的简单证明。

2、过程与方法
①通过探索“多边形及内角和”,培养学生的探索能力。

②结合具体实例,在学习了多边形及内角和后,能运用所学知识解决简单的问题训练学生对所学知识的运用能力。

3、情感、态度与价值观
1.通过让学生积极参加数学学习活动,培养学生对数学的好奇心与求知欲。

2.有具体实例的引号,让学生初步认识数学与人类生活的密切联系。

3.通过猜想、推理活动探索以及数学结论的确定性,提高学生学习热情。

二、教学重点、难点
重点:探索多边形内角和
难点:探索多边形内角和时,如何把多边形转化成三角形。

三、教学方法
引导发现法、讨论法。

四、教具准备:课件电子白板三角板量角器
五、教学过程
(一)创设问题情境导入新课:
活动1
问题:你知道三角形内角和是多少度吗?
三角形内角和等于180°
(二)来动手试一试实践出真知
活动2
探究
2008年奥运场馆水立方给全世界留下了深刻的印象,水立方的采用膜结构而它的膜结构的结合处都是多边形,大家想知道多边形的内角和吗?
问题:1.你知道任意一个四边形的内角和是多少吗?
2.你是怎样得到的?你能找到几种方法?
(组织学生4人一组,并让他(她)们讨论然后把数据一一记录下来)
在讨论的过程中,给出不同等级的“自我评价标准”每个小组对照评价表给出自我评价,深入到学生讨论中,以“边听一边问-边导”的形式,适时对各小组进行点拔
讨论结束后,小组学生代表展示探究结果,说明求四边形内角和的方法,并讲述想法。

对学生找到的不同方法都给予肯定和评价,并加以总结,归纳学生提出的探究方法:度量、剪拼,分割。

将常用的3种分割方法板书到黑板上。

重点引导学生比较三种不同的分割方法一
即从四边形的一个顶点引对角线;从四边形的边上任意取一点,连接这点与各顶点的线段;从四边形的内部任取一点,连接这点与各顶点的线段分别将四边形分成了几个三角形,如何利用三角形的内角和180求出四边形的内角和360,如何将四边形内角和的表示与边数联系起来。

板书
活动2:类比探索五边形、六边形、七边形的内角和
问题:五边形、六边形、七边形的内角和等于多少度?
请大家思考后相互交流
学生任选一种方法在课前老师发给每个学生的答题纸上自主完成。

预计有些学生对分割方法可能存在困难,可以让做得快的学生下座位与老师一道帮助学习有困难的学生。

做完后,请学生用三种方法叙述计算过程和结论,教师点评。

活动三:归纳总结n边形的内角和
1.猜想:n边形的内角和如何表示呢?
【学生通过上面的学习很容易说出(n-2)×180°】
2.说明:我们能否用上述方法得到内角和公式?
【引导学生根据三种分割方法将n边形内角和的表示与边数联系起来,得出公式】3.归纳:n边形的内角和公式(n-2)×180°
尝试反馈巩固练习
1.填一填
①八边形的内角和等于度,十边形的内角和等于度。

②一个多边形的内角和是1260°,它是边形。

③一个多边形的各内角都等于120°,它是边形。

④如图,X= 。

【学生口答并说明理由】
2.做一做:求下列图形中X的值
【学生自主完成,请2名学生上台,做完再请学生当小老师点评】
3.议一议:
如图,直线OB垂直AB,垂足为B,直线OC垂直AC,垂足为C,
①∠A与∠1有什么关系?
②∠A与∠2有什么关系?
【同桌交流,师生评述】
(三)归纳总结,反思升华
本节课共同探索了多边形内角和公式,你有什么收获和体会?
(四)布置作业,巩固提高
P24 习题2.7.8。

相关文档
最新文档