土壤微生物计数法
实验四 土壤微生物的分离和计数

牛肉膏蛋白胨培养基; 高氏1号培养基; 马铃薯葡萄糖培养基(添加有抗生素);
灭菌水、移液器、吸头、接种针、涂布器、灭 菌离心管、消毒酒精、试管架、记号笔、吸水 纸、酒精灯、平皿、漩涡振荡器、天平等。
实验内容
土壤微生物的分离和纯化 系列稀释法 划线法(讲解) 分离微生物的形态观察 (3天后) 细菌 放线菌 真菌
记录系列稀释法分离土壤微生物的结果:
真菌菌落的种类和数量,菌落特征描述; 细菌菌落的种类和数量,菌落特征描述; 放线菌菌落的种类和数量,菌落特征描述;
通过试验和查阅资料,独立完成思考题。 实验中出现问题的分析和讨论。
3天后观察记录分离试验结果,上交实验报告。
思考题:
在分离真菌时,有哪些方法可以避免或减少 细菌的污染?
称取土壤样品0.5~1.0 g加入含30ml灭菌水的塑料离心管 中振荡3~5分钟(旋涡振荡器),形成土壤悬浊液; 取0.1ml加入装有0.9ml灭菌水试管中,振荡均匀。依次稀 释,共5次。 细菌的分离:取第3,4,5 ,6四个稀释水平的样品分别 取0.1ml,均匀涂布在牛肉膏蛋白胨培养平板上; 放线菌的分离:取第1,2,3 ,4四个稀释水平的样品分 别取0.1ml,均匀涂布在高氏1号培养基; 真菌的分离:取第2,3,4 ,5四个稀释水平的样品分别 取0.1ml,均匀涂布在含抗生素的PDA平板上; 菌液被培养基吸收后,反转放置,做好标记,28℃培养。
细菌菌落的共同特征
湿润 粘稠 质地均匀 较透明 易挑取(与培养基结合不紧密) 菌落正、反面、边缘、中心颜色一致
注意事项:
土壤微生物量测定方法

土壤微生物量测定方法常规培养法是最早也是最常用的土壤微生物量测定方法之一、该方法是将土壤样品经过稀释后接种到含有特定培养基的培养皿中,经过一段时间的培养,根据培养皿上的菌落数量计算土壤中微生物的数量。
常用的培养基有营养琼脂培养基、土壤细菌培养基和土壤真菌培养基等。
常规培养法的优点是简单易行,可以同时测定不同类型微生物的数量,但该方法有一些局限性,如只能测定能够在培养基上生长的微生物,不能测定需异养条件才能生长的微生物,而且该方法容易低估土壤中微生物的真实数量。
生物量测定法是一种利用土壤微生物的生物学过程测定微生物量的方法。
该方法一般分为碳饥饿法和氮饥饿法两种。
碳饥饿法是将土壤样品暴露在低碳条件下(如0.01%葡萄糖溶液中)一段时间后,测定土壤中的微生物的生物量。
氮饥饿法是将土壤样品暴露在低氮条件下(如0.01%硝酸铵溶液中)一段时间后,测定土壤中的微生物的生物量。
这两种方法都是利用微生物的生物学特性,通过测定微生物对不同养分的响应来估计微生物的数量。
生物量测定法的优点是准确度较高,可以测定土壤中广泛类型的微生物,但该方法也有一些局限性,如需要较长的试验周期,测定过程中需要严格控制温度、湿度等环境条件,且操作较为繁琐。
生物学特征法是一种通过测定土壤微生物的生物学特征来评估微生物群体数量的方法。
该方法常用的特征包括土壤酶活性、呼吸作用速率、微生物生长速率和微生物群体的磷脂脂肪酸组成等。
这些特征的测定可以通过色谱、酶反应和分子生物学技术等手段进行。
生物学特征法的优点是操作简便,消耗土壤样品较少,时间短,结果可靠。
但该方法也有一些问题,如不同微生物对环境的响应不同,结果受环境因素影响较大。
综上所述,土壤微生物量的测定方法有常规培养法、生物量测定法和生物学特征法等。
不同的测定方法各有优缺点,使用时可以根据具体的研究目的和所需数据的准确度进行选择。
此外,单一的方法往往无法全面准确地评估土壤微生物量,因此常采用多种方法综合分析,以得到更准确的结果。
测定土壤中微生物的数量-北师大版选修1生物技术实践教案

测定土壤中微生物的数量-北师大版选修1 生物技术实践教案一、实验目的通过测定土壤中微生物的数量,掌握微生物计数的方法和技术,了解微生物的生态和分布规律,培养学生的科学研究能力和实验操作技能。
二、实验原理1. 微生物计数基础微生物计数是指通过方法和技术,对已知体积的液体或其他物质中微生物数量进行计算的操作。
微生物计数可以通过直接计数法、体积法和过滤法等方法实现。
2. 测定土壤中微生物数量的方法测定土壤中微生物数量可以采用稀释平板法和培养基稀释法,其中稀释平板法是比较普遍且常用的方法。
稀释平板法在实验操作上较为简单,易于掌握。
3. 稀释平板法原理稀释平板法是一种简单而有效的微生物计数方法。
实验中通过依次进行十倍的稀释,然后将不同浓度的培养液分别均匀涂在平板上进行培养,最终在平板上形成单个菌落。
通过计算不同浓度的培养液分别对应的菌落数量和体积,可以推算出单位体积中微生物数量。
三、实验材料1.彩色胶体金培养基2.厚质量纸巾3.特制细胞计数板4.稀释液(0.9%的氯化钠溶液)5.研钵和研杵6.小手电(紫外线灯)四、实验步骤1.取出特制细胞计数板,用0.9%氯化钠溶液进行清洗和消毒,然后晾干;2.待计算的土壤中,取5g放入研钵中,加水10ml,研磨均匀;3.取稀释液,加入研钵中,制成1:10的稀释液;4.从稀释液中取出1ml,加到另一个研钵中制成1:100的稀释液;5.从1:100稀释液中取出1ml,加到另一个研钵中制成1:1000的稀释液;6.将1ml、0.1ml和0.01ml的三种不同的稀释液分别注入特制细胞计数板的三个室子中;7.用吸盘将计数板盖在厚质量纸巾上,使计数板保持水平;8.对计数板每个室子的菌落进行计数并记录结果;9.根据计数板板子的面积和三种稀释液的差异计算出单位体积中的微生物数量。
五、实验注意事项1.实验前进行仔细的消毒和清洁,以避免对实验产生污染;2.在实验中尽量减少无菌技术操作的错误,避免实验的结果偏差较大;3.在实验过程中要注意保持细胞计数板和准确的生物量测定,防止出现误差;4.对于实验中的每一步操作,都需要细心、耐心且精确地进行,才能获得准确的实验结果。
土壤微生物计数法

土壤微生物计数法土壤是最复杂、最丰富的微生物基因库,所含微生物不仅数量巨大,而且各类繁多,主要包括细菌、真菌和放线菌三大类,是土壤最活跃的成分。
土壤微生物数量测定方法可分为三大类:一类是根据在培养基上生长的菌落数来计算土壤微生物的数量,统称为培养计数法,主要有稀释平板法和最大或然计数法;二类是将土壤微生物染色后,在显微镜下观察计数,称为直接镜检法,包括涂片法、琼脂薄片法和膜过滤法等;三类是直接将微生物从土壤中分离和提取出来后再进行测定,主要有离心分离法。
1.1培养计数法1.1.1概要在自然条件下,土壤中的大多数微生物处于休眠状态,一旦供给可利用的碳源(如培养基),一些微生物将快速生长繁殖。
因此,根据在培养基上所生长的微生物数量,可以估算土壤中微生物的数量。
这种土壤微生物数量测定方法称为培养计数法,主要包括稀释平板计数法(简称稀释平板法)和最大或然计数法。
稀释平板计数法的基本原理:土壤微生物经分散处理成为单个细胞后,在特殊的培养基上生长并形成一个菌落,根据形成的菌落数来计算微生物的数量。
最大或然计数法的基本原理:假设被测定的微生物在稀释液中均匀分布,并在试管或平板上全部存活,随着稀释倍数的加大,稀释液中微生物的数量将越来越少,直到将某一稀释度的土壤稀释液接种到培养基上培养后,没有或很少出现微生物菌落。
根据没有出现菌落的最低稀释度和出现菌落的最高稀释度,再用最大或然计数法计算出样品中微生物的数量。
1.1.2稀释平板法一、试剂配制常用的培养基各类很多(见附录一),可根据需要测定的微生物种类选择培养基。
按配方配制培养基后,先在121℃下灭菌15min,冷却至45~50℃使用。
凝固后的培养基可加热溶解后使用。
二、仪器设备广口瓶或三角瓶及配套的橡皮塞,移液管(1ml、10ml,吸口用棉花塞住后用牛皮纸包好灭菌)培养皿(9㎝,用牛皮纸包好后灭菌)和显微镜等。
(1)土壤系列稀释液制备取新鲜土壤(<2㎜)10.00g,放入经灭菌的装有70ml水的广口瓶中,塞上经灭菌的橡皮塞,在振荡机上振荡10min,此为10-1土壤稀释液。
土壤微生物数量测定方法

土壤微生物数量测定方法土壤微生物是指生活在土壤中的微小生物,包括细菌、真菌、放线菌、古菌等。
土壤微生物在土壤的生物地球化学循环、有机质分解、养分转换和植物健康等过程中起着重要的作用。
因此,对土壤微生物数量的准确测定具有重要意义。
本文将介绍一些常用的土壤微生物数量测定方法。
1.瓶培法:将适量的土壤样品与适量的培养基混合,在37°C下培养约24小时,然后通过平板计数法或最凼稀释法进行测定。
2.膜过滤法:将土壤提取液通过特定孔径的膜过滤器滤过,然后将膜放置在培养基上进行细菌的生长,最后进行计数。
3.间接法:通过测定土壤样品的可培养细菌指标,如氧化还原酶、脱氢酶等的活性,从而推算出土壤中的细菌数量。
4.分子生物学方法:通过PCR扩增土壤DNA中的细菌基因,如16SrRNA基因,再通过测定PCR产物进行细菌数量的测定。
1.直接镜检法:直接在显微镜下观察土壤样品中的真菌,通过计数来估算真菌的数量。
2.平板计数法:将土壤样品均匀撒在培养基上,通过培养方法使真菌生长形成菌落,最后进行计数。
3.膜过滤法:与细菌数量测定相似,将土壤提取液通过膜过滤器滤过,然后将膜放置在适当的培养基上进行真菌的生长,最后进行计数。
4.分子生物学方法:通过PCR扩增土壤DNA中的真菌基因,如18SrRNA基因,再通过测定PCR产物进行真菌数量的测定。
1.直接镜检法:直接在显微镜下观察土壤样品中的放线菌,通过计数来估算放线菌的数量。
2.平板计数法:将土壤样品均匀撒在培养基上,通过培养方法使放线菌生长形成菌落,最后进行计数。
3.膜过滤法:与细菌和真菌数量测定类似,将土壤提取液通过膜过滤器滤过,然后将膜放置在适当的培养基上进行放线菌的生长,最后进行计数。
4.分子生物学方法:通过PCR扩增土壤DNA中的放线菌基因,如16SrRNA基因,再通过测定PCR产物进行放线菌数量的测定。
通过上述方法测定土壤中微生物的数量,可以了解土壤微生物对土壤生态系统功能的影响,并为土壤质量评价和科学合理利用提供依据。
土壤微生物测定方法

土壤微生物测定方法
目前常用的土壤微生物测定方法主要包括直接计数法、培养法、DNA
分析法和生化方法等。
1.直接计数法:直接计数法是指通过显微镜观察和计数土壤中微生物
的数量。
这种方法简单直观,可以快速测定土壤中微生物的数量。
但是,
由于土壤微生物数量庞大,直接计数方法需要大量的样品和时间,且对操
作者的要求较高。
2.培养法:培养法是指通过将土壤样品接种在富含营养物质的培养基上,并在一定温度和湿度下培养一段时间,通过观察和计数可见的菌落来
测定土壤中微生物的数量和种类。
这种方法可以有效地测定土壤中常见的
细菌和真菌等,但是对于无法培养的微生物种类相对有限。
3.DNA分析法:DNA分析法是指通过提取土壤中微生物的DNA,并通
过PCR扩增和DNA测序等技术来测定土壤中微生物的种类和多样性。
这种
方法可以检测到所有存在的微生物,无论是否可以培养。
因此,DNA分析
法可以更全面地测定土壤中微生物的多样性和种类。
但是,这种方法对实
验条件和技术要求较高。
4.生化方法:生化方法是指通过测定土壤中微生物代谢产物的含量或
活性来测定土壤中微生物的数量。
例如,通过测定脲酶、葡萄糖酶、氧化
还原酶等土壤微生物常见的酶活性来评估微生物的活性和数量。
生化方法
可以快速测定土壤微生物的数量和活性,但是受土壤理化性质的影响较大。
总之,以上所述的方法各有优缺点,可以根据实际情况选择合适的方
法或多种方法相结合来测定土壤微生物的数量和多样性。
此外,测定方法
的选择还要考虑实验所需的样品数量、可行性和经济性等因素。
土壤微生物生物量的测定方法

土壤微生物生物量的测定方法1.直接计数法:直接计数法是通过显微镜观察土壤样品中微生物数量来测定土壤微生物生物量。
常用的直接计数法包括滴定法、薄层计数法和电镜计数法。
滴定法是将土壤样品溶解后,通过滴定法来计数微生物细胞的数量。
滴定法主要包括用荧光假单胞菌(Pseudomonas fluorescens)作为参比菌,将细菌与土壤样品混合,经一系列稀释后进行滴定。
通过观察滴定液中菌落的数量,可以推算出原始土壤样品中微生物的生物量。
薄层计数法是将土壤样品制成薄层,然后在显微镜下进行计数。
这种方法可以直接观察微生物的形态特征,通过计算单位面积上微生物的数量来估算微生物生物量。
电镜计数法是利用电镜的高分辨率特性,观察土壤样品中微生物的形态和数量。
这种方法可以观察到更小的微生物和微生物的形态细节,但是操作复杂,成本较高。
2.间接测定法:间接测定法通过测定土壤中微生物活性代谢产物来估算微生物生物量。
常用的间接测定法包括ATP测定法、细胞膜脂肪酸测定法和氮素代谢产物测定法等。
ATP测定法是通过测定土壤中的三磷酸腺苷(ATP)含量来估算微生物生物量。
微生物的ATP含量与其生物量有一定的关系,因此可以通过测定ATP含量来间接估算土壤微生物生物量。
细胞膜脂肪酸测定法是通过测定土壤样品中微生物细胞膜中的脂肪酸含量来估算微生物生物量。
微生物细胞膜中的脂肪酸种类和含量与微生物群落的组成和数量有关,因此可以通过测定脂肪酸的含量来间接估算微生物生物量。
氮素代谢产物测定法是通过测定土壤样品中微生物氮素代谢产物的含量来估算微生物生物量。
微生物的氮素代谢活动与其生物量有关,因此可以通过测定氮素代谢产物的含量来间接估算微生物生物量。
3.分子生物学方法:分子生物学方法是利用PCR技术对土壤样品中微生物的DNA或RNA进行扩增和测定来估算微生物生物量。
常用的分子生物学方法包括引物扩增法、荧光原位杂交法和高通量测序法等。
引物扩增法是通过设计特定的引物对微生物的DNA或RNA进行扩增,并通过PCR反应的产物数量来估算微生物生物量。
【精品】实验四 土壤微生物的分离和计数

【精品】实验四土壤微生物的分离和计数实验目的:1.掌握土壤微生物的分离方法。
2.利用平板计数法和涂布法等方法进行土壤微生物的计数。
实验原理:1.微生物分离法微生物分离法是将微生物从混合物或样品中分离出来的方法,是微生物学中最常用的一种基本方法。
常用的方法有稀释平板法、涂布法等。
2.平板计数法平板计数法又称菌落计数法,是通过数目测定评估微生物数量的方法。
通常在固体培养基上用微生物悬液接种,培养出菌落,以评估菌群密度。
计算微生物数量时应选择符合菌落特征的一个菌落,如颜色、密度、大小等,并使用总体积、稀释因子及加样体积计算。
3.涂布法涂布法又称涂布分离法,是一种快速、容易、简单、实用的微生物分离和计数方法。
方法是取少量样品加入到无菌的琼脂培养基中,将琼脂培养基均匀地涂布在培养皿中,然后在恰当的温度下和时间内使菌落正常增殖及显像,最后计算菌落单位体积的数量。
实验材料和设备:1.土壤样品;化学试剂:蒸馏水、1%碳酸氢钠溶液、1%双氧水溶液、1.5%琼脂等。
2.培养皿;吸管;移液管;吸胶头;灭菌器;微量注射器等。
实验步骤:1.准备样品:取土壤样品,干燥,粉碎,筛选出粒径较小的部分备用。
2.制备0.1g/ml的悬液:取粉碎好的土壤样品0.1克,加入到10ml的蒸馏水中,用吸管吸取混合后的液体,摇匀后待沉淀,取稠泥状上清液,稀释成0.1g/ml的土壤悬液。
3.平板法计数:取一定体积的土壤悬液接种在称量好的琼脂平板上,进行涂布,涂布均匀后,放置在恰当的温度下,培养约24小时,以单个菌落的数量(单位:cfu/ml)计数,并使用公式计算微生物数量。
4.涂布法计数:用吸管吸取一定体积的土壤悬浊液,加入到10ml的液体琼脂培养基中,均匀地涂布在培养皿中,在适当的温度下和时间内使菌落正常增殖及显像,然后计算菌落单位体积的数量。
实验记录和数据处理:1.记录实验过程、结果和分析。
2.计算平板菌落数量和涂布法菌落数量。
3.对实验结果进行分析比较,得出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤微生物计数法土壤是最复杂、最丰富的微生物基因库,所含微生物不仅数量巨大,而且各类繁多,主要包括细菌、真菌和放线菌三大类,是土壤最活跃的成分。
土壤微生物数量测定方法可分为三大类:一类是根据在培养基上生长的菌落数来计算土壤微生物的数量,统称为培养计数法,主要有稀释平板法和最大或然计数法;二类是将土壤微生物染色后,在显微镜下观察计数,称为直接镜检法,包括涂片法、琼脂薄片法和膜过滤法等;三类是直接将微生物从土壤中分离和提取出来后再进行测定,主要有离心分离法。
1.1培养计数法1.1.1概要在自然条件下,土壤中的大多数微生物处于休眠状态,一旦供给可利用的碳源(如培养基),一些微生物将快速生长繁殖。
因此,根据在培养基上所生长的微生物数量,可以估算土壤中微生物的数量。
这种土壤微生物数量测定方法称为培养计数法,主要包括稀释平板计数法(简称稀释平板法)和最大或然计数法。
稀释平板计数法的基本原理:土壤微生物经分散处理成为单个细胞后,在特殊的培养基上生长并形成一个菌落,根据形成的菌落数来计算微生物的数量。
最大或然计数法的基本原理:假设被测定的微生物在稀释液中均匀分布,并在试管或平板上全部存活,随着稀释倍数的加大,稀释液中微生物的数量将越来越少,直到将某一稀释度的土壤稀释液接种到培养基上培养后,没有或很少出现微生物菌落。
根据没有出现菌落的最低稀释度和出现菌落的最高稀释度,再用最大或然计数法计算出样品中微生物的数量。
1.1.2稀释平板法一、试剂配制常用的培养基各类很多(见附录一),可根据需要测定的微生物种类选择培养基。
按配方配制培养基后,先在121℃下灭菌15min,冷却至45~50℃使用。
凝固后的培养基可加热溶解后使用。
二、仪器设备广口瓶或三角瓶及配套的橡皮塞,移液管(1ml、10ml,吸口用棉花塞住后用牛皮纸包好灭菌)培养皿(9㎝,用牛皮纸包好后灭菌)和显微镜等。
三、操作步骤(1)土壤系列稀释液制备取新鲜土壤(<2㎜)10.00g,放入经灭菌的装有70ml水的广口瓶中,塞上经灭菌的橡皮塞,在振荡机上振荡10min,此为10-1土壤稀释液。
迅速用灭菌的移液管吸取10-1土壤稀释液10ml,放入灭菌的装有90ml水的广口瓶中,塞上橡皮塞,混合均匀,此为10-2土壤稀释液。
再如此依次配制10-3、10-4、10-5和10-6系列土壤稀释液。
上述操作均在无菌条件下进行,以避免污染。
(2)平板制备和培养从两个稀释倍数的土壤稀释液中(细菌和放线菌通常用10-5和10-6土壤稀释液,真菌用10-2和10-3稀释液)吸取1.00ml(吸前摇匀),分别放入五套培养皿中(注意每变换一次浓度,须更换一支移液管);再向培养皿内注入45~50℃的培养基10ml,立即混合均匀,静置凝固后,倒置放于培养箱中培养。
细菌和放线菌在28℃下培养7~10d,真菌在25℃下培养3~5d。
(3)镜检计数尽管使用不同的培养基,但细菌、放线菌和真菌都可能在同一个培养基上生长,所以必须用显微镜做进一步的观察。
明显有菌丝的一般是真菌,真菌的菌丝为丝状分枝,比较粗大;而放线菌菌丝呈放射状,比较细。
细菌有球状和杆状,有些细菌也形成细小的菌丝。
酵母菌的菌落与细菌的菌落很相似,但在显微镜下容易分辨。
酵母菌个体比较大,一般有圆形、椭圆形、卵形、柠檬形或黄瓜形,有些还有瘤状的芽。
在两级稀释度中,选细菌和放线菌的菌落数为30~200个、真菌菌落数为20~40个的培养皿各5个,取其平均值计算出每组的菌落数。
如果菌落很多,可将其分成2~4等份进行计数。
微生物生物量可以通过微生物细胞个体大小和密度计算得到。
(4)计算土壤微生物数量(cfu·g-1)=MD/W式中M为菌落平均数:D为稀释倍数;W为土壤烘干质量(g)。
1.1.3最大或然计数法(MPN)一、试剂配制培养基配制与稀释平板法基本相同,采用试管培养时,培养基中不需加琼脂。
二、食品设备试管(2㎝×18㎝),其他同稀释平板法。
三、操作步骤(1)土壤系列稀释液中制备按稀释平板法制备土壤系列稀释液,一般配制10-1~10-6的稀释液。
(2)接种和培养从上述土壤系列稀释液中各取1ml接种到平板培养基或试管液体培养基中,每个稀释度重复3~5次,同时设置空白对照,以检验是否被污染。
因微生物类型和生长速度不同,所要求的稀释倍数、培养基和培养时间都有差别(表1-1)。
根据微生物类型分别在28~30℃培养7~30d。
培养结束时,记录出现菌落的平板数量或出现特征反应的试管数。
表1-1 几种主要土壤微生物生理群MPN计数方法(3)计算通常将有微生物生长的最后3个稀释度中出现微生物菌落的平板数作为微生物生长指标,从最大或然数表中查出最大或然数近似值,按下列公式计算样品中的微生物数量:土壤微生物数量(cfu·g-1)=MD/W式中M为最大或然数近似值;D为全部出现菌落的最高稀释倍数;W为土壤烘干质量(g)。
例如,某土壤系列稀释液1ml接种到5个平板,经培养后,10-3~10-5的稀释液全部出现菌落;接种10-6稀释液的5个平板只有4个出现菌落;接种10-7稀释液的只有1个出现菌落;接种10-8稀释液的全部没有菌落。
由此得到土壤的微生物生长指标为541,查最大或然数表(见附录三,表三)得到其最大或然数近似值为17,乘以第一位数的稀释倍数105,再除以土壤烘干质量即可得到土壤微生物数量。
微生物生长的数量指标都应当是三位数。
但是不管重复数多少,第一位数字如重复数相等,即代表全部重复都出现菌落的最高稀释倍数的数值。
后两位数字依次是以下两个稀释度出现菌落的平板数量。
如果以下稀释液还出现了微生物菌落,则将其出现微生物菌落的重复数加到第三位数上。
例如,10-3~10-8系列稀释液(4个重复)出现菌落的平板数分别为4,4,3,2,1和0.这里10-7稀释液出现菌落的平板数为1,将其加到前一稀释液(10-6)的平板数上,即得该土壤的微生物生长指标为433,查表得最大或然数近似值为30,计算得到每克土壤(新鲜重)的微生物数量为3.0×105。
应注意:如果出现微生物生长的稀释度比没有出现微生物生长的稀释倍数低,则说明微生物在稀释液中不是均匀分布的,在这种情况下就需要对实验方案进行核查。
1.1.4方法评论最初研究土壤微生物的方法是培养计数法,该方法的优点在于可测定土壤中可培养的、不同类型的微生物数量,包括细菌、真菌和放线菌,特别是可用于测定可培养的、具有特殊功能的微生物种群,如氨化细菌、硝化细菌、反硝化细菌、解磷菌和固氮菌等。
该方法存在的问题是,仅能测定在培养基上迅速生长繁殖,并能够形成菌落或有某种特征的土壤微生物种群,而大部分土壤微生物种群不能在培养基上生长。
另外,在培养基上所形成的菌落可能来自多个细胞,也有可能由菌丝(或多个细胞)发育成菌落。
因此,培养计数法所测定的微生物数量,通常不到土壤中微生物实际数量的1%,故不能作为土壤微生物的真实数量。
此外,该方法即使用于测定土壤中可培养的微生物数量,测定结果的精确度和重复性较差。
1.2直接镜检计数法1.2.1概要由于土壤微生物的特性和培养基的局限性,通过在培养基上生长的菌落数量来间接地计算土壤微生物数量,一般只能测量出土壤中很少的一部分微生物。
因此,一些研究者提出了直接镜检计数法,主要包括涂片法、琼脂薄片法和膜过滤法。
使用一般的染色剂进行涂片染色,镜检时很难区别死的微生物细胞和土壤颗粒,这里仅介绍FDA染色涂片测定活菌丝数和FITC染色测定活细菌数的方法。
涂片法的基本原理:将一定量的土壤悬浮液涂抹在载玻片上,风干染色后进行镜检计数,从而计算出单位质量土壤的微生物数量。
由于使用特别的染色剂可着色活细胞,从而可测定土壤活体微生物数量。
琼脂薄片法的基本原理:在制备土壤悬浮液时加入一定量琼脂,在进行土壤分散的同时进行加热,取一定量的土壤-琼脂悬浮液制成琼脂薄片,染色后进行镜检计数,再计算出单位质量土壤的微生物数量。
膜过滤的基本原理:将土壤悬浮液用无菌水稀释,取一定量的稀释液染色后,用微孔膜过滤,对微孔膜上的微生物进行镜检计数,再计算出单位质量土壤的微生物数量。
1.2.2 FDA染色涂片法测定活菌丝数一、试剂配制磷酸盐缓冲液(0.06mol·L-1):8.28 g 溶于1L去离子水,10.68g 溶于1L去离子水;将两种溶液按28﹕72的比例混合,调节pH值使其与土壤pH值大致相同。
FDA染色液:见附录二。
琼脂溶液(1.5%):1.5g琼脂溶于100ml磷酸盐缓冲液中(pH7.6)。
二、仪器设备三角瓶(200ml),试管(15ml),振荡机,载玻片(图1-1),盖玻片,荧光显微镜等。
图1-1 染色-镜检法涂片外圆面积1cm2,半径5.64㎜,内圆半径3.64㎜,镜检必须在外圆边缘约1.7㎜以内的区域进行三、操作步骤(1)土壤分散取10.00g新鲜土壤(<2㎜)于200ml三角瓶中,加入95 ml 0.06 mol·L-1磷酸盐缓冲溶液,充分振荡15 min。
(2)染色取1 ml 土壤悬浮液于15 ml的试管中,加入4 ml 磷酸盐缓冲溶液,再加入1 ml FDA染色液。
室温下培养3 min 后,加入1 ml 琼脂溶液,混匀。
(3)涂片和镜检取0.1 ml 上述土壤-染色液-琼脂混合液均匀地涂于如图1-1所求的载玻片上,盖上盖玻片,迅速用荧光显微镜进行镜检计数。
镜检计数方法见下文的琼脂薄片法。
(4)计算土壤活菌丝的生物体积及生物量碳计算方法同琼脂薄片法。
1.2.3 FITC染色涂片法测定活细菌数一、试剂配制Tris-盐酸溶液I :6.35 g 三羟基氨基甲烷溶于800 ml 去离子水,用浓盐酸调节pH值至7.5,定溶至 1 L。
Tris-盐酸溶液II :25.4 g 三羟基氨基甲烷溶于800 ml 去离子水,用浓盐酸调节pH值至7.5,定溶至 1 L。
INT溶液:2 g 氯化2-(p-碘苯基-3-p-硝基苯)-5-苯四氮唑溶于1 L Tris-盐酸溶液II中。
NADH-NADPH混合溶液:0.4 g NADH和0.4 g NADPH溶于100 ml Tris-盐酸溶液II中。