二次函数典型中考试题解析和训练
2023年九年级数学中考专题训练二次函数与角度问题含答案解析

中考专题训练——二次函数与角度问题1.已知二次函数232y ax bx =+-(0a ≠)的图象经过A (1,0)、B (−3,0)两点,顶点为点C .(1)求二次函数的解析式; (2)如二次函数232y ax bx =+-的图象与y 轴交于点G ,抛物线上是否存在点Q ,使得∠QAB=∠ABG ,若存在求出Q 点坐标,若不存在请说明理由;(3)经过点B 并且与直线AC 平行的直线BD 与二次函数232y ax bx =+-图象的另一交点为D ,DE ∠AC ,垂足为E ,DF y 轴交直线AC 于点F ,点M 是线段BC 之间一动点,FN ∠FM 交直线BD 于点N ,延长MF 与线段DE 的延长线交于点H ,点P 为△NFH 的外心,求点M 从点B 运动到点C 的过程中,P 点经过的路线长. 2.在平面直角坐标系中,抛物线l :()2220y x mx m m =--->与x 轴分别相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,设抛物线l 的对称轴与x 轴相交于点N ,且3OC ON = (1)求m 的值;(2)设点G 是抛物线在第三象限内的动点,若GBC ACO ∠=∠,求点G 的坐标;(3)将抛物线222y x mx m =---向上平移3个单位,得到抛物线l ',设点P 、Q 是抛物线l '上在第一象限内不同的两点,射线PO 、QO 分别交直线=2y -于点P '、Q ',设P '、Q '的横坐标分别为P x '、Q x ',且4P Q x x ''⋅=,求证:直线PQ 经过定点.3.已知二次函数y =x 2十(k ﹣2)x ﹣2k .(1)当此二次函数的图像与x 轴只有一个交点时,求该二次函数的解析式;(2)当k >0时,直线y =kx +2交抛物线于A ,B 两点(点A 在点B 的左侧),点P 在线段AB 上,过点P 做PM 垂直x 轴于点M ,交抛物线于点N . ∠求PN 的最大值(用含k 的代数式表示);∠若抛物线与x 轴交于E ,F 两点,点E 在点F 的左侧.在直线y =kx +2上是否存在唯一一点Q ,使得∠EQO =90°?若存在,请求出此时k 的值;若不存在,请说明理由.4.如图,直线l :33y x =-+与x 轴、y 轴分别相交于A 、B 两点,抛物线223(0)y ax ax a a =--<经过点B .(1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M ',将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l '与直线AM '重合时停止旋转,在旋转过程中,直线'l 与线段BM '交于点C ,设点B 、M '到直线l '的距离分别为1d 、2d ,当12d d +最大时,求直线l '旋转的角度(即BAC ∠的度数). 5.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =−12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点, ∠连接BC 、CD ,设直线BD 交线段AC 于点E ,求DEEB的最大值; ∠过点D 作DF ∠AC ,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的∠DCF =2∠BAC ,若存在,求出点D 的坐标;若不存在,请说明理由.6.已知抛物线265y x x =++与x 轴交于点A ,B (点A 在点B 左侧),顶点为D ,且过C (-4,m ). (1)求点A ,B ,C ,D 的坐标;(2)点P 在该抛物线上(与点B ,C 不重合),设点P 的横坐标为t .∠当点P 在直线BC 的下方运动时,求∠PBC 的面积的最大值, ∠连接BD ,当∠PCB =∠CBD 时,求点P 的坐标.7.如图所示,抛物线y =−x 2+bx +3经过点B (3,0),与x 轴交于另一点A ,与y 轴交于点C .(1)求抛物线所对应的函数表达式;(2)如图,设点D 是x 轴正半轴上一个动点,过点D 作直线l ∠x 轴,交直线BC 于点E ,交抛物线于点F ,连接AC 、FC .∠若点F 在第一象限内,当∠BCF =∠BCA 时,求点F 的坐标; ∠若∠ACO +∠FCB =45°,则点F 的横坐标为______.8.已知抛物线2y ax c =+过点()2,0A -和()1,3D -两点,交x 轴于另一点B .(1)求抛物线解析式;(2)如图1,点P 是BD 上方抛物线上一点,连接AD ,BD ,PD ,当BD 平分ADP 时,求P 点坐标; (3)将抛物线图象绕原点O 顺时针旋转90°形成如图2的“心形”图案,其中点M ,N 分别是旋转前后抛物线的顶点,点E 、F 是旋转前后抛物线的交点. ∠直线EF 的解析式是______;∠点G 、H 是“心形”图案上两点且关于EF 对称,则线段GH 的最大值是______.9.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()3,4A 和点()1,0B -,连接AB ,过点A 作AD x ⊥轴于点D ,点P 在直线AB 上方的抛物线上,过点P 作PE AD ∥交x 轴于点E ,交线段AB 于点G ,连接PD 交线段AB 于点Q .(1)求抛物线的表达式;(2)当GQ AQ =时,设点P 的横坐标为m ,求m 的值;(3)在(2)的条件下,线段BE 上有一点F ,直线AD 上有一点K ,连接KF 、GF ,当2FKD FGB ∠=∠,且8KF =时,直接写出....点K 的纵坐标.... 10.如图,已知抛物线2y x bx c =++与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,OA =OC =3.(1)求抛物线的函数表达式;(2)若点P 为直线AC 下方抛物线上一点,连接BP 并交AC 于点Q ,若AC 分ABP 的面积为1:2两部分,请求出点P 的坐标;(3)在y 轴上是否存在一点N ,使得45BCO BNO ∠+∠=︒,若存在,请求出点N 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2+2x −3与x 轴交于A 、B 两点,且B (1,0).(1)求抛物线的解析式和点A 的坐标;(2)如图1,点P 是直线y =x 上在x 轴上方的动点,当直线y =x 平分∠APB 时,求点P 的坐标;(3)如图2,已知直线y =23x −49分别与x 轴、y 轴交于C 、F 两点,点Q 是直线CF 下方的抛物线上的一个动点,过点Q 作y 轴的平行线,交直线CF 于点D ,点E 在线段CD 的延长线上,连接QE .问:以QD 为腰的等腰△QDE 的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由. 12.如图,顶点坐标为(3,4)的抛物线2y ax bx c =++交x 轴于A ,B 两点,交y 轴于点()0,5C -.(1)求a ,b 的值;(2)已知点M 在射线CB 上,直线AM 与抛物线2y ax bx c =++的另一公共点是点P .∠抛物线上是否存在点P ,满足:2:1=AM MP ,如果存在,求出点P 的横坐标;如果不存在,请说明理由; ∠连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.13.如图,抛物线2y x bx c =++与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,若()1,0A -且3OC OA =.(1)求该抛物线的函数表达式;(2)如图1,点D 是该抛物线的顶点,点(),P m n 是第二象限内抛物线上的一个点,分别连接BD 、BC 、BP ,当2PBA CBD ∠=∠时,求m 的值;(3)如图2,BAC ∠的角平分线交y 轴于点M ,过M 点的直线l 与射线AB ,AC 分别交于E ,F ,已知当直线l 绕点M 旋转时,11AE AF+为定值,请直接写出该定值. 14.如图,在平面直角坐标系xOy 中,抛物线1L :2y x bx c =++与x 轴交于(4,0)A -,B 两点,且经过点(1,3)-,点C 是抛物线1L 的顶点,将抛物线1L 向右平移得到抛物线2L ,且点B 在抛物线2L 上.(1)求抛物线1L 的表达式;(2)在抛物线2L 上是否存在一点P ,使得90PAC ∠=︒,若存在,请求出点P 的坐标,若不存在,请说明理由.15.如图,抛物线22y ax bx =++与x 轴相交于A 、B 两点,与y 轴相交于点C ,已知B 点的坐标为()4,0,抛物线的对称轴为直线32x =,点D 是BC 上方抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当BCD △的面积为74时,求点D 的坐标;(3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE 中的某个角等于ABC ∠的2倍?若存在,请直接写出点D 的横坐标...;若不存在,请说明理由. 16.抛物线2y ax bx c =++的顶点坐标为(1,4),与x 轴交于点,(3,0)A B 两点,与y 轴交于点C ,点M 是抛物线上的动点.(1)求这条抛物线的函数表达式;(2)如图1,若点M 在直线BC 上方抛物线上,连接AM 交BC 于点E ,求MEAE的最大值及此时点M 的坐标;(3)如图2,已知点(0,1)Q ,是否存在点M ,使得1tan 2MBQ ∠=?若存在,求出点M 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与y 轴交于点C ,与x 轴交于A 、B 两点,直线4y x =+恰好经过B 、C 两点.(1)求二次函数的表达式;(2)点D 为第三象限抛物线上一点,连接BD ,过点O 作OE BD ⊥,垂足为E ,若2OE BE =,求点D 的坐标;(3)设F 是抛物线上的一个动点,连结AC 、AF ,若2BAF ACB ∠=∠,求点F 的坐标.18.抛物线y 1=x 2+(3-m )x +c 与直线l :y 2=kx +b 分别交于点A (-2,0)和点B (m ,n ),当-2≤x ≤4时,y 1≤y 2.(1)求c 和n 的值(用含m 的式子表示);(2)过点P (1,0)作x 轴的垂线,分别交抛物线和直线l 于M ,N 两点,则∠BMN 的面积是否存在最大值或者最小值,若存在,请求出这个值;若不存在,请说明理由;(3)直线x =m +1交抛物线于点C ,过点C 作x 轴的平行线交直线l 于点D ,交抛物线另一点于E ,连接BE ,求∠DBE 的度数.19.如图,抛物线2323y x x -=-+与x 轴交于点A 和点B ,直线:l y kx b =+与抛物线2323y x x -=-+交于点D和点12F n ⎛⎫⎪⎝⎭,,且与y 轴交与点()02E ,.(1)求直线l 的函数表达式;(2)若P 为抛物线上一点,当POE OED =∠∠时,求点P 的坐标. 20.如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A 、B 两点,且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一点,2ABD BAC ∠=∠,直接写出点D 的坐标.参考答案1.(1)21322y x x =+- (2)542⎛⎫- ⎪⎝⎭,或322⎛⎫-- ⎪⎝⎭,(3)1【分析】(1)将A (1,0)、B (-3,0)代入232y ax bx =+-,即可求解; (2)先求出BG 的解析式为13y x 22=--,然后再进行分类讨论,分别求得点Q 的坐标即可;(3)可知△DNH 与△FNH 是直角三角形,外心P 在斜边NH 的中点,分别求出直线AC 及直线BD 的函数关系式,再分为当M 运动到C 点时及当点M 运动到B 点时两种情况进行讨论,求解即可.【解析】(1)∠二次函数232y ax bx =+-的图像经过A (1,0)、B (-3,0), ∠30239302a b a b ⎧+-=⎪⎪⎨⎪--=⎪⎩,解得121a b ⎧=⎪⎨⎪=⎩, ∠二次函数的解析式为213y x x 22=+-; (2)由题可知G 点坐标30,2⎛⎫- ⎪⎝⎭,设直线BG 的解析式为y px q =+,得: 30302k b k b -+=⎧⎪⎨+=-⎪⎩,解得:1232k b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∠BG 的解析式为13y x 22=--,∠AQ ∥BG ,直线AQ 的解析式11y x 22=-+,联立直线AQ 与二次函数解析式2112213x 22y x y x ⎧=-+⎪⎪⎨⎪=+-⎪⎩,解得1110x y =⎧⎨=⎩或22452x y =-⎧⎪⎨=⎪⎩此时Q 的坐标为542⎛⎫- ⎪⎝⎭,,∠直线11y x 22=-+与y 轴的交点为K 102⎛⎫⎪⎝⎭,,其关于x 轴的对称点为11K 02⎛⎫- ⎪⎝⎭, 直线1AK 的解析式为:11y x 22=- 与二次函数解析式联立得 2112213x 22y x y x ⎧=-⎪⎪⎨⎪=+-⎪⎩, 解得1110x y =⎧⎨=⎩或22232x y =-⎧⎪⎨=-⎪⎩,此时Q 的坐标为322⎛⎫-- ⎪⎝⎭,, 综上,抛物线上存在点Q 使得∠QAB =∠BAG ,Q 点坐标为542⎛⎫- ⎪⎝⎭,或322⎛⎫-- ⎪⎝⎭,(3)如图,易知△DNH 与△FNH 是直角三角形,外心P 在斜边NH 的中点,∠PD =PF =12NH ,所以点P 是线段DF 的垂直平分线上的动点, ∠直线AC 的解析式为y =x -1,BD ∥AC , ∠直线BD 的解析式为y =x +3, ∠D (3,6),∠当M 运动到C 点时1H 与点E 重合,1FN AC ⊥,则1FN BD ⊥,又因为∠DEF =90°,DE =EF , ∠四边形1DN FE 为正方形, ∠1P 是线段DF 的中点(3,4);∠当点M 运动到B 点时,22FN FH ⊥,∠四边形DN 1FE 是正方形∠122190N FN BFC N N F BCF ∠=∠∠=∠=︒,,∠21N N F BCF ∽, ∠121CF BC N F N N =, ∠四边形DN 1FE 是正方形,∠11,4N (),∠2112BC CF N N N F ==,∠12N N =∠22,5N (), 同理26,3H (), 所以22N H 的中点2P (4,4),∠134P (,), ∠121PP =【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,会用待定系数法求函数的解析式,会求函数的交点坐标,根据点M 的运动情况确定P 点的轨迹是线段是解题的关键.2.(1)1m =(2)点G 的坐标为17,24⎛⎫-- ⎪⎝⎭(3)见解析【分析】(1)由顶点式求得对称轴,由x =0处函数值求得C 点坐标,根据3OC ON =列方程求解即可;(2)连接AC 、BC ,过点C 作CT CB ⊥,设BG 交CT 于点T ,作TH y ⊥轴于点H ,由抛物线解析式求得A 、B 、C 坐标,可得∠OBC 、∠CHT 是等腰直角三角形,由BC 和tan tan GBC ACO ∠=∠可得TC ,进而可得T 点坐标,再由B 点坐标可得直线BC 解析式,然后与二次函数解析式联合求得交点坐标即可解答;(3)设点()2111,2P x x x -,()2222,2Q x x x -,由原点可得直线PO 、QO 的解析式,再由y =-2可得点Q '、P '横坐标,由4P Q x x ''⋅=可得()1212230x x x x -++=;设直线PQ 的解析式为y mx n =+,与l '联立可得()220x m x n -+-=,利用根与系数的关系可得122x x m +=+,12x x n =-,代入()1212230x x x x -++=求得21n m =--,于是直线PQ 为()21y m x =--经过定点2,1;(1)解:依题意得:()222y x m m m =----,∠抛物线的对称轴为直线x m =, ∠ON m m ==,在222y x mx m =---中,令0x =,则2y m =--,∠()0,2C m --, ∠22OC m m =--=+,∠3OC ON =,∠23m m +=,解得1m =;(2)解:如图,连接AC 、BC ,过点C 作CT CB ⊥,设BG 交CT 于点T ,作TH y ⊥轴于点H ,由(1)得1m =,∠抛物线的解析式为2=23y x x --,()0,3C -,3OC =,令0y =,则2230x x --=,解得11x =-,23x =,∠点A 在点B 的左侧,∠()1,0A -,()3,0B ,3OB =,在Rt AOC 中,1tan 3OA ACO OC ∠==, 3OB OC ==,则OBC △是等腰直角三角形,BC =∠OCB =45°,∠TCB =90°,则∠TCH =45°,∠CHT △是等腰直角三角形,∠GBC ACO ∠=∠,∠1tan tan 3GBC ACO ∠=∠=, ∠13CT BC =,1133CT BC ==⨯=∠sin451TH CH ==︒=,∠()1,2T --,由点()1,2T --与点()3,0B ,可求得1322TB y x =-, 联立得2132223y x y x x ⎧=-⎪⎨⎪=--⎩, 解得:1130x y =⎧⎨=⎩,221274x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∠点G 的坐标为17,24⎛⎫-- ⎪⎝⎭;(3)解:如图,将抛物线l 向上平移3个单位后得到抛物线l ':22y x x =-,∠点P 、Q 是抛物线l '上在第一象限内不同的两点,∠设点()2111,2P x x x -,()2222,2Q x x x -,由()2111,2P x x x -,()2222,2Q x x x -分别可求得:()12OP y x x =-,()22OQ y x x =- ∠点P '、Q '在直线=2y -上,∠点12,22P x ⎛⎫--' ⎪-⎝⎭,22,22Q x ⎛⎫--' ⎪-⎝⎭, ∠4P Q x x ''⋅= ∠1222422x x --⋅=--,即()()12221x x --=,整理得()1212230x x x x -++=, 设直线PQ 的解析式为y mx n =+,与l '联立得:22,y x x y mx n⎧=-⎨=+⎩,22x x mx n -=+, 整理得()220x m x n -+-=,由根与系数的关系可得:122x x m +=+,12x x n =-,∠()1212230x x x x -++=,∠()2230n m --++=,∠21n m =--,∠直线PQ 的解析式为21y mx m =--,()21y m x =--,∠当2x =时,1y =-,∠直线PQ 经过定点2,1;【点评】本题考查了一次函数与二次函数的综合,解直角三角形,等腰直角三角形的性质,一元二次方程根与系数的关系;此题综合性较强,正确作出辅助线并掌握函数图象交点坐标的意义是解题关键. 3.(1)244y x x =-+(2)∠32k +,∠存在实数43k =或k =2y kx =+上存在唯一一点Q ,使得90EQO ∠=︒【分析】(1)根据函数图像与x 轴只有一个交点,结合Δ0=求出k 值即可;(2)∠根据题意,求出()2(,2),,(2)2P m mk N m m k m k ++--,利用两点之间距离公式求出PQ ,得出11m ≤∠二次函数综合中的直角三角形分两种情况:当直线2y kx =+与以O 、E 为直径的圆相切时;当圆与直线相交且一个交点为A 时;分情况求解即可.(1)解:二次函数的图像与x 轴只有一个交点,∠22(2)8(2)0k k k ∆=-+=+=,解得2k =-,∠所求抛物线的解析式为244y x x =-+;(2)解:如图所示:∠∠点P 在线段AB 上,且直线AB 解析式为2y kx =+,∠设点M 的横坐标为m ,则()2(,2),,(2)2P m mk N m m k m k ++--,∠22(2)2PN mk m k m k ⎡⎤=+-+--⎣⎦2222m m k =-+++2(1)32m k =--++,把2y kx =+代入2(2)2y x k x k =+--得:2(2)22x k x k kx +--=+,∠222220,(1)2(1)x x k x k ---=-=+,∠0k >,∠2(1)0k +>,∠1x =∠x 的值可以取到1,即11m ≤≤∠m 的值可以取到1,∠当1m =时PN 的最大值为32k +;∠设直线2y kx =+与x 轴、y 轴分别交于点G 、H ,则()22,0,0,2,,2G H OG OH k k ⎛⎫-== ⎪⎝⎭.在Rt GOH 中,由勾股定理得:GH = 令2(2)20y x k x k =+--=,即()(2)0x k x +-=,解得:x k =-或2x =.∠(),0E k -,OE k =.(∠)当直线2y kx =+与以O 、E 为直径的圆相切时,如图∠所示:设直线2y kx =+与以O 、E 为直径的圆相切的切点为Q ,此时90,90GQM EQO ∠∠=︒=︒.设OE 中点为点M ,连接MQ ,如图∠所示,则,0.5MQ GH MQ ME OM k ⊥===.∠22k GM OG OM k =-=-, ∠,90∠=∠∠=∠=︒MGQ HGO MQG HOG , ∠∽MOG HOG , ∠=MQ GM OH GH ,即22222k k k -=, ∠2221618k k k +=-+ ∠2169k =,解得:43k =±, ∠0k >, ∠43k =. (∠)当圆与直线相交且一个交点为A 时,如图∠所示,设另一个交点为Q ,∠OE 是圆的直径,∠90EQO ∠=︒,此时可得:OG OE =, ∠2k k=,解得:k = ∠0k >,∠k =∠存在实数43k =或k =2y kx =+上存在唯一一点Q ,使得90EQO ∠=︒. 【点评】本题考查二次函数综合,涉及到利用判别式求二次函数解析式、二次函数综合中的线段最值问题、二次函数综合中的直角三角形问题,熟练掌握二次函数的图像与性质,并掌握解决相关二次函数综合问题题型的方法技巧是解决问题的关键.4.(1)223y x x =-++ (2)21525()228S m =--+,最大值为258(3)45°【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出a 的值;(2)设M 的坐标为(m ,-m 2+2m +3),然后根据面积关系将∠ABM 的面积进行转化;(3)由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值;可将求d 1+d 2最大值转化为求AC 的最小值.(1)解:令x =0代入y =-3x +3,∠y =3,∠B (0,3),把B (0,3)代入223y ax ax a =--,∠3=-3a ,∠a =-1,∠二次函数解析式为:y =-x 2+2x +3;(2)令y =0代入y =-x 2+2x +3,∠0=-x 2+2x +3,∠x =-1或3,∠抛物线与x 轴的交点横坐标为-1和3,∠M 在抛物线上,且在第一象限内,∠0<m <3,令y =0代入y =-3x +3,∠x =1,∠A的坐标为(1,0),由题意知:M的坐标为(m,-m2+2m+3),S=S四边形OAMB-S△AOB=S△OBM+S△OAM-S△AOB=1 2×m×3+12×1×(-m2+2m+3)-12×1×3=-12(m-52)2+258∠当m=52时,S取得最大值258.(3)由(2)可知:M′的坐标为(52,74);过点M′作直线l1∠l′,过点B作BF∠l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∠∠BFM′=90°,∠点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∠点C在线段BM′上,∠F在优弧BM H'上,∠当F与M′重合时,BF可取得最大值,此时BM′∠l1,∠A(1,0),B(0,3),M′(52,74),∠由勾股定理可求得:AB M B M A''===过点M′作M′G∠AB于点G,设BG =x ,∠由勾股定理可得:M ′B 2-BG 2=M ′A 2-AG 2,∠2285125)1616x x -=-,∠,x =cos BG M BG M B ''∠==, ∠l 1∠l ′,∠∠BCA =90°,∠BAC =45°.【点评】本题考查二次函数的综合问题,涉及待定系数求二次函数解析式,求三角形面积,圆的相关性质等知识,内容较为综合,学生需要认真分析题目,化动为静去解决问题.5.(1)213222y x x =--+ (2)∠45;∠存在,D (-2,3)【分析】(1)根据题意得到A (-4,0),C (0,2)代入y =-12x 2+bx +c ,于是得到结论; (2)∠如图1,令y =0,解方程得到x 1=-4,x 2=1,求得B (1,0),过D 作DM ∠x 轴于M ,过B 作BN ∠x 轴交于AC 于N ,根据相似三角形的性质即可得到结论;∠根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,求得P (-32,0),得到P A =PC =PB =52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,解直角三角形即可得到结论.(1)解:对于函数:y =12x +2, 令x =0,则y =2,令y =0,则x =-4,∠A (-4,0),C (0,2),∠抛物线y =-12x 2+bx +c 经过A .C 两点, ∠1016422b c c ⎧=-⨯-+⎪⎨⎪=⎩,∠b =-32,c =2, ∠y =-12x 2-32x +2; (2)解:∠如图,令y =0, ∠213x x 2022--+=, ∠14x =-,21x =,∠B (1,0),过D 作DM ∠x 轴交AC 于点M ,过B 作BN ∠x 轴交于AC 于N ,∠DM BN ∥,∠DME BNE ∽△△, ∠DE DM BE BN=, 设()213,222D a a a --+, ∠1,22M a a ⎛⎫+ ⎪⎝⎭, ∠B (1,0), ∠51,2N ⎛⎫ ⎪⎝⎭, ∠()221214225552a a DE DM a BE BN --===-++, ∠-15<0, ∠当a =-2时,DE BE 的最大值是45; ∠∠A (-4,0),B (1,0),C (0,2),∠AC =BC =AB =5,∠222AC BC AB +=,∠∠ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P , ∠3,02P ⎛⎫- ⎪⎝⎭,∠52PA PC PB ===, ∠∠CPO =2∠BAC ,∠()4tan tan 23CPO BAC ∠=∠=, 过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G ,如图,∠∠DCF =2∠BAC =∠DGC +∠CDG ,∠∠CDG =∠BAC , ∠1tan tan 2CDG BAC ∠=∠=,即12RC DR =, 令213,222D a a a ⎛⎫--+ ⎪⎝⎭, ∠DR =-a ,21322RC a a =--, ∠2131222a a a --=-,∠10a =(舍去),22a =-,∠2D x =-,3D y =.∠D (-2,3).【点评】本题考查了二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形,直角三角形的性质等知识点,正确的作出辅助线是解题的关键.6.(1)A (-5,0),B (-1,0);C (-4,-3);D (-3,-4) (2)∠278;∠(0,5)或(32-,74-)【分析】(1)把抛物线解析式化为顶点式即可求出点D 的坐标,令y =0,求出x 的值即可得到A 、B 的坐标,把x =-4代入抛物线解析式求出y 即可求出点C 的坐标;(2)∠先求出直线BC 的解析式为1y x =+,过点P 作PE ∠x 轴于E 交BC 于F ,则点P 的坐标为(t ,265t t ++),点F 的坐标为(t ,t +1),254PF t t =---,再根据=PBC PFC PFB S S S +△△△23527228t ⎛⎫=-++ ⎪⎝⎭,进行求解即可;∠分如图1所示,当点P 在直线BC 上方时,如图2所示,当点P 在直线BC 下方时,两种情况讨论求解即可.(1)解:∠抛物线解析式为()226534y x x x =++=+-,∠抛物线顶点D 的坐标为(-3,-4);令y =0,则2650x x ++=,解得=1x -或5x =-,∠抛物线265y x x =++与x 轴交于点A ,B (点A 在点B 左侧),∠点A 的坐标为(-5,0),点B 的坐标为(-1,0);令4x =-,则()()246453y =-+⨯-+=-,∠点C 的坐标为(-4,-3);(2)解:∠设直线BC 的解析式为y kx b =+, ∠043k b k b -+=⎧⎨-+=-⎩, ∠11k b =⎧⎨=⎩, ∠直线BC 的解析式为1y x =+,过点P 作PE ∠x 轴于E 交BC 于F ,∠点P 的横坐标为t ,∠点P 的坐标为(t ,265t t ++),点F 的坐标为(t ,t +1),∠2216554PF t t t t t =+---=---,∠=PBC PFC PFB S S S +△△△()()11=22P C B P PF x x PF x x ⋅-+⋅- ()12B C PF x x =⋅- ()23542t t =-++ 23527228t ⎛⎫=-++ ⎪⎝⎭, ∠当52t =-时,∠PBC 的面积最大,最大为278;∠如图1所示,当点P 在直线BC 上方时,∠∠PCB =∠CBD ,∠PC BD ∥,设直线BD 的解析式为11y k x b =+,∠1111034k b k b -+=⎧⎨-+=-⎩, ∠1122k b =⎧⎨=⎩, ∠直线BD 的解析式为22y x =+,∠可设直线PC 的解析式为22y x b =+,∠()2243b ⨯-+=-,∠25b =,∠直线PC 的解析式为25y x =+,联立22565y x y x x =+⎧⎨=++⎩得240x x +=, 解得0x =或4x =-(舍去),∠5y =,∠点P 的坐标为(0,5);如图2所示,当点P 在直线BC 下方时,设BD 与PC 交于点M ,∠点C 坐标为(-4,-3),点B 坐标为(-1,0),点D 坐标为(-3,-4),∠()()22241318BC =---+-=⎡⎤⎣⎦,()()22231420BD =---+-=⎡⎤⎣⎦,()()22243342CD =---+---=⎡⎤⎡⎤⎣⎦⎣⎦, ∠222BC CD BD +=,∠∠BCD =90°,∠∠BCM +∠DCM =90°,∠CBD +∠CDB =90°,∠∠CBD =∠PCB ,∠MC =MB ,∠MCD =∠MDC ,∠MC =MD ,∠MD =MB ,∠M 为BD 的中点,∠点M 的坐标为(-2,-2),设直线CP 的解析式为23y k x b =+,∠23234322k b k b -+=-⎧⎨-+=-⎩, ∠23121k b ⎧=⎪⎨⎪=-⎩,∠直线CP 的解析式为112y x =-, 联立211265y x y x x ⎧=-⎪⎨⎪=++⎩得2211120x x ++=, 解得32x =-或4x =-(舍去), ∠74y =-, ∠点P 的坐标为(32-,74-); 综上所述,当∠PCB =∠CBD 时,点P 的坐标为(0,5)或(32-,74-);【点评】本题主要考查了二次函数综合,一次函数与几何综合,二次函数的性质,待定系数法求函数解析式,勾股定理的逆定理,等腰三角形的性质与判定等等,正确作出辅助线,利用分类讨论的思想求解是解题的关键.7.(1)y =−x 2+2x +3(2)∠532,39⎛⎫⎪⎝⎭;∠73或5【分析】(1)利用待定系数法即可求解;(2)∠作点A关于直线BC的对称点G,连接CG交抛物线于点F,此时,∠BCF=∠BCA,求得G(3,4),利用待定系数法求得直线CF的解析式为:y=13x+3,联立方程组,即可求解;∠分两种情况讨论,由相似三角形的性质和等腰三角形的性质,可求CF的解析式,联立方程可求解.(1)解:∠B(3,0)在抛物线y=−x2+bx+3上,∠y=−32+3b+3,解得b=2,∠所求函数关系式为y=−x2+2x+3;(2)解:∠作点A关于直线BC的对称点G,AG交BC于点H,过点H作HI∠x轴于点I,连接CG交抛物线于点F,此时,∠BCF=∠BCA,如图:令x=0,y=3;令y=0,−x2+2x+3=0,解得:x=3或x=-1,∠A(-1,0),B(3,0),C(0,3),∠OB=OC,AB=4,∠△OCB是等腰直角三角形,则∠OCB=∠OBC=45°,∠∠HAB=∠OBC=∠AHI=∠BHI=45°,∠HI= AI=BI=12AB=2,∠H(1,2),∠G(3,4),设直线CG的解析式为:y=kx+3,把G(3,4)代入得:4=3k+3,解得:k=13,∠直线CF的解析式为:y=13x+3,∠223133y x xy x⎧=-++⎪⎨=+⎪⎩,解得:53329xy⎧=⎪⎪⎨⎪=⎪⎩,所以F点的坐标为(53,329);∠当点F在x轴上方时,如图,延长CF交x轴于N,∠点B(3,0),点C(0,3),∠OB=OC=3,∠∠CBO=∠BCO=45°,∠点A(-1,0),∠OA=1,∠∠FCE+∠ACO=45°,∠CBO=∠FCE+∠CNO=45°,∠∠ACO=∠CNO,又∠∠COA=∠CON=90°,∠∠CAO∠∠NCO,∠CO NO AO CO=,∠313NO =,∠ON=9,∠点N(9,0),同理可得直线CF解析式为:y=-13x+3,∠-13x+3=-x2+2x+3,∠x1=0(舍去),x2=73,∠点F的横坐标为73;当点F在x轴下方时,如图,设CF与x轴交于点M,∠∠FCE+∠ACO=45°,∠OCM+∠FCE=45°,∠∠ACO=∠OCM,又∠OC=OC,∠AOC=∠COM,∠∠COM∠∠COA(ASA),∠OA=OM=1,∠点M(1,0),同理直线CF解析式为:y=-3x+3,∠-3x+3=-x2+2x+3,∠x1=0(舍去),x2=5,∠点F的横坐标为5,综上所述:点F的横坐标为5或73.【点评】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,相似三角形的判定和性质,全等三角形的判定和性质,两点距离公式,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.8.(1)24y x=-+(2)232,39 P⎛⎫ ⎪⎝⎭(3)∠y x =;∠4【分析】(1)待定系数法求解析式;(2)过点B 作BE x ⊥轴交DP 延长线与点E ,过D 作DF x ⊥轴交x 轴于点F .证明DAB DEB ≌△△,求得点E 的坐标,进而求得直线DE 的解析式为11033y x =+,联立抛物线解析式即可求解; (3)∠根据顺时针旋转90°后点的坐标特征可知对称轴为y x =;∠连接GH ,交EF 于点M ,则2GH GM =,过点G 作x 轴的垂线,交EF 于点N ,当GM 最大时,∠GFE面积最大,设()2,4G m m -+,则(),N m m ,根据()12GFE E F S GN x x =⋅-△以及二次函数的性质求得当12m =-时,∠GFE 面积最大,115,24G ⎛⎫- ⎪⎝⎭,根据∠的方法求得H 的坐标,根据中点公式求得M 的坐标,根据勾股定理求得GH ,由2GH GM =即可求解.(1)∠2y ax c =+过()2,0A -,()1,3D -∠403a c a c +=⎧⎨+=⎩ 解之得14a c =-⎧⎨=⎩∠抛物线解析式为24y x =-+(2)过点B 作BE x ⊥轴交DP 延长线与点E ,过D 作DF x ⊥轴交x 轴于点F .由24y x =-+,令0y =,得122,2x x =-=,则()2,0BD B D y x x =-,即DF BF =,∠45DBF ∠=︒,∠45DBE ∠=︒又∠DB DB =,BD 平分ADP ,∠DAB DEB ≌△△,∠BA BE =,()2,0B∠()2,4E设直线DE 的解析式为y kx b =+,324k b k b -+=⎧⎨+=⎩解得13103k b ⎧=⎪⎪⎨⎪=⎪⎩∠直线DE 的解析式为11033y x =+ 联立2411033y x y x ⎧=-+⎪⎨=+⎪⎩解得213,3329x x y y ⎧=⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩则232,39P ⎛⎫ ⎪⎝⎭(3)∠直线EF 解析式为y x =.抛物线关于y 轴对称,所以旋转后图形关于x 轴对称, ∠对于抛物线上任意一点(),P a b 关于原点旋转90°后对应点为()1,P b a -在旋转后图形上,()1,P b a -关于x 轴对称的点()2,P b a 在旋转后图形上,∠(),P a b 与()2,P b a 关于y x =对称, ∠图形2关于y x =对称,∠直线EF 解析式为y x =故答案为:y x =∠GH如图,连接GH ,交EF 于点M ,则2GH GM =,过点G 作x 轴的垂线,交EF 于点N ,∠当GM 最大时,∠GFE 面积最大,又∠()12GFE E F S GN x x =⋅-△ 设()2,4G m m -+,则(),N m m ∠22117424G N GN y y m m m ⎛⎫=-=-+-=-++ ⎪⎝⎭ ∠当12m =-时,∠GFE 面积最大,115,24G ⎛⎫- ⎪⎝⎭由∠可知115,24G ⎛⎫- ⎪⎝⎭关于y x =的对称点H 15142⎛⎫ ⎪⎝⎭,- ∴1313,88M ⎛⎫ ⎪⎝⎭8GM ∴=∠GH 的最大值为:2GH GM ==【点评】本题考查了二次函数的性质,旋转的性质,全等三角形的性质与判定,一次函数与二次函数交点问题,掌握以上知识是解题的关键.9.(1)234y x x =-++(2)1m = (3)227或227【分析】(1)直接利用待定系数法求解即可;(2)先求出直线AB 的解析式为1y x =+,然后证明∠PGQ ∠∠DAQ 得到PG =AD =4,再由点P 的坐标为()234m m m ++,-,点G 的坐标为(m ,m +1),得到23414PG m m m =-++--=,由此求解即可;(3)如图所示,过点F 作FH ∠AB 于H ,过点K 作KQ 平分∠FKD 交x 轴于Q ,过点Q 作QM ∠KF 于M ,连接FG ,设2BF t QD s KD k ===,,,则42DF t =-,先证明∠HBF =∠HFB =45°,得到HB HF ==,再由(2)得1m =,求得BG =HG =,tan =2HF t FGH HG t=-∠;根据角平分线的定义和性质得到QM QD s ==,∠FGH =∠QKD ,再由111==222FKD FQK DQK S S S DF DK KF QM DQ DK +⋅=⋅+⋅△△△,推出()428k t s k -=+,则tan tan 2s t QKQ FGH k t ===-∠∠,可以推出()222282168t t t t k t t---+==, 在Rt ∠FKD 中,22264DF DK KF +==,得到()22221684264t t t t ⎛⎫-+-+= ⎪⎝⎭,由此即可求出t 的值即可得到答案.(1) 解:∠抛物线()240y ax bx a =++≠经过点()3,4A 和点()1,0B -,∠934440a b a b ++=⎧⎨-+=⎩, ∠13a b =-⎧⎨=⎩, ∠抛物线解析式为234y x x =-++;(2)解:设直线AB 的解析式为1y kx b =+,∠11034k b k b -+=⎧⎨+=⎩, ∠11k b =⎧⎨=⎩, ∠直线AB 的解析式为1y x =+,∠PE AD ∥,∠∠PGQ =∠DAQ ,∠GPQ =∠ADQ ,又∠AQ =GQ ,∠∠PGQ ∠∠DAQ (AAS ),∠PG =AD =4,∠点P 的横坐标为m ,∠点P 的坐标为()234m m m ++,-,点G 的坐标为(m ,m +1),∠23414PG m m m =-++--=,∠2210m m -+=,解得1m =;(3)解:如图所示,过点F 作FH ∠AB 于H ,过点K 作KQ 平分∠FKD 交x 轴于Q ,过点Q 作QM ∠KF 于M ,连接FG ,设2BF t QD s KD k ===,,,则42DF t =-,∠点B 的坐标为(-1,0),点A 的坐标为(3,4),∠BD =AD =4,∠∠ABD =45°,∠FH ∠AB ,∠∠HBF =∠HFB =45°, ∠HB HF ==,由(2)得1m =,∠点G 的坐标为(1,2),∠BE =GE =2,∠BG = ∠HG BG HB =-=, ∠tan =2HF t FGH HG t=-∠; ∠KQ 平分∠FKD ,QM ∠FK ,QD ∠DK ,∠FKD =2∠FGB ,∠QM QD s ==,∠FGH =∠QKD , ∠111==222FKD FQK DQK S S S DF DK KF QM DQ DK +⋅=⋅+⋅△△△, ∠()111428222k t s sk -=⨯+, ∠()428k t s k-=+, ∠tan tan 2s t QKQ FGH k t ===-∠∠, ∠4282t t k t-=+-, ∠()222282168t t t t k t t---+==, 在Rt ∠FKD 中,22264DF DK KF +==,∠()22221684264t t t t ⎛⎫-+-+= ⎪⎝⎭, ∠43222464288256641616464t t t t t t t -+-+-++=, ∠2344322161644642882566464t t t t t t t t -++-+-+=,∠432880240256640t t t t -+-+=,∠43210243280t t t t -+-+=,∠()()2221016143280t t t t t -++-+=,∠()()()()22827220t t t t t --+--=,∠()()32814420t t t t -+--=,∠()()()28122220t t t t t ⎡⎤-++--=⎣⎦,∠()()()()262220t t t t t --+--=⎡⎤⎣⎦,∠()()226220t t t -+-=, ∠点F 在BE 上,∠22BF t BE =≤=,∠1t ≤,∠2620t t -+=,解得3t =-3t =,∠()22262442168442t t t t t t k t t t -+-+-+-=====,∠2DK =,∠点K 的纵坐标为227或227.【点评】本题主要考查了二次函数综合,一次函数与几何综合,勾股定理,解直角三角形,角平分线的性质,等腰直角三角形的性质与判定,全等三角形的性质与判定等等,熟练掌握二次函数的相关知识是解题的关键.10.(1)223y x x =+-(2)(-2,-3)或(-1,-4)(3)(0,2)或(0,-2)【分析】(1)先求出A 、C 的坐标,然后用待定系数法求解即可;(2)先求出直线AC 的解析为3y x =--,根据AC 把△ABP 的面积分成1:2两部分,得到=12APQ ABQ S S △△::,如图所示,过点P 作PD ∠x 轴于D ,过点Q 作DE ∠x 轴于E , 先求出23EQ PD =,设点P 的坐标为(m ,223m m +-),则点D 的纵坐标为224233m m +-,点D 的坐标为(224133m m ---,224233m m +-),然后求出点B 的坐标,从而求出∠22242411123333BD m BE m m m m ⎛⎫=-=----=++ ⎪⎝⎭,,证明∠BEQ ∠∠BDP ,得到224223313m m m ++=-,据此求解即可; (3)分两种情况当点N 在x 轴上方时,过点N 作NH ∠直线BC 于H ,过点H 作HE ∠y 轴于E ,HF ∠x 轴于F ,求出直线BC 的解析式为33y x =-,证明HN =HF ,四边形EOFH 是矩形,得到∠EHF =90°,OE =HF ,证明∠NEH ∠∠BFH 得到NE =BF ,设H 坐标为(m ,3m -3),则NE =BF =m -1,OE =3m -3ON =EN +OE =4m -4,CE =3m -3+3=3m ,点N 的坐标为(0,4m -4),NC =4m -1在Rt ∠NCH 中,由222NH CH CN +=,得到()()222221941m m m m m +-++=-,由此求解即可;当点N 在x 轴下方时,利用等腰三角形的性质求解即可.(1)解:∠OA =OC =3,∠点A 的坐标为(-3,0),点C 的坐标为(0,-3), ∠9303b c c -+=⎧⎨=-⎩, ∠23b c =⎧⎨=-⎩, ∠抛物线解析式为223y x x =+-;(2)解:设直线AC 的解析式为1y kx b =+,∠11303k b b -+=⎧⎨=-⎩, ∠113k b =-⎧⎨=-⎩, ∠直线AC 的解析为3y x =--,∠AC 把∠ABP 的面积分成1:2两部分,∠=12APQ ABQ S S △△::或=2APQ ABQ S S △△::1(此种情况不符合题意,舍去),如图所示,过点P 作PD ∠x 轴于D ,过点Q 作QE ∠x 轴于E ,∠=32APB ABQ S S △△::,∠132122AB PD AB EQ ⋅=⋅, ∠23EQ PD =, 设点P 的坐标为(m ,223m m +-),则点Q 的纵坐标为224233m m +-, ∠点Q 的坐标为(224133m m ---,224233m m +-), 令y =0,则2230x x +-=,解得1x =或3x =-,∠点B 的坐标为(1,0), ∠22242411123333BD m BE m m m m ⎛⎫=-=----=++ ⎪⎝⎭,, ∠PD ∠x 轴,QE ∠x 轴,∠DP QE ∥,∠∠BEQ ∠∠BDP , ∠23BE QE BD PD ==, ∠224223313m m m ++=-, 解得2m =-或1m =-,∠点P 的坐标为(-2,-3)或(-1,-4);(3)解:如图1所示,当N 在x 轴上方时,过点N 作NH ∠直线BC 于H ,过点H 作HE ∠y 轴于E ,HF ∠x 轴于F , 设直线BC 的解析式为12y k x b =+,∠12203k b b +=⎧⎨=-⎩, ∠1233k b =⎧⎨=-⎩, ∠直线BC 的解析式为33y x =-,∠∠BNO +∠BCO =45°,∠∠NBH =45°,∠∠HNB =45°=∠HBN ,∠HN =HF ,∠EH ∠OE ,FH ∠OF ,OE ∠OF ,∠四边形EOFH 是矩形,∠∠EHF =90°,OE =HF ,∠∠NHE +∠BHE =90°=∠BHF +∠BHE ,∠∠NHE =∠BHF ,又∠∠HEN =∠HFB =90°,∠∠NEH ∠∠BFH (AAS ),∠NE =BF ,设H 坐标为(m ,3m -3),∠NE =BF =m -1,OE =3m -3∠ON =EN +OE =4m -4,CE =3m -3+3=3m ,∠点N 的坐标为(0,4m -4),NC =4m -1在Rt ∠NCH 中,222NH CH CN +=,∠()()222221941m m m m m +-++=-,∠222222191681m m m m m m m +-+++=-+,∠2460m m -=, 解得32m =或0m =(舍去), ∠点N 的坐标为(0,2);如图2所示,当点N 在x 轴下方的1N 点时,由等腰三角形的性质可知当1N B BN =(N 点为图1中的N )时,1BN O BNO =∠∠,∠1OB NN ⊥,∠12ON ON ==,∠点1N 的坐标为(0,-2),综上所述,在y 轴上是否存在一点N (0,2)或(0,-2),使得45BCO BNO ∠+∠=︒.【点评】本题主要考查了二次函数综合,一次函数与几何综合,等腰三角形的性质与判定,全等三角形的性质与判定,三角形外角的性质,相似三角形的性质与判定,勾股定理等等,正确作出辅助线是解题的关键.11.(1)抛物线解析式为y =x 2+2x -3,A 点坐标为(-3,0);(2)P 点坐标为(32,32);(3)以QD 为腰的等腰三角形的面积最大值为5413. 【分析】(1)把B 点坐标代入抛物线解析式可求得a 的值,可求得抛物线解析式,再令y =0,可解得相应方程的根,可求得A 点坐标;(2)当点P 在x 轴上方时,连接AP 交y 轴于点B ′,可证△OBP ∠∠OB ′P ,可求得B ′坐标,利用待定系数法可求得直线AP 的解析式,联立直线y =x ,可求得P 点坐标;(3)过Q 作QH ∠DE 于点H ,由直线CF 的解析式可求得点C 、F 的坐标,结合条件可求得tan∠QDH ,可分别用DQ 表示出QH 和DH 的长,分DQ =DE 和DQ =QE 两种情况,分别用DQ 的长表示出∠QDE 的面积,再设出点Q 的坐标,利用二次函数的性质可求得∠QDE 的面积的最大值.(1)解:把B (1,0)代入y =ax 2+2x -3,可得a +2-3=0,解得a =1,∠抛物线解析式为y =x 2+2x -3,令y =0,可得x 2+2x -3=0,解得x =1或x =-3,∠A 点坐标为(-3,0);(2)解:若y =x 平分∠APB ,则∠APO =∠BPO ,如图1,若P 点在x 轴上方,P A 与y 轴交于点B ′,由于点P 在直线y =x 上,可知∠POB =∠POB ′=45°,在∠BPO 和∠B ′PO 中POB POB OP OP BPO B PO ∠=∠⎧⎪=⎨⎪∠'=∠⎩', ∠∠BPO ∠∠B ′PO (ASA ),∠BO =B ′O =1,设直线AP 解析式为y =kx +b ,把A 、B ′两点坐标代入可得301k b b -+=⎧⎨=⎩,解得131k b ⎧=⎪⎨⎪=⎩, ∠直线AP 解析式为y =13x +1, 联立113y x y x =⎧⎪⎨=+⎪⎩,解得3232x y ⎧=⎪⎪⎨⎪=⎪⎩, ∠P 点坐标为(32,32); (3)解:如图2,作QH ∠CF ,交CF 于点H ,设抛物线交y 轴于点M .∠CF 为y =23x −49, ∠可求得C (23,0),F (0,-49), ∠tan∠OFC =OC OF =32, ∠DQ ∠y 轴,∠∠QDH =∠MFD =∠OFC ,∠tan∠HDQ =32, 不妨设DQ =t ,DH,HQ, ∠∠QDE 是以DQ 为腰的等腰三角形,∠若DQ =DE ,则S △DEQ =12DE •HQ =12×t2,。
中考数学压轴题之二次函数(中考题型整理,突破提升)附详细答案

一、二次函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=﹣x2+2x+3;直线AC解析式为:y=3x+3;(2)点E 坐标为(1,0)或(﹣7,0);(3)存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【解析】【分析】(1)用待定系数法即能求出抛物线和直线AC解析式.(2)△CGE与△CGO虽然有公共底边CG,但高不好求,故把△CGE构造在比较好求的三角形内计算.延长GC交x轴于点F,则△FGE与△FCE的差即为△CGE.(3)设M的坐标(e,3e+3),分别以M、N、P为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e表示相关线段并列方程求解,再根据e与AP的关系求t 的值.【详解】(1)∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),, 解得:,∴抛物线解析式为:y=-x2+2x+3,设直线AC解析式为y=kx+3,∴-k+3=0,得:k=3,∴直线AC解析式为:y=3x+3.(2)延长GC交x轴于点F,过G作GH⊥x轴于点H,∵y=-x2+2x+3=-(x-1)2+4,∴G(1,4),GH=4,∴S△CGO=OC•x G=×3×1=,∴S△CGE=S△CGO=×=2,①若点E在x轴正半轴上,设直线CG:y=k1x+3,∴k1+3=4 得:k1=1,∴直线CG解析式:y=x+3,∴F(-3,0),∵E(m,0),∴EF=m-(-3)=m+3,∴S△CGE=S△FGE-S△FCE=EF•GH-EF•OC=EF•(GH-OC)=(m+3)•(4-3)=,∴=2,解得:m=1,∴E的坐标为(1,0).②若点E在x轴负半轴上,则点E到直线CG的距离与点(1,0)到直线CG距离相等,即点E到F的距离等于点(1,0)到F的距离,∴EF=-3-m=1-(-3)=4,解得:m=-7 即E(-7,0),综上所述,点E坐标为(1,0)或(-7,0).(3)存在以P,M,N为顶点的三角形为等腰直角三角形,设M(e,3e+3),则y N=y M=3e+3,①若∠MPN=90°,PM=PN,如图2,过点M作MQ⊥x轴于点Q,过点N作NR⊥x轴于点R,∵MN∥x轴,∴MQ=NR=3e+3,∴Rt△MQP≌Rt△NRP(HL),∴PQ=PR,∠MPQ=∠NPR=45°,∴MQ=PQ=PR=NR=3e+3,∴x N=x M+3e+3+3e+3=7e+6,即N(7e+6,3e+3),∵N在抛物线上,∴-(7e+6)2+2(7e+6)+3=3e+3,解得:e1=-1(舍去),e2=−,∵AP=t,OP=t-1,OP+OQ=PQ,∴t-1-e=3e+3,∴t=4e+4=,②若∠PMN=90°,PM=MN,如图3,∴MN=PM=3e+3,∴x N=x M+3e+3=4e+3,即N(4e+3,3e+3),∴-(4e+3)2+2(4e+3)+3=3e+3,解得:e1=-1(舍去),e2=−,∴t=AP=e-(-1)=−+1=,③若∠PNM=90°,PN=MN,如图4,∴MN=PN=3e+3,N (4e+3,3e+3), 解得:e=−,∴t=AP=OA+OP=1+4e+3=,综上所述,存在以P ,M ,N 为顶点的三角形为等腰直角三角形,t 的值为或或.【点睛】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 30),抛物线的对称轴为x 32)点P 的坐标为3034);(3)32. 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:290ax a --=,∵a ≠0,∴290x --=,解得:x =x =∴点A 0),B (0),∴抛物线的对称轴为x(2)∵OA OC =3,∴tan ∠CAO ∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =1,∴点D 的坐标为(0,1).设点P a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 0).当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P ,﹣4).综上所述,点P 04).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:m ∴直线AC 的解析式为3y =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =1k-.将3y =+与y =kx +1联立解得:x,∴点M .过点M 作MG ⊥x 轴,垂足为G .则AG∵∠MAG =60°,∠AGM =90°,∴AM =2AG =4233k +-=2323k k --,∴11AM AN +=323231k k k k -+-- =33232k k --=3(31)2(31)k k -- =32. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.3.如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m . (1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s 时,足球离地面最高,最大高度是4.5m ;(2)能. 【解析】试题分析:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t 2+5t+,当t=时,y 最大=4.5;(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5), ∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.4.如图,抛物线y=ax2+bx(a≠0)过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由;(4)若点M在直线BH上运动,点N在x轴正半轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);(4)52或5.【解析】试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P所处象限的特点即可求;(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.试题解析:(1)将A(4,0),B(1,3)代入到y=ax2+bx中,得16403a ba b+=⎧⎨+=⎩,解得14ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+4x.(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.5.在平面直角坐标系xOy中(如图).已知抛物线y=﹣12x2+bx+c经过点A(﹣1,0)和点B(0,52),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD 的长;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.【答案】(1)抛物线解析式为y=﹣12x 2+2x+52;(2)线段CD 的长为2;(3)M 点的坐标为(0,72)或(0,﹣72). 【解析】【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y=﹣12(x ﹣2)2+92,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,92﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得到关于t 的方程,从而解方程可得到CD 的长;(3)P 点坐标为(4,92),D 点坐标为(2,52),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到12•(m+52+2)•2=8当m <0时,利用梯形面积公式得到12•(﹣m+52+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.【详解】(1)把A (﹣1,0)和点B (0,52)代入y=﹣12x 2+bx+c 得 10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩,∴抛物线解析式为y=﹣12x 2+2x+52; (2)∵y=﹣12(x ﹣2)2+92,∴C(2,92),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,92﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(2+t,92﹣t),把P(2+t,92﹣t)代入y=﹣12x2+2x+52得﹣12(2+t)2+2(2+t)+52=92﹣t,整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;(3)P点坐标为(4,92),D点坐标为(2,52),∵抛物线平移,使其顶点C(2,92)移到原点O的位置,∴抛物线向左平移2个单位,向下平移92个单位,而P点(4,92)向左平移2个单位,向下平移92个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,12•(m+52+2)•2=8,解得m=72,此时M点坐标为(0,72);当m<0时,12•(﹣m+52+2)•2=8,解得m=﹣72,此时M点坐标为(0,﹣72);综上所述,M点的坐标为(0,72)或(0,﹣72).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.6.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,∴n=14m2-m+1,∴m2-2x0m+x02-2y0(14m2-m+1)+y02=2(14m2-m+1)+1,整理得:(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m为任意值,∴00220001110222220230yx yx y y⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴021xy⎧⎨⎩==,∴定点F的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.7.如图,已知抛物线2y ax bx c=++的顶点为()4,3A,与y轴相交于点()0,5B-,对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.【答案】(1)21452=-+-y x x;(2)()2,1-M,25y x=-;(3)点P、Q的坐标分别为()6,1或()2,1、()4,3-或()4,1.【解析】【分析】(1)函数表达式为:()243y a x ==+,将点B 坐标代入上式,即可求解; (2)()4,3A 、()0,5B -,则点()2,1-M ,设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式,即可求解;(3)分当AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可. 【详解】解:(1)函数表达式为:()243y a x ==+, 将点B 坐标代入上式并解得:12a =-, 故抛物线的表达式为:21452=-+-y x x ; (2)()4,3A 、()0,5B -,则点()2,1-M , 设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式得:345k =-,解得:2k =, 故直线AB 的表达式为:25y x =-; (3)设点()4,Q s 、点21,452P m m m ⎛⎫-+- ⎪⎝⎭, ①当AM 是平行四边形的一条边时,点A 向左平移2个单位、向下平移4个单位得到M ,同样点21,452P m m m ⎛⎫-+-⎪⎝⎭向左平移2个单位、向下平移4个单位得到()4,Q s , 即:24m -=,214542m m s -+--=, 解得:6m =,3s =-,故点P 、Q 的坐标分别为()6,1、()4,3-; ②当AM 是平行四边形的对角线时, 由中点定理得:424m +=+,2131452m m s -=-+-+, 解得:2m =,1s =,故点P 、Q 的坐标分别为()2,1、()4,1;故点P 、Q 的坐标分别为()6,1,()4,3-或()2,1、()4,3-,()2,1或()4,1. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.8.抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7).【解析】试题分析:(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果;(2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到,即,求得有最小值1,即可求得结果;②存在,求得抛物线的对称方程为x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定理列方程即可求得结果.试题解析:(1)在抛物线的解析式中,令y=0,即,解得:,,∵OA<OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2);(2)①由题意得:OP=2t,OE=t,∵DE∥OB,∴△CDE∽△CBO,∴,即,∴DE=4﹣2t,∴===,∵0<t<2,始终为正数,且t=1时,有最大值1,∴t=1时,有最小值1,即t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②存在,∵抛物线的对称轴方程为x=3,设F(3,m),∴,=,=,当△EFP为直角三角形时,①当∠EPF=90°时,,即,解得:m=2,②当∠EFP=90°时,,即,解得;m=0或m=1,不合题意舍去,∴当∠EFP=90°时,这种情况不存在,③当∠PEF=90°时,,即,解得:m=7,综上所述,F(3,2),(3,7).考点:1.二次函数综合题;2.动点型;3.最值问题;4.二次函数的最值;5.分类讨论;6.压轴题.9.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.【答案】(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m22,1,2.【解析】分析:(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m的方程,根据解方程,可得答案.详解:(1)将A (1,0),B (3,0)代入函数解析式,得309330a b a b ++⎧⎨++⎩==, 解得14a b ⎧⎨-⎩==,这个二次函数的表达式是y=x 2-4x+3; (2)当x=0时,y=3,即点C (0,3),设BC 的表达式为y=kx+b ,将点B (3,0)点C (0,3)代入函数解析式,得30k b b +⎧⎨⎩==, 解这个方程组,得13k b -⎧⎨⎩== 直线BC 的解析是为y=-x+3, 过点P 作PE ∥y 轴,交直线BC 于点E (t ,-t+3), PE=-t+3-(t 2-4t+3)=-t 2+3t , ∴S △BCP =S △BPE +S CPE =12(-t 2+3t )×3=-32(t-32)2+278,∵-32<0,∴当t=32时,S △BCP 最大=278. (3)M (m ,-m+3),N (m ,m 2-4m+3) MN=m 2-3m ,2|m-3|,当MN=BM 时,①m 22(m-3),解得2, ②m 22m-3),解得2 当BN=MN 时,∠NBM=∠BMN=45°, m 2-4m+3=0,解得m=1或m=3(舍) 当BM=BN 时,∠BMN=∠BNM=45°,-(m 2-4m+3)=-m+3,解得m=2或m=3(舍), 当△BMN 是等腰三角形时,m 的值为2,-2,1,2.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m 的方程,要分类讨论,以防遗漏.10.如图,△ABC 的顶点坐标分别为A (﹣6,0),B (4,0),C (0,8),把△ABC 沿直线BC 翻折,点A 的对应点为D ,抛物线y=ax 2﹣10ax+c 经过点C ,顶点M 在直线BC 上.(1)证明四边形ABCD 是菱形,并求点D 的坐标; (2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P ,使得△PBD 与△PCD 的面积相等?若存在,直接写出点P 的坐标;若不存在,请说明理由. 【答案】(1)详见解析(2)22y x 4x 85=-+ (3)详见解析 【解析】 【分析】(1)根据勾股定理,翻折的性质可得AB=BD=CD=AC ,根据菱形的判定和性质可得点D 的坐标.(2)根据对称轴公式可得抛物线的对称轴,设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,根据待定系数法可求M 的坐标,再根据待定系数法求出抛物线的函数表达式. (3)分点P 在CD 的上面下方和点P 在CD 的上方两种情况,根据等底等高的三角形面积相等可求点P 的坐标: 设P 22x,x 4x 85⎛⎫-+ ⎪⎝⎭,当点P 在CD 的上面下方,根据菱形的性质,知点P 是AD 与抛物线22y x 4x 85=-+的交点,由A,D 的坐标可由待定系数法求出AD 的函数表达式:1y x 32=+,二者联立可得P 1(529,48); 当点P 在CD 的上面上方,易知点P 是∠D 的外角平分线与抛物线22y x 4x 85=-+的交点,此时,∠D 的外角平分线与直线AD 垂直,由相似可知∠D 的外角平分线PD 的斜率等于-2,可设其为y 2x m =-+,将D (10,8)代入可得PD 的函数表达式:y 2x 28=-+,与抛物线22y x 4x 85=-+联立可得P 2(﹣5,38). 【详解】(1)证明:∵A (﹣6,0),B (4,0),C (0,8), ∴AB=6+4=10,AC 10==.∴AB=AC .由翻折可得,AB=BD ,AC=CD .∴AB=BD=CD=AC .∴四边形ABCD 是菱形. ∴CD ∥AB .∵C (0,8),∴点D 的坐标是(10,8).(2)∵y=ax 2﹣10ax+c ,∴对称轴为直线10ax 52a-=-=. 设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,∴4k b 0b 8+=⎧⎨=⎩,解得k 2b 8=-⎧⎨=⎩.∴直线BC 的解析式为y=﹣2x+8.∵点M 在直线y=﹣2x+8上,∴n=﹣2×5+8=﹣2. ∴M (5,,-2).又∵抛物线y=ax 2﹣10ax+c 经过点C 和M ,∴25a 50a c 2c 8-+=-⎧⎨=⎩,解得2a 5c 8⎧=⎪⎨⎪=⎩.∴抛物线的函数表达式为22y x 4x 85=-+. (3)存在.点P 的坐标为P 1(529,48),P 2(﹣5,38)。
中考数学专题复习二次函数的综合题及答案解析

中考数学专题复习二次函数的综合题及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论:当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.4.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n >0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积;(2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A 的坐标,然后代入二次函数的解析式,求得m 的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m ,然后根据A 、B 两点关于x=m 对称得到a+n-m=m-a ,从而确定a 、m 、n 之间的关系;(3)根据a=m-得到A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3,求得m 的值即可确定a 的值.试题解析:(1)①∵a=1,∴A (1,0),代入y=x 2-2mx+3得1-2m+3=0,解得m=2,∴y=x 2-4x+3;②在y=x 2-4x+3中,当y=0时,有x 2-4x+3=0可得x=1或x=3,∴A (1,0)、B (3,0),∴AB=2再根据解析式求出C 点坐标为(0,3),∴OC=3,△ABC 的面积=×2×3=3;(2)∵y=x 2-2mx+3=(x-m )2-m 2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
二次函数经典例题及解答

二次函数经典例题及解答二次函数一、中考导航图1.二次函数的意义2.二次函数的图像3.二次函数的性质顶点对称轴开口方向增减性4.待定系数法确定二次函数解析式5.二次函数与一元二次方程的关系三、中考知识梳理1.二次函数的图像二次函数y=ax2+bx+c(a≠0)的图像可以通过配方法化简为y=a(x+(b/2a))2+(4ac-b2)/4a2的形式。
确定顶点坐标后,可以对称求点列表并画图,或者使用顶点公式来求得顶点坐标。
2.理解二次函数的性质抛物线的开口方向由a的符号来确定。
当a>0时,抛物线开口向上,对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大。
当a0)或左增右减(a<0)。
此时,当x=-b/2a时,y取最值,最小值或最大值的大小为|(4ac-b2)/4a|。
3.待定系数法是确定二次函数解析式的常用方法待定系数法是通过给定的条件来确定二次函数的解析式。
可以任意给定三个点或三组x,y的值来确定解析式,组成三元一次方程组来求解。
也可以在给定条件中已知顶点坐标、对称轴或最值时,设解析式为y=a(x-h)2+k。
在给定条件中已知抛物线与x轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴时,设解析式为y=a(x-x1)(x-x2)来求解。
4.二次函数与一元二次方程的关系抛物线y=ax2+bx+c与x轴的交点可以转化为一元二次方程ax2+bx+c=0的解。
当抛物线与x轴有两个交点时,方程有两个不相等实根;当抛物线与x轴有一个交点时,方程有两个相等实根;当抛物线与x轴无交点时,方程无实根。
5.抛物线y=ax2+bx+c中a、b、c符号的确定抛物线y=ax2+bx+c的开口方向由a的符号来确定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
b的符号可以表示抛物线与y轴的交点在y轴的上方或下方。
c的符号可以表示抛物线与x轴的交点在x轴的上方或下方。
四、中考题型例析1.确定二次函数解析式例1:求满足以下条件的二次函数的解析式:1)图像经过点A(-1,3)、B(1,3)、C(2,6);2)图像经过点A(-1,0)、B(3,0),函数有最小值-8;3)图像顶点坐标是(-1,9),与x轴两交点间的距离是6.分析:此题主要考查用待定系数法来确定二次函数解析式。
初三数学二次函数分类题型及解析[整理版]-12页文档资料
![初三数学二次函数分类题型及解析[整理版]-12页文档资料](https://img.taocdn.com/s3/m/9248ef559ec3d5bbfd0a74e5.png)
初三数学二次函数分类题型及解析一.解答题(共10小题)1.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.2.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.3.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.4.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.5.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.6.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?7.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?8.2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?9.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y 与x的函数关系图象.(1)求y与x的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.10.襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.2016年12月09日天津优胜教育二次函数组卷参考答案与试题解析一.解答题(共10小题)1.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0), 解得:, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).2.(2016•菏泽)在平面直角坐标系xOy 中,抛物线y=ax 2+bx+2过B (﹣2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y=﹣x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.【解答】解:(1)由题意解得,∴抛物线解析式为y=x 2﹣x+2.(2)∵y=x 2﹣x+2=(x ﹣1)2+.∴顶点坐标(1,),∵直线BC 为y=﹣x+4,∴对称轴与BC 的交点H (1,3),∴S △BDC =S △BDH +S △DHC =•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.3.(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.4.(2016•大连)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,∴当m==时,d 最大===,∴D 点的坐标为(,). 5.(2016•黔南州)已知二次函数y=x 2+bx+c 的图象与y 轴交于点C (0,﹣6),与x 轴的一个交点坐标是A (﹣2,0).(1)求二次函数的解析式,并写出顶点D 的坐标;(2)将二次函数的图象沿x 轴向左平移个单位长度,当 y <0时,求x 的取值范围.【解答】解:(1)∵把C (0,﹣6)代入抛物线的解析式得:C=﹣6,把A (﹣2,0)代入y=x 2+bx ﹣6得:b=﹣1,∴抛物线的解析式为y=x 2﹣x ﹣6.∴y=(x ﹣)2﹣.∴抛物线的顶点坐标D (,﹣).(2)二次函数的图形沿x 轴向左平移个单位长度得:y=(x+2)2﹣. 令y=0得:(x+2)2﹣=0,解得:x 1=,x 2=﹣.∵a >0,∴当y <0时,x 的取值范围是﹣<x <. 6.(2016•咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.7.(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.8.(2016•铜仁市)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y (个)与售价x (元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?【解答】解:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y=180﹣10(x ﹣12)=﹣10x+300(12≤x ≤30).(2)设王大伯获得的利润为W ,则W=(x ﹣10)y=﹣10x 2+400x ﹣3000,令W=840,则﹣10x 2+400x ﹣3000=840,解得:x 1=16,x 2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x 2+400x ﹣3000=﹣10(x ﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W 取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.9.(2016•云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,如图是y 与x 的函数关系图象.(1)求y 与x 的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.10.(2016•湖北襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.【解答】解:(1)当40≤x<60时,W=(x﹣30)(﹣2x+140)=﹣2x2+200x﹣4200,当60≤x≤70时,W=(x﹣30)(﹣x+80)=﹣x2+110x﹣2400;(2)当40≤x<60时,W=﹣2x2+200x﹣4200=﹣2(x﹣50)2+800,∴当x=50时,W取得最大值,最大值为800万元;当60≤x≤70时,W=﹣x2+110x﹣2400=﹣(x﹣55)2+625,∴当x>55时,W随x的增大而减小,∴当x=60时,W取得最大值,最大值为:﹣(60﹣55)2+625=600,∵800>600,∴当x=50时,W取得最大值800,答:该产品的售价x为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元;(3)当40≤x<60时,由W≥750得:﹣2(x﹣50)2+800≥750,解得:45≤x≤55,当60≤x≤70时,W的最大值为600<750,∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)的取值范围为45≤x≤55.希望以上资料对你有所帮助,附励志名言3条:1、常自认为是福薄的人,任何不好的事情发生都合情合理,有这样平常心态,将会战胜很多困难。
中考数学《二次函数》专项练习(附答案解析)

中考数学《二次函数》专项练习(附答案解析)一、综合题1.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是()(填方案一,方案二,或方案三),则B点坐标是(),求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.2.如图,抛物线 y =-x2+3x +4 与x轴负半轴相交于A点,正半轴相交于B点,与 y 轴相交于C 点.(1)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线 BC 对称的点的坐标;(2)在(1)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.3.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A,B,C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.4.已知抛物线C1:y=ax2+4ax+4a+b(a≠0,b>0)的顶点为M,经过原点O且与x轴另一交点为A.(1)求点A的坐标;(2)若△AMO为等腰直角三角形,求抛物线C1的解析式;(3)现将抛物线C1绕着点P(m,0)旋转180°后得到抛物线C2,若抛物线C2的顶点为N,当b=1,且顶点N在抛物线C1上时,求m的值.5.如图,抛物线G:y=−x2+2mx−m2+m+3的顶点为P(x P,y P),抛物线G与直线l:x=3交于点Q.(1)x P=,y P=(分别用含m的式子表示);y P与x P的函数关系式为;(2)求点Q的纵坐标y Q(用含m的式子表示),并求y Q的最大值;(3)随m的变化,抛物线G会在直角坐标系中移动,求顶点P在y轴与l之间移动(含y轴与l)的路径的长.6.如图,抛物线的顶点D的坐标为(﹣1,4),抛物线与x轴相交于A.B两点(A在B的左侧),与y轴交于点C(0,3).(1)求抛物线的表达式;(2)如图1,已知点E(0,﹣3),在抛物线的对称轴上是否存在一点F,使得△CEF的周长最小,如果存在,求出点F的坐标;如果不存在,请说明理由;(3)如图2,连接AD,若点P是线段OC上的一动点,过点P作线段AD的垂线,在第二象限分别与抛物线、线段AD相交于点M、N,当MN最大时,求△POM的面积.7.已知:如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系xOy中,O为坐标原点,点A(4,0),点B(0,4),ΔABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4√5时,求点P的坐标.9.如图1所示,已知抛物线y=−x2+4x+5的顶点为D,与x轴交于A、B两点(A左B右),与y轴交于C点,E为抛物线上一点,且C、E关于抛物线的对称轴对称,作直线AE.(1)求直线AE的解析式;(2)在图2中,若将直线AE沿x轴翻折后交抛物线于点F,则点F的坐标为(直接填空);(3)点P为抛物线上一动点,过点P作直线PG与y轴平行,交直线AE于点G,设点P的横坐标为m,当S△PGE∶S△BGE=2∶3时,直接写出所有符合条件的m值,不必说明理由.10.综合与探究如图,直线y=−23x+4与x轴,y轴分别交于B,C两点,抛物线y=ax2+43x+c经过B,C两点,与x轴的另一个交点为A(点A在点B的左侧),抛物线的顶点为点D.抛物线的对称轴与x轴交于点E.(1)求抛物线的表达式及顶点D的坐标;(2)点M是线段BC上一动点,连接DM并延长交x轴交于点F,当FM:FD=1:4时,求点M的坐标;(3)点P是该抛物线上的一动点,设点P的横坐标为m,试判断是否存在这样的点P,使∠PAB+∠BCO=90°,若存在,请直接写出m的值;若不存在,请说明理由.11.如图,点A,B在函数y=14x2的图像上.已知A,B的横坐标分别为-2、4,直线AB与y轴交于点C,连接OA,OB.(1)求直线AB的函数表达式;(2)求ΔAOB的面积;(3)若函数y=14x2的图像上存在点P,使得ΔPAB的面积等于ΔAOB的面积的一半,则这样的点P共有个.12.如图,已知二次函数y=ax2﹣2ax+c(a<0)的图象与x轴负半轴交于点A(﹣1,0),与y 轴正半轴交于点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.(1)求一次函数解析式;(2)求顶点P的坐标;,求点M (3)平移直线AB使其过点P,如果点M在平移后的直线上,且tan∠OAM=32坐标;(4)设抛物线的对称轴交x轴于点E,连接AP交y轴于点D,若点Q、N分别为两线段PE、PD上的动点,连接QD、QN,请直接写出QD+QN的最小值.13.如图,抛物线y=ax2+bx+4经过点A(−1,0),B(2,0)两点,与y轴交于点C,点D是拋物线在x轴上方,对称轴右侧上的一个动点,设点D的横坐标为m.连接AC,BC,DB,DC.(1)求抛物线的解析式;(2)当△BCD的面积与△AOC的面积和为7时,求m的值;2(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.(x+m)(x−3m)图象的顶点为M,图象交x轴于A、14.如图,y关于x的二次函数y=−√33mB两点,交y轴正半轴于D点.以AB为直径作圆,圆心为C.定点E的坐标为(−3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;(2)当m为何值时M点在直线ED上?判定此时直线与圆的位置关系;(3)当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m的函数图象的示意图.15.在图1中,抛物线y=ax2+2ax﹣8(a≠0)与x轴交于点A、B(点A在B左侧),与y轴负半轴交于点C,OC=4OB,连接AC,抛物线的对称轴交x轴于点E,交AC于点F.(1)AB的长为,a的值为;(2)图2中,直线ON分别交EF、抛物线于点M、N,OM=√17,连接NC.①求直线ON的解析式;②证明:NC∥AB;③第四象限存在点P使△BFP与△AOC相似,且BF为△BFP的直角边,请直接写出点P坐标.16.如图,直线AB的解析式为y=−43x+4,抛物线y=−13x2+bx+c与y轴交于点A,与x轴交于点C(6,0),点P是抛物线上一动点,设点P的横坐标为m.(1)求抛物线的解析式;(2)如图(1),当点P在第一象限内的抛物线上时,求△ABP面积的最大值,并求此时点P的坐标;(3)过点A作直线l//x轴,过点P作PH⊥l于点H,将△APH绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在坐标轴上,请直接写出点P的坐标.参考答案与解析1.【答案】(1)解:方案一:点B的坐标为(5,0),设抛物线的解析式为:y=a(x+5)(x−5).由题意可以得到抛物线的顶点为(0,5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15(x+5)(x−5)方案2:点B的坐标为(10,0).设抛物线的解析式为:y=ax(x−10).由题意可以得到抛物线的顶点为(5,5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15x(x−10);方案3:点B的坐标为(5,−5),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:y=ax2,把点B的坐标(5,−5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15x2;(2)解:方案一:由题意:把x=3代入y=−15(x+5)(x−5),解得:y=165=3.2,∴水面上涨的高度为3.2m方案二:由题意:把x=2代入y=−15x(x−10)解得:y=165=3.2,∴水面上涨的高度为3.2m.方案三:由题意:把x=3代入y=−15x2解得:y=−95= −1.8,∴水面上涨的高度为5−1.8= 3.2m.2.【答案】(1)解: 将点D( m,m+1 )代入y=−x2+3x+4中,得:m+1=−m2+3m+4,解得:m=−1或3,∵点D在第一象限,∴m=3,∴点D的坐标为(3,4);令y=0,则−x2+3x+4=0,解得:x1=−1,x2=4,令x=0,则y=4,由题意得A(-1,0),B(4,0),C(0,4),∴OC=OB=4,BC= 4√2,CD=3,∵点C、点D的纵坐标相等,∴CD∥AB,∠OCB=∠OBC=∠DCB=45°,∴点D关于直线BC的对称点E在y轴上.根据对称的性质知:CD=CE=3 ,∴OE=OC−CE=4−3=1,∴点D关于直线BC对称的点E的坐标为(0,1);(2)解: 作PF⊥AB于F,DG⊥BC于G,由(1)知OB=OC=4,∠OBC=45°.∵∠DBP=45°,∴∠CBD=∠PBF.∵CD=3,∠DCB=45°,∴CG=DG= 3√22,∵BC= 4√2,∴BG= 4√2−3√22=5√22∴tan∠PBF=tan∠CBD=DGBG =35.设PF=3t,则BF=5t,OF=5t−4.∴P(−5t+4,3t),∵P点在抛物线上,∴3t=−(−5t+4)2+3(−5t+4)+4解得:t=2225或t=0(舍去).∴点P的坐标为( −25,6625).3.【答案】(1)解:在Rt△AOB中,OA=1,tan∠BAO= OBOA=3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为{a+b+c=09a−3b+c=0c=3,解得: {a =−1b =−2c =3.∴抛物线的解析式为y=﹣x 2﹣2x+3(2)解:①∵抛物线的解析式为y=﹣x 2﹣2x+3,∴对称轴l=﹣ b2a =﹣1,∴E 点的坐标为(﹣1,0).如图, 当∠CEF=90°时,△CEF ∽△COD .此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);当∠CFE=90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于点M ,则△EFC ∽△EMP . ∴EMMP =EFFC =DO OC=13 ,∴MP=3EM .∵P 的横坐标为t ,∴P (t ,﹣t 2﹣2t+3).∵P 在第二象限,∴PM=﹣t 2﹣2t+3,EM=﹣1﹣t ,∴﹣t 2﹣2t+3=﹣(t ﹣1)(t+3),解得:t 1=﹣2,t 2=﹣3(因为P 与C 重合,所以舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P (﹣2,3).∴当△CEF 与△COD 相似时,P 点的坐标为:(﹣1,4)或(﹣2,3); ②设直线CD 的解析式为y=kx+b ,由题意,得{−3k +b =0b =1 ,解得: {k =13b =1,∴直线CD 的解析式为:y= 13 x+1.设PM 与CD 的交点为N ,则点N 的坐标为(t , 13 t+1),∴NM= 13 t+1.∴PN=PM ﹣NM=﹣t 2﹣2t+3﹣( 13 t+1)=﹣t 2﹣ 73t +2. ∵S △PCD =S △PCN +S △PDN ,∴S △PCD = 12 PN •CM+ 12 PN •OM= 12 PN (CM+OM )= 12 PN •OC= 12 ×3(﹣t 2﹣ 73t +2)=﹣ 32 (t+76)2+ 12124 ,∴当t=﹣ 76 时,S △PCD 的最大值为 12124 . 4.【答案】(1)解:∵抛物线C 1:y=ax 2+4ax+4a+b (a ≠0,b >0)经过原点O , ∴0=4a+b ,∴当ax 2+4ax+4a+b=0时,则ax 2+4ax=0, 解得:x=0或﹣4,∴抛物线与x 轴另一交点A 坐标是(﹣4,0)(2)解:∵抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b(a≠0,b>0),(如图1)∴顶点M坐标为(﹣2,b),∵△AMO为等腰直角三角形,∴b=2,∵抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b过原点,∴a(0+2)2+2=0,解得:a=﹣12,∴抛物线C1:y=﹣12x2﹣2x(3)解:∵b=1,抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b过原点,(如图2)∴a=﹣14,∴y=﹣14(x+2)2+1=﹣14x2﹣x,设N(n,﹣1),又因为点P(m,0),∴n﹣m=m+2,∴n=2m+2即点N的坐标是(2m+2,﹣1),∵顶点N在抛物线C1上,∴﹣1=﹣14(2m+2+2)2+1,解得:m=﹣2+ √2或﹣2﹣√2 5.【答案】(1)m;m+3;y P=x P+3(2)解:∵抛物线 G :y =−x 2+2mx −m 2+m +3 与直线 l :x =3 交于点 Q , ∴把 x =3 代入 y =−x 2+2mx −m 2+m +3 , 得 y Q =−m 2+7m −6 .∵y Q =−m 2+7m −6=−(m −72)2+254,∴当 m =72 时, y Q 的最大值为 254 .(3)解:∵点 P 在 y 轴与 l 之间沿直线 l 1:y =x +3 运动, 如图,设直线 l 1:y =x +3 与 y 轴和直线 l 分别交于点 B 和点 P 1 ,线段 BP 1 的长即为点 P 路径长.把 x B =0 , x P 1=3 代入 y =x +3 得点 B(0,3) ,点 P 1(3,6) , 过点 P 1 作 P 1M ⊥y 轴,垂足为M , 则 P 1M =3,BM =3 , 在 Rt △BMP 1 中, BP 1=√BM 2+MP 12=√32+32=3√2 ,∴点 P 路径长为 3√2 .6.【答案】(1)解:设抛物线的表达式为:y =a (x+1)2+4, 把x =0,y =3代入得:3=a (0+1)2+4,解得:a =﹣1 ∴抛物线的表达式为y =﹣(x+1)2+4=﹣x 2﹣2x+3(2)解:存在.如图1,作C 关于对称轴的对称点C ′,连接EC ′交对称轴于F ,此时CF+EF的值最小,则△CEF的周长最小.∵C(0,3),∴C′(﹣2,3),易得C′E的解析式为:y=﹣3x﹣3,当x=﹣1时,y=﹣3×(﹣1)﹣3=0,∴F(﹣1,0)(3)解:如图2,∵A(﹣3,0),D(﹣1,4),易得AD的解析式为:y=2x+6,过点D作DH⊥x轴于H,过点M作MG⊥x轴交AD于G,AH=﹣1﹣(﹣3)=2,DH=4,∴AD=√AH2+DH2=√22+42=2√5,设M(m,﹣m2﹣2m+3),则G(m,2m+6),(﹣3≤m≤﹣1),∴MG=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3,由题易知△MNG∽△AHD,∴MGMN =ADAH即MN=AH×MGAD =22√5=−√55(m+2)2+√55∵√55<0∴当m =﹣2时,MN 有最大值;此时M (﹣2,3),又∵C (0,3),连接MC ∴MC ⊥y 轴∵∠CPM =∠HAD ,∠MCP =∠DHA =90°, ∴△MCP ∽△DHA , ∴PCAH =MCDH 即 PC2=24 ∴PC =1∴OP =OC ﹣PG =3﹣1=2, ∴S △POM = 12×2×2 =2,7.【答案】(1)解:由题意,得 {0=16a −8a +c 4=c解得 {a =−12c =4∴所求抛物线的解析式为:y=﹣ 12 x 2+x+4(2)解:设点Q 的坐标为(m ,0),过点E 作EG ⊥x 轴于点G .由﹣ 12 x 2+x+4=0, 得x 1=﹣2,x 2=4∴点B 的坐标为(﹣2,0) ∴AB=6,BQ=m+2 ∵QE ∥AC ∴△BQE ∽△BAC∴EG CO =BQBA 即 EG4=m+26 ∴EG =2m+43∴S △CQE =S △CBQ ﹣S △EBQ = 12 BQ •CO ﹣ 12 BQ •EG = 12 (m+2)(4﹣2m+43)= −13m 2+23m +83 =﹣ 13 (m ﹣1)2+3 又∵﹣2≤m ≤4∴当m=1时,S △CQE 有最大值3,此时Q (1,0) (3)解:存在.在△ODF 中. (ⅰ)若DO=DF ∵A (4,0),D (2,0) ∴AD=OD=DF=2又在Rt △AOC 中,OA=OC=4 ∴∠OAC=45度 ∴∠DFA=∠OAC=45度∴∠ADF=90度.此时,点F 的坐标为(2,2) 由﹣ 12 x 2+x+4=2, 得x 1=1+ √5 ,x 2=1﹣ √5此时,点P 的坐标为:P (1+ √5 ,2)或P (1﹣ √5 ,2). (ⅱ)若FO=FD ,过点F 作FM ⊥x 轴于点M由等腰三角形的性质得:OM= 12OD=1∴AM=3∴在等腰直角△AMF中,MF=AM=3∴F(1,3)由﹣12x2+x+4=3,得x1=1+ √3,x2=1﹣√3此时,点P的坐标为:P(1+ √3,3)或P(1﹣√3,3).(ⅲ)若OD=OF∵OA=OC=4,且∠AOC=90°∴AC= 4√2∴点O到AC的距离为2√2,而OF=OD=2 <2√2,与OF≥2 √2矛盾,所以AC上不存在点使得OF=OD=2,此时,不存在这样的直线l,使得△ODF是等腰三角形综上所述,存在这样的直线l,使得△ODF是等腰三角形所求点P的坐标为:P(1+ √5,2)或P(1﹣√5,2)或P(1+ √3,3)或P(1﹣√3,3)8.【答案】(1)解:∵C为OB的中点,点B(0,4),∴点C(0,2),又∵M为AC中点,点A(4,0),0+4 2=2,2+02=1,∴点M(2,1)(2)解:∵⊙P与直线AD,则∠CAD=90°,设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,tan∠CAO=OCOA =12=tanα,则sinα=√5,cosα=√5,AC=√10,则CD=ACsin∠CDA =√10sinα=10,则点D(0,−8),设直线AD的解析式为:y=mx+n,将点A、D的坐标分别代入得:{0=4m+n−8=n,解得:{m=2n=−8,所以直线AD的表达式为:y=2x−8(3)解:设抛物线的表达式为:y=a(x−2)2+1,将点B坐标代入得:4=a(0-2)2+1,解得:a=34,故抛物线的表达式为:y=34x2−3x+4,过点P作PH⊥EF,则EH=12EF=2√5,cos∠PEH=EHPE =2√5PE=cosα=√5,解得:PE=5,设点P(x,34x2−3x+4),则点E(x,2x−8),则PE=34x2−3x+4−2x+8=5,解得x=143或2(舍去2),则点P(143,193) .9.【答案】(1)解:∵抛物线的解析式为y=−x2+4x+5,∴该抛物线的对称轴为:x=−42×(−1)=2,令y=−x2+4x+5中x=0,则y=5,∴点C的坐标为(0,5),∵C、E关于抛物线的对称轴对称,∴点E的坐标为(2×2−0,5),即(4,5),令y =−x 2+4x +5中y =0,则−x 2+4x +5=0, 解得:x 1=−1,x 2=5,∴点A 的坐标为(−1,0)、点B 的坐标为(5,0), 设直线AE 的解析式为y =kx +b ,将点A(−1,0)、E(4,5)代入y =kx +b 中, 得:{0=−k +b 5=4k +b ,解得:{k =1b =1,∴直线AE 的解析式为y =x +1; (2)(6,-7)(3)解:符合条件的m 值为0、3、3−√412和3+√412.10.【答案】(1)解:当x =0时,得y =4, ∴点C 的坐标为(0,4),当y =0时,得−23x +4=0,解得:x =6, ∴点B 的坐标为(6,0), 将B ,C 两点坐标代入,得{36a +43×6+c =0,c =4. 解,得{a =−13,c =4.∴抛物线线的表达式为y =−13x 2+43x +4.∵y =−13x 2+43x +4=−13(x 2−4x +4−4)+4=−13(x −2)2+163.∴顶点D 坐标为(2,163). (2)解:作MG ⊥x 轴于点G ,∵∠MFG =∠DFE ,∠MGF =∠DEF =90°, ∴ΔMGF ∽ΔDEF .∴FM FD =MG DE.∴14=MG163.∴MG =43当y =43时,43=−23x +4 ∴x =4.∴点M 的坐标为(4,43).(3)解:∵∠PAB +∠BCO =90°,∠CBO +∠BCO =90°, ∴∠PAB =∠CBO ,∵点B 的坐标为(6,0),点C 的坐标为(0,4), ∴tan ∠CBO =46=23, ∴tan ∠PAB =23, 过点P 作PQ ⊥AB , 当点P 在x 轴上方时,−13m 2+4m +12m +2=23解得m=4符合题意, 当点P 在x 轴下方时,13m 2−4m −12m +2=23解得m=8符合题意, ∴存在,m 的值为4或8.11.【答案】(1)解:∵A ,B 是抛物线 y =14x 2 上的两点,∴当 x =−2 时, y =14×(−2)2=1 ;当 x =4 时, y =14×42=4 ∴点A 的坐标为(-2,1),点B 的坐标为(4,4) 设直线AB 的解析式为 y =kx +b , 把A ,B 点坐标代入得 {−2k +b =14k +b =4解得, {k =12b =2所以,直线AB 的解析式为: y =12x +2 ; (2)解:对于直线AB : y =12x +2 当 x =0 时, y =2 ∴OC =2∴S ΔAOB =S ΔAOC +S ΔBOC = 12×2×2+12×2×4 =6 (3)412.【答案】(1)解:∵A (﹣1,0), ∴OA=1 ∵OB=3OA , ∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)解:∵二次函数y=ax 2﹣2ax+c (a <0)的图象与x 轴负半轴交于点A (﹣1,0),与y 轴正半轴交于点B (0,3), ∴c=3,a=﹣1,∴二次函数的解析式为:y=﹣x 2+2x+3 ∴抛物线y=﹣x 2+2x+3的顶点P (1,4) (3)解:设平移后的直线的解析式为:y=3x+m ∵直线y=3x+m 过P (1,4), ∴m=1,∴平移后的直线为y=3x+1 ∵M 在直线y=3x+1,且 设M (x ,3x+1)①当点M 在x 轴上方时,有 3x+1x+1=32 ,∴x =13 , ∴M 1(13,2)②当点M 在x 轴下方时,有 −3x+1x+1=32 ,∴x =−59 , ∴M 2(−59 , −23)(4)解:作点D 关于直线x=1的对称点D ′,过点D ′作D ′N ⊥PD 于点N , 当﹣x 2+2x+3=0时,解得,x=﹣1或x=3, ∴A (﹣1,0), P 点坐标为(1,4),则可得PD 解析式为:y=2x+2, 根据ND ′⊥PD ,设ND ′解析式为y=kx+b , 则k=﹣ 12 ,将D ′(2,2)代入即可求出b 的值, 可得函数解析式为y=﹣ 12 x+3,将两函数解析式组成方程组得: {y =−12x +3y =2x +2 ,解得 {x =25y =145 ,故N ( 25 , 145 ),由两点间的距离公式:d= √(2−25)2+(2−145)2 = 4√55, ∴所求最小值为4√5513.【答案】(1)解:把A (-1,0),B (2,0)代入抛物线解析式得: {a −b +4=04a +2b +4=0,解得: {a =−2b =2∴抛物线的解析式为: y =−2x 2+2x +4 (2)解:如图,连接OD ,由 y =−2x 2+2x +4 可得: 对称轴为 x =−22×(−2)=12 ,C (0,4)∵D(m,−2m 2+2m +4)(12<m <2) ,A (-1,0),B (2,0) ∴∴S △BCD =S △OCD +S △BCD −S △OBC=12×4m +12×2·(−2m 2+4m +2)−12×2×4=−2m 2+4m S △AOC =12×1×4=2又∵S △BCD +S △AOC =72 ∴−2m 2+4m +2=72 ,∴4m 2−8m +3=0解得: m 1=12 , m 2=32 ,当 m 1=12 时,点在对称轴上,不合题意,舍去,所以取 m 2=32 , 综上, m =32(3)解: M 1(0,0) , M 2(4,0) , M 3(√142,0) , M 4(−√142,0)14.【答案】(1)解:令y =0,则−√33m (x +m)(x −3m)=0,解得x 1=−m ,x 2=3m ;令x =0,则y =−√33m (0+m)(0−3m)=√3m .故A(−m ,0),B(3m ,0),D(0,√3m).(2)解:设直线ED 的解析式为y =kx +b ,将E(−3,0),D(0,√3m)代入得:{−3k +b =0b =√3m解得,k =√33m ,b =√3m .∴直线ED 的解析式为y =√33mx +√3m .将y =−√33m (x +m)(x −3m)化为顶点式:y =−√33m (x −m)2+4√33m . ∴顶点M 的坐标为(m ,4√33m).代入y =√33mx +√3m 得:m 2=m∵m >0,∴m =1.所以,当m =1时,M 点在直线DE 上. 连接CD ,C 为AB 中点,C 点坐标为C(m ,0). ∵OD =√3,OC =1, ∴CD =2,D 点在圆上又∵OE =3,DE 2=OD 2+OE 2=12, EC 2=16,CD 2=4, ∴CD 2+DE 2=EC 2.∴∠EDC =90°∴直线ED 与⊙C 相切.(3)解:当0<m <3时,S △AED =12AE ⋅OD =√32m(3−m)S =−√32m 2+3√32m . 当m >3时,S ΔAED =12AE ⋅OD =√32m(m −3).即S =√32m 2_3√32m . S 关于m 的函数图象的示意图如右:15.【答案】(1)6;1(2)解:①由抛物线的表达式知,抛物线的对称轴为x=﹣1,故设点M的坐标为(﹣1,m),则OM=12+m2=(√17)2,解得m=4(舍去)或﹣4,故点M的坐标为(﹣1,﹣4),由点O、M的坐标得,直线OM(即ON)的表达式为y=4x②,故答案为y=4x;②联立①②并解得{x=−2y=−8,故点N(﹣2,﹣8),∵点C、N的纵坐标相同,故NC∥x轴,即NC∥AB;③当∠BFP为直角时,由A(﹣4,0),C(0,-8)可求AC解析式为y=-2x﹣8,把x=-1,代入y=-2x﹣8得,y=-6,点F的坐标为:(-1,-6),由点F、B的坐标得,直线BF的表达式为y=2x﹣4,当x=﹣2时,y=2x﹣4=﹣8,故点N在直线BF上,连接FN,过点F作FP⊥BF交NC的延长线于点K,由直线BF 的表达式知,tan ∠BNK =2,则tan ∠FKN = 12 , 故设直线PF 的表达式为y =﹣ 12 x+t , 将点F 的坐标代入上式并解得t =﹣ 132 ,则直线PF 的表达式为y =﹣ 12 x ﹣ 132 ,故设点P 的坐标为(m ,﹣ 12 m ﹣ 132 ), 在Rt △AOC 中,tan ∠ACO = AOCO = 12 ,则tan ∠OCA =2, ∵△BFP 与△AOC 相似, 故∠FBP =∠ACO 或∠OAC ,则tan ∠FBP =tan ∠ACO 或tan ∠OAC ,即tan ∠FBP = 12 或2, 由点B 、F 的坐标得:BF = √32+62=3√5 , 则PF =BFtan ∠FBP =3√52或6 √5 ,由点P 、F 的坐标得:PF 2=(m+1)2+(﹣ 12 m ﹣ 132 +6)2=( 3√52)2或(6 √5 )2, 解得m =2或﹣4(舍去)或11或﹣13(舍去), 故点P 的坐标为(11,﹣12)或(2,﹣ 152 ); 当∠PBF 为直角时,过点B 作BP ⊥BF ,同理可求直线PF 的表达式为y =﹣ 12 x+1,故设点P 的坐标为(m ,﹣ 12 m ﹣1),同理可得,PB =BFtan ∠FBP =3√52或6 √5 ,由点P 、B 的坐标得:PB 2=(m-2)2+(﹣ 12 m+1)2=(3√52)2或(6 √5 )2,解得m=-1(舍去)或5或14或﹣10(舍去),点P的坐标为(5,﹣32)或(14,-6);综上,点P的坐标为(11,﹣12)或(2,﹣152)或(5,﹣32)或(14,-6);16.【答案】(1)解:当x=0时,y=−43x+4=4,则A(0,4),把A(0,4),C(6,0)代入y=−13x2+bx+c得{−12+6b+c=0c=4,解得{b=43c=4,∴抛物线解析式为y=−13x2+43x+4;(2)连接OP,设P(m,−13m2+43m+4),当y=0时,−43x+4=0,解得x=3,则B(3,0),S△ABP=S△AOP+S△POB−S△AOB=12⋅4⋅m+12⋅3⋅(−13m2+43m+4)−12⋅3⋅4=−12m2+4m,=−12(m−4)2+8,当m=4时,△ABP面积有最大值,最大值为8,此时P点坐标为(4,4);(3)在Rt△OAB中,AB=√32+42=5,当点P′落在x轴上,如图2,∵△APH绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在x 轴上∴P′H′=PH=4−(−13m2+43m+4)=13m2−43m,AH′=AH=m,∠P′H′A=∠PHA=90∘,∵∠P′BH′=∠ABO,∴△BP ′H ′ ∽ △BAO ,∴P ′H ′ : OA =BH ′ :OB ,即 (13m 2−43m) : 4=BH ′ :3, ∴BH ′=14m 2−m , ∵AH ′+BH ′=AB ,∴m +14m 2−m =5 ,解得 m 1=2√5 , m 2=−2√5( 舍去 ) ,此时P 点坐标为 (2√5,−8+8√53) ; 当点 P ′ 落在y 轴上,如图3,同理可得 P ′H ′=PH =13m 2−43m , AH ′=AH =m , ∠P ′H ′A =∠PHA =90∘ , ∵∠P ′AH ′=∠BAO , ∴△AH ′P ′′ ∽ △AOB ,∴P ′H ′ : OB =AH ′ :AO ,即 (13m 2−43m) : 3=m :4, 整理得 4m 2−25m =0 ,解得 m 1=254, m 2=0( 舍去 ) ,此时P 点坐标为 (254,−4348) ; 综上所述,P 点坐标为 (2√5,−8+8√53) 或 (254,−4348) ;。
中考数学复习专题训练 二次函数的综合应用(含解析)

中考数学复习专题训练二次函数的综合应用一、选择题1.下列函数是二次函数的是( )A. y=2x+1B. y=﹣2x+1C. y=x2+2D. y=x﹣22.函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是( )A. ﹣3B. 3C. ±2D. ±33.已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b>0,c<0D. a>0,b<0,c=04.如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A. B. C. D.5.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是( )A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)6.二次函数的图象如图所示,则这个二次函数的解析式为()A. y (x﹣2)2+3B. y= (x﹣2)2﹣3C. y=﹣(x﹣2)2+3D. y=﹣(x﹣2)2﹣37.如图,已知二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A. 0<x<2B. 0<x<3C. 2<x<3D. x<0或x>38. 设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A. a(x1﹣x2)=dB. a(x2﹣x1)=dC. a(x1﹣x2)2=dD. a(x1+x2)2=d9.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A. B. C. 3 D. 411.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )A. -B. 或-C. 2或-D. 2或或-12.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.二、填空题13.若函数y=(m+2)是二次函数,则m=________14.抛物线y= (x﹣4)2+3与y轴交点的坐标为________.15.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.16.二次函数y=x2+4x+5中,当x=________时,y有最小值.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的有________.(填正确结论的序号)18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线,且经过点(-3,y1),(4,y2),试比较y1和y2的大小:y1________y2(填“>”,“<”或“=”).19.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.20.如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①;②;③;④;⑤,其中正确的结论为________ .(注:只填写正确结论的序号)三、解答题21.已知抛物线y= x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).(1)求A、B、C的坐标;(2)直接写出当y<0时x的取值范围.22.在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。
二次函数中考(平行四边形)含答案

二次函数(平行四边形)1。
如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?解答:解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABDP为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.【例二】已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数典型中考试题解析及训练[解读中考要点] 1、二次函数 一般地,形如2y ax bx c =++(,,a b c 是常数,0a ≠)的函数叫做x 的二次函数。
解读:在函数中注意二次项系数0a ≠,,b c 是任意的实数即可。
2、二次函数2y ax =(0a ≠)的性质解读:(1)二次函数2y ax =的图象是抛物线,它的顶点是原点,对称轴是y 轴。
(2)当0a>时,抛物线2y ax =的开口向上,并且向上无限延伸,顶点是它的最低点;当0a <时,抛物线2y ax =的开口向下,并且向下无限延伸,顶点是它的最高点。
3、二次函数2y ax k =+(0a ≠)的图象与性质解读:(1)二次函数2y ax k =+的图象与2y ax =的图象的形状完全一样,可以通过平移二次函数2y ax =的图象得到2y ax k =+的图象。
当0k >时,向上平移k 个单位长度;当0k<时,向下平移k个单位长度。
(2)当0a >时,抛物线的开口向上;当0a <时,抛物线的开口向下。
(3)抛物线的顶点是()0,k ,对称轴是y 轴。
4、二次函数()2y a x h k =-+(0a ≠)的图象与性质解读:(1)它的图象与2y ax =的图象的形状完全一样,可以通过二次函数2y ax =的图象得到()2y a x h k=-+的图象。
(2)当0a>时,抛物线的开口向上;当0a <时,抛物线的开口向下。
(3)抛物线的顶点是(),h k ,对称轴是y 轴。
5、关于二次函数2y ax bx c =++(0a ≠)的图象解读:(1)二次函数2y ax bx c =++(0a ≠)的图象是与2y ax =的图象的形状完全一样的一条抛物线。
(2)抛物线2y ax bx c =++(0a ≠)的对称轴是直线2bx a =-,顶点是24,24b ac b aa ⎛⎫-- ⎪⎝⎭。
(3)当0a >时,抛物线的开口向上,顶点是它的最低点。
当2bx a=-时,函数有最小值244ac b a -;当2bxa<-时,y 的值随x 值的增大而减小;当2bx a>-时,y 的值随x 值的增大而增大。
(4)当0a <时,抛物线的开口向下,顶点是它的最高点。
当2bx a=-时,函数有最大值244ac b a -;当2bx a<-时,y 的值随x 值的增大而增大;当2bx a>-时,y 的值随x 值的增大而减小。
6、二次函数与一元二次方程 二次函数2y ax bx c =++(0a ≠)的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点。
当二次函数2y ax bx c =++的图象与x 轴有交点时,交点的横坐标就是当0y =时自变量x 的值,即一元二次方程20ax bx c ++=的根。
解读:(1)当240bac ->时,二次函数2y ax bx c =++的图象与x 轴有两个交点,此时一元二次方程20ax bx c ++=有两个不相等的实数根;(2)当240b ac -=时,二次函数2y ax bx c =++的图象与x轴有一个交点,此时一元二次方程20ax bx c ++=有两个相等的实数根;(3)当240bac -<时,二次函数2y ax bx c =++的图象与x 轴没有交点,此时一元二次方程2ax bx c ++=没有实数根。
7、二次函数解析式的确定 解读:运用待定系数法确定二次函数2y ax bx c =++的系数,,a b c ,一般需要三个条件,组成关于,,a b c 的三元方程组,解方程组可以确定,,a b c 的值,从而确定解析式。
[剖析经典考题]近年来,全国各省市的中考题中,考查二次函数及其相关内容所占的比例比较大,考题既有基本题,又有综合题。
基本题常以填空、选择的形式出现,考查二次函数的意义、性质等知识点;综合题常与方程、一次函数、反比例函数、圆等知识综合在一起,有些综合题也会考查学生利用二次函数的知识解决实际问题的能力。
例1、(2005·资阳)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图5.3-1所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 . 其中所有正确结论的序号是 A. ③④B. ②③C. ①④D. ①②③分析:从所给的图象,我们可以获取以下信息:(1)抛物线的开口向下;(2)顶点在第一象限,对称轴在直线x=1的左侧;(3)抛物线与y 轴的交点在正半轴上;(4)横坐标为1的点在x 轴上方;横坐标为-1的点在x 轴下方。
由以上信息可以做出判断。
解:∵抛物线开口向下,∴a<0.∵顶点在第一象限,∴0,02bb a->∴>。
∵对称轴在直线x=1的左侧∴1,0,2,20.2ba b a a b a-<<∴->∴+<故③正确。
∵抛物线与y 轴的交点在正半轴上,∴c>0。
图5.3-1∴abc<0.故④错误。
∵横坐标为1的点在x 轴上方,∴a +b +c >0.故①错误。
∵横坐标为-1的点在x 轴下方,∴a -b +c <0,故②正确。
所以应选B 。
点拨:要充分利用函数的图象,数形结合,弄清图象中所给的信息是解题关键。
例2、(2005贵阳)已知二次函数342+-=x x y 的图象如图5.3-2所示,它与y 轴相交于点C ,点D 在二次函数图象上与点C 对称,一次函数的图象过点A 、D ; (1)求点D 的坐标; (2)求一次函数的解析式;分析:这是一道二次函数与一次函数的综合题目。
对于(1)问,由点D 在二次函数图象上与点C 对称,易知点D 的纵坐标为3;把y=3代入解析式342+-=x x y 可求得x 的值,从而可以确定点D 的坐标。
对于(2)问,知道了点A 、D 的坐标,利用待定系数法可以求得一次函数解析式。
解:(1)∵D 在二次函数342+-=x x y 的图象上且与点C 对称,则D (4,3)。
(2)设直线b kx y +=过点A (1,0)和D (4,3)∴⎩⎨⎧=+=+340b k b k ,解得:1,1-==b k∴所求一次函数为1-=x y 。
点拨:确定函数解析式的关键是先要确定函数图象上的点的坐标。
例3、(2005泉州)有一个抛物线形的桥洞,桥洞离水面的最大高度BM 为3米,跨度OA 为6米,以OA 所在直线为x 轴,O 为原点建立直角坐标系(如图5.3-3所示). ⑴请你直接写出O 、A 、M 三点的坐标;⑵一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面同一平面)?分析:本题是通过实例确定二次函数解析式并利用解析式解决问题的一道简单的应用题。
对于(1)根据题意可直接表示出;对于(2),关键是要读懂题意,必须先由三点的坐标确定出函数的解析式,当CD 表示宽,CD=2,B 是CD 的中点,此时OC=2。
利用解析式求出2x =时对应的函数值即可解决。
解:(1)O (0,0),A (6,0),M (3,3)(2)求抛物线的解析式的方法列出两种: 法1:设抛物线的解析式为2y ax bx c =++,∵抛物线过O ,A ,M 三点∴0,3660,930.c a b c a b c =⎧⎪++=⎨⎪++=⎩解之得1,32,0.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴2123y x x =-+。
法2:依题意,抛物线的顶点坐标是(3,3),可设其解析式为()233y a x =-+,∵抛物线过(0,0),∴()20033a =-+。
解之得:()22111,332333ay x x x =-∴=--+=-+。
要使木板堆放最高,依题意,B 点应是木板宽CD 的中点,把2x=代入2123y x x =-+,得21822233y =-⨯+⨯=(米)。
∴这些木板可以堆放83米。
点拨:当知道抛物线的顶点坐标,设顶点式求函数解析式简便。
例4、(2004天津)已知抛物线y =x 2+bx +c 与x 轴只有一个交点,且交点为A (2,0). (1)求b 、c 的值;(2)若抛物线与y 轴的交点为B ,坐标原点为O ,求△O AB 的周长。
(答案可带根号).分析:由于抛物线与x 轴只有一个交点A (2,0),所以抛物线的顶点坐标为(2,0)。
那么我们可以运用抛物线的顶点坐标公式求得b 、c 的值,从而可求出OA 的长。
把x=0代入二次函数y =x 2+bx +c ,可求出点B 的坐标,那么OB 的长野就确定了。
然后再在Rt △AOB 中,利用勾股定理求出AB 的长,这样△O AB 的周长可得。
解:(1)由题意可知,抛物线的顶点是(2,0),那么2, 4.21bb -=∴=-⨯ 2410,4160, 4.41c b c c ⨯⨯-=∴-==⨯(2)由(1)得,抛物线的解析式为244y x x =-+,当x=0时,y=4,∴点B 的坐标是(0,4)。
在Rt △AOB 中,OA=2,0B=4,∴AB ===。
∴△O AB的周长为246++=+点拨:这是一个涉及多个知识点的题目,要注意所学知识的综合运用。
例5、观察图5.1-3中1至5小黑点的摆放规律,并按照这样的规律继续摆放.记第n 个图中小黑点的个数为y .图5.1-3n =8时,y =______;,把n 作为横坐标,把y 作为纵坐标,在左图的平面直角坐标系中描(n , y ),其中1≤n ≤5;,请写出该.分析:本例把探求规律和函数结合起来,考查学生灵活应用各种知识去解决问题,同时又领悟各知识间的相互联系,本例先读图也可以发现规律,完成(1)(2)小题。
只用第(1)小题的表格也可解决全部问题。
解:(1)21(2)57(3)(图略)(4)在一个函数的图象上,该函数的解析式为12+-=n n y 。
点拨:规律探究题是近几年中考中频繁出现的一种新的题型,解决此类问题要按照由特殊到一般的认识规律,从变化的关系中寻找不变的规律。
[挑战中考名题] 一、选择题1、(2005常德)y=(x -1)2+2的对称轴是直线 ( B ) A .x=-1B .x=1C .y=-1D .y=12、(2005马尾)将函数762++=x x y 进行配方正确的结果应为( )A.2)3(2++=x y B. 2)3(2+-=x y C. 2)3(2-+=x y D. 2)3(2--=x y3、(2005武汉)若二次函数,当x 取,(≠)时,函数值相等,则当x 取+时,函数值为( ).A.a+cB.a-cC.-cD.c 4、(2005武汉)抛物线的图角如图5.1-4,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).A.①②B.②③C.②④D.③④ 5、 (2005·杭州)用列表法画二次函数2y x bx c =++的图象时先列一所对应的值依个表,当表中对自变量x 的值以相等间隔的值增加时,函数y3 4 1 2 5图5.1-4次为:20,56,110,182,274,380,506,650,其中有一个值不正确,这个不正确的值是:( ) A.506 B.380 C.274 D.1826、(湖北宜昌)如图5.1-5所示的函数图象的关系式可能是( ). (A )y = x (B )y =x1(C )y = x 2 (D) y =1x二、填空题:7、(2005宁波)已知抛物线解析式为y=x 2-3,则此抛物线的顶点坐标为 .8、(2005·常德)请写出一个开口向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。