二次函数中考真题汇编[解析版]

合集下载

二次函数真题汇编附答案解析

二次函数真题汇编附答案解析

二次函数真题汇编附答案解析一、选择题1.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线1122y x=+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<98C.1≤a<98或a≤﹣2 D.﹣2≤a<98【答案】C【解析】【分析】分a>0,a<0两种情况讨论,根据题意列出不等式组,可求a的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选:C.【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.2.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列4个结论:①abc <0;②2a +b =0;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定解答.【详解】①由抛物线的对称轴可知:﹣>0,∴ab <0,∵抛物线与y 轴的交点在正半轴上,∴c >0,∴abc <0,故①正确;②∵﹣=1, ∴b =﹣2a ,∴2a +b =0,故②正确.③∵(0,c )关于直线x =1的对称点为(2,c ),而x =0时,y =c >0,∴x =2时,y =c >0,∴y =4a +2b +c >0,故③正确;④由图象可知:△>0,∴b 2﹣4ac >0,故②正确;故选:D .【点睛】本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中考常考题型.3.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .3-B .3C .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.4.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.5.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x -<<时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x -<<,故本选项正确;故选:C .【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.6.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.7.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.12≤m<1 B.12<m≤1C.1<m≤2D.1<m<2【答案】B【解析】【分析】画出图象,利用图象可得m的取值范围【详解】∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时) ②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12. 此时抛物线解析式为y =12x 2﹣2x . 当x =1时,得13121122y =⨯-⨯=-<-.∴点(1,﹣1)符合题意. 当x =3时,得13923122y =⨯-⨯=-<-.∴点(3,﹣1)符合题意. 综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m =12不符合题. ∴m >12.综合①②可得:当12<m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,故选:B.【点睛】考查二次函数图象与系数的关系,抛物线与x轴的交点,画出图象,数形结合是解题的关键.8.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣4【答案】B【解析】【分析】先求出b,确定二次函数解析式,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,﹣1<x<4时﹣4≤y<5,进而求解;【详解】解:∵对称轴为直线x=2,∴b=﹣4,∴y=x2﹣4x,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,∵﹣1<x<4,∴二次函数y的取值为﹣4≤y<5,∴﹣4≤t<5;故选:B.【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.9.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.10.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正确的是()A.①③④B.①②④C.①②③D.②③【答案】B【解析】【分析】①根据二次函数图象与x轴有两个不同的交点,结合根的判别式即可得出△=b2-4ac>0,①正确;②由点M(x0,y0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x0是方程ax2+bx+c=y0的解,②正确;③分a>0和a<0考虑,当a>0时得出x1<x0<x2;当a<0时得出x0<x1或x0>x2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M(x0,y0)在x轴下方即可得出y0=a(x0-x1)(x0-x2)<0,④正确.【详解】①∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2-4ac>0,①正确;②∵图象上有一点M(x0,y0),∴a+bx0+c=y0,∴x=x 0是方程ax 2+bx+c=y 0的解,②正确;③当a >0时,∵M (x 0,y 0)在x 轴下方,∴x 1<x 0<x 2;当a <0时,∵M (x 0,y 0)在x 轴下方,∴x 0<x 1或x 0>x 2,③错误;④∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0), ∴y=ax 2+bx+c=a (x-x 1)(x-x 2),∵图象上有一点M (x 0,y 0)在x 轴下方,∴y 0=a (x 0-x 1)(x 0-x 2)<0,④正确;故选B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.11.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【解析】 根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=2,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x ﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<x2,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【答案】D【解析】【分析】根据题目中所给的运算法则列出不等式,解不等式即可判定选项A;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B;根据题目中所给的运算法则可得a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,由此即可判定选项C;根据题目中所给的运算法则列出方程,解方程即可判定选项D.【详解】∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣x2=﹣1B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选D .【点睛】本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键.13.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .【答案】C【解析】试题解析:A 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,对称轴x=﹣2b a<0,应在y 轴的左侧,故不合题意,图形错误. B 、对于直线y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,对称轴x=﹣2b a位于y 轴的右侧,故符合题意, D 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误.故选C .考点:二次函数的图象;一次函数的图象.14.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=V ,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ V 底边AP 上的高保持不变1422APQ S t t =⋅⋅=V ,函数图象为一次函数; 故选:D .【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.15.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a >0,因此二次函数图像开口向上,但对称轴302a -<应在y 轴左侧,故此选项错误;B. 由一次函数图像可知a <0,而由二次函数图像开口方向可知a >0,故此选项错误;C. 由一次函数图像可知a <0,因此二次函数图像开口向下,且对称轴302a->在y 轴右侧,故此选项正确;D. 由一次函数图像可知a >0,而由二次函数图像开口方向可知a <0,故此选项错误; 故选:C .【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.16.如图1,在△ABC 中,∠B =90°,∠C =30°,动点P 从点B 开始沿边BA 、AC 向点C 以恒定的速度移动,动点Q 从点B 开始沿边BC 向点C 以恒定的速度移动,两点同时到达点C ,设△BPQ 的面积为y (cm 2).运动时间为x (s ),y 与x 之间关系如图2所示,当点P 恰好为AC 的中点时,PQ 的长为( )A.2 B.4 C.23D.43【答案】C【解析】【分析】点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC=3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=3,则HQ=CH﹣CQ=333,PQ22PH HQ+39+3,故选:C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.17.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】 由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2b a>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2b a>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a >2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确;因此正确的结论是①②④.故选:C .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.18.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫--⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.19.平移抛物线y =﹣(x ﹣1)(x +3),下列哪种平移方法不能使平移后的抛物线经过原点( )A .向左平移1个单位B .向上平移3个单位C .向右平移3个单位D .向下平移3个单位【答案】B【解析】【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y =﹣(x ﹣1)(x +3)=-(x+1)2+4A 、向左平移1个单位后的解析式为:y =-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B 、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C 、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D 、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.20.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( ) A . B .C .D .【答案】C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y 左侧,a ,b 同号,对称轴在y 轴右侧a ,b 异号,以及当a 大于0时开口向上,当a 小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y 轴于正半轴,常数项为负,交y 轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.【详解】解:由方程组2y ax bx y bx a⎧=+⎨=-⎩得ax 2=−a , ∵a ≠0∴x 2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选C.【点睛】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.。

全国中考数学二次函数的综合中考真题分类汇总附答案解析

全国中考数学二次函数的综合中考真题分类汇总附答案解析

一、二次函数真题与模拟题分类汇编(难题易错题)1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.2.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=32,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=32,∴OP=OC+PC=3+32或OP=PC﹣OC=32﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=1×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,2当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.3.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB ,tan ∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x 2+bx+c 经过A 、B 两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE . ①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【答案】(1)y=﹣x 2﹣3x+4;(2)①P (﹣1,6),②存在,M (﹣1,11)或(﹣1,311)或(﹣1,﹣1)或(﹣1,132). 【解析】【分析】(1)先根据已知求点A 的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB 的解析式为:y=-2x+2,根据PD ⊥x 轴,设P (x ,-x 2-3x+4),则E (x ,-2x+2),根据PE=12DE ,列方程可得P 的坐标; ②先设点M 的坐标,根据两点距离公式可得AB ,AM ,BM 的长,分三种情况:△ABM 为直角三角形时,分别以A 、B 、M 为直角顶点时,利用勾股定理列方程可得点M 的坐标.【详解】解:(1)∵B (1,0),∴OB=1,∵OC=2OB=2,∴C (﹣2,0),Rt △ABC 中,tan ∠ABC=2,∴AC 2BC =, ∴AC 23=, ∴AC=6, ∴A (﹣2,6), 把A (﹣2,6)和B (1,0)代入y=﹣x 2+bx+c 得:42610b c b c --+=⎧⎨-++=⎩, 解得:34b c =-⎧⎨=⎩, ∴抛物线的解析式为:y=﹣x 2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),∴AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=12DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=12(﹣2x+2),∴x=-1或1(舍),∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∵B(1,0),A(﹣2,6)∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=311,∴M(﹣1,11)或(﹣1,311ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,∴y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,∴y=132,∴M(﹣1,132);综上所述,点M的坐标为:∴M(﹣1,11)或(﹣1,311)或(﹣1,﹣1)或(﹣1,132).【点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.4.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:x = 即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.5.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣1 2x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.6.在平面直角坐标系中,抛物线2y ax bx c=++过点(1,0)A-,(3,0)B,与y轴交于点C,连接AC,BC,将OBC沿BC所在的直线翻折,得到DBC△,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设OBD的面积为S1,OAC的面积为S2,若1223SS=,求a的值.【答案】(1)(0,3)C a-;(2) 抛物线的表达式为:252535y x=++;(3) 22a=-22a=【解析】【分析】(1)根据待定系数法,得到抛物线的表达式为:()2(1)(3)23y a x x a x x =+-=--,即可求解;(2)根据相似三角形的判定证明CPD DQB ∽,再根据相似三角形的性质得到CP PD CD DQ BQ BD ==,即可求解;(3)连接OD 交BC 于点H ,过点H 、D 分别作x 轴的垂线交于点N 、M ,由三角形的面积公式得到1223S S =,29m DM =,11299m HN DM OC ===,而22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,即可求解. 【详解】(1)抛物线的表达式为:()2(1)(3)23y a x x a x x =+-=--,即3c a =-,则点(0,3)C a -;(2)过点B 作y 轴的平行线BQ ,过点D 作x 轴的平行线交y 轴于点P 、交BQ 于点Q , ∵90CDP PDC ︒∠+∠=,90PDC QDB ︒∠+∠=,∴QDB DCP ∠=∠,设:(1,)D n ,点(0,3)C a -,90CPD BQD ︒∠=∠=,∴CPD DQB ∽,∴CP PD CD DQ BQ BD==, 其中:3CP n a =+,312DQ =-=,1PD =,BQ n =,3CD a =-,3BD =, 将以上数值代入比例式并解得:5a =, ∵0a <,故55a =-, 故抛物线的表达式为:252535555y x x =++;(3)如图2,当点C 在x 轴上方时,连接OD 交BC 于点H ,则DO BC ⊥, 过点H 、D 分别作x 轴的垂线交于点N 、M ,设:3OC m a ==-,11322OBD S S OB DM DM ∆==⨯⨯=, 2112OACS S m ∆==⨯⨯,而1223S S =,则29m DM =,11299m HN DM OC ===, ∴1193BN BO ==,则18333ON =-=,则DO BC ⊥,HN OB ⊥,则BHN HON ∠=∠,则tan tan BHN HON ∠=∠,则22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,解得:62m =±(舍去负值),|3|62CO a =-=,解得:22a =-故:22a =-C 在x 轴下方时,同理可得:22a =22a =-22a =【点睛】本题考查的是二次函数综合运用、一次函数、三角形相似、图形的面积计算,其中(3)用几何方法得出:22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,是本题解题的关键.7.已知函数()()22,1,222x nx n x n y n nx x x n ⎧-++≥⎪=⎨-++<⎪⎩(n 为常数) (1)当5n =,①点()4,P b 在此函数图象上,求b 的值;②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为()()2,24,2A B 、,当此函数的图象与线段AB 只有一个交点时,直接写出n 的取值范围.(3)当此函数图象上有4个点到x 轴的距离等于4,求n 的取值范围.【答案】(1)①92b =②458;(2)1845n <≤,823n ≤<时,图象与线段AB 只有一个交点;(3)函数图象上有4个点到x 轴的距离等于4时,8n >或3142n ≤<. 【解析】 【分析】(1)①将()4,P b 代入2155222y x x =-++;②当5x ≥时,当5x =时有最大值为5;当5x <时,当52x =时有最大值为458;故函数的最大值为458; (2)将点()4,2代入2y x nx n =-++中,得到185n =,所以1845n <≤时,图象与线段AB 只有一个交点;将点()2,2)代入2y x nx n =-++和21222n ny x x =-++中,得到82,3n n ==, 所以823n ≤<时图象与线段AB 只有一个交点; (3)当xn =时,42n >,得到8n >;当2n x =时,1482n +≤,得到312n ≥,当x n=时,22y n n n n =-++=,4n <. 【详解】解:(1)当5n =时,()()225551555222x x x y x x x ⎧-++≥⎪=⎨-++<⎪⎩, ①将()4,P b 代入2155222y x x =-++, ∴92b =; ②当5x ≥时,当5x =时有最大值为5; 当5x <时,当52x =时有最大值为458; ∴函数的最大值为458;(2)将点()4,2代入2y x nx n =-++中, ∴185n =, ∴1845n <≤时,图象与线段AB 只有一个交点; 将点()2,2代入2y x nx n =-++中, ∴2n =, 将点()2,2代入21222n ny x x =-++中, ∴83n =, ∴823n ≤<时图象与线段AB 只有一个交点; 综上所述:1845n <≤,823n ≤<时,图象与线段AB 只有一个交点; (3)当xn =时,22112222n n y n n =-++=,42n>,∴8n >; 当2n x =时,182n y =+, 1482n +≤,∴312n ≥, 当xn =时,22y n n n n =-++=,4n <;∴函数图象上有4个点到x 轴的距离等于4时,8n >或3142n ≤<. 【点睛】考核知识点:二次函数综合.数形结合分析问题是关键.8.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0). (1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由; (3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;(3)点N(43,﹣73). 【解析】 【分析】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解; (2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N 是PQ 的中点,根据C,P 点的坐标求出直线PC 的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q 点的坐标,从而即可求N 点的坐标. 【详解】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式得:0=a(3﹣1)2+4, 解得:a =﹣1,故抛物线的表达式为:y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由: 如图1,∵DE ∥AO ,S △ODA =S △OEA ,S △ODA +S △AOM =S △OEA +S △AOM ,即:S 四边形OMAD =S △OBM , ∴S △OME =S △OBM , ∴S 四边形OMAD =S △OBM ;(3)设点P(m ,n),n =﹣m 2+2m+3,而m+n =﹣1, 解得:m =﹣1或4,故点P(4,﹣5);如图2,故点D 作QD ∥AC 交PC 的延长线于点Q ,由(2)知:点N是PQ的中点,设直线PC的解析式为y=kx+b,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:45k bk b-+=⎧⎨+=-⎩,解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣43,即点Q(﹣43,13),∵点N是PQ的中点,由中点公式得:点N(43,﹣73).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点.9.如图,已知二次函数过(﹣2,4),(﹣4,4)两点.(1)求二次函数的解析式;(2)将沿x轴翻折,再向右平移2个单位,得到抛物线,直线y=m(m>0)交于M、N两点,求线段MN的长度(用含m的代数式表示);(3)在(2)的条件下,、交于A、B两点,如果直线y=m与、的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与、的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.【答案】(1);(2);(3)证明见解析.【解析】试题分析:(1)根据待定系数法即可解决问题.(2)先求出抛物线y2的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.(3)用类似(2)的方法,分别求出CD、EF即可解决问题.试题解析:(1)∵二次函数过(﹣2,4),(﹣4,4)两点,∴,解得:,∴二次函数的解析式.(2)∵=,∴顶点坐标(﹣3,),∵将沿x轴翻折,再向右平移2个单位,得到抛物线,∴抛物线的顶点坐标(﹣1,),∴抛物线为,由,消去y整理得到,设,是它的两个根,则MN===;(3)由,消去y整理得到,设两个根为,,则CD===,由,消去y得到,设两个根为,,则EF===,∴EF=CD,EF∥CD,∴四边形CEFD是平行四边形.考点:二次函数综合题.10.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.【答案】(1)抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由见解析;(3)当m≤时,平移后的抛物线总有不动点.【解析】试题分析:(1)分别写出A、B的坐标,利用待定系数法求出抛物线的解析式即可;根据OA=OM=1,AC=BC=3,分别得到∠MAC=45°,∠BAC=45°,得到∠BAM=90°,进而得到△ABM是直角三角形;(3)根据抛物线的平以后的顶点设其解析式为,∵抛物线的不动点是抛物线与直线的交点,∴,方程总有实数根,则≥0,得到m的取值范围即可试题解析:解:(1)∵点A是直线与轴的交点,∴A点为(-1,0)∵点B在直线上,且横坐标为2,∴B点为(2,3)∵过点A、B的抛物线的顶点M在轴上,故设其解析式为:∴,解得:∴抛物线的解析式为.(2)△ABM是直角三角形,且∠BAM=90°.理由如下:作BC⊥轴于点C,∵A(-1,0)、B(2,3)∴AC=BC=3,∴∠BAC=45°;点M是抛物线的顶点,∴M点为(0,-1)∴OA=OM=1,∵∠AOM=90°∴∠MAC=45°;∴∠BAM=∠BAC+∠MAC=90°∴△ABM是直角三角形.(3)将抛物线的顶点平移至点(,),则其解析式为.∵抛物线的不动点是抛物线与直线的交点,∴化简得:∴==当时,方程总有实数根,即平移后的抛物线总有不动点∴.考点:二次函数的综合应用(待定系数法;直角三角形的判定;一元二次方程根的判别式)。

2020-2021初中数学二次函数真题汇编含解析

2020-2021初中数学二次函数真题汇编含解析

2020-2021初中数学二次函数真题汇编含解析一、选择题1.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C 【解析】 【分析】根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决. 【详解】 由图象可得, a >0,b >0,c <0, ∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确, 当x =﹣1时,y =a ﹣b +c <0, 由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确,∵12b a ->-,a >0,得122b a >>,故③正确, 故选C . 【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.2.如图,二次函数()200y ax bx c a =++=≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >;②930a b c ++<;③1c >-;④关于x 的方程()200ax bx c a ++=≠有一个根为1a-,其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】由二次图像开口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断①;由图像可知当x =3时,y <0,可判断②;由OA =OC ,且OA <1,可判断③;把﹣1a代入方程整理得ac 2-bc +c =0,结合③可判断④;从而得出答案. 【详解】由图像开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,∴﹣2ba>0,∴b >0,∴abc >0,故①正确;由图像可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图像可知OA <1,∵OA =OC ,∴OC <1,即﹣c <1,故③正确;假设方程的一个根为x =﹣1a ,把﹣1a代入方程,整理得ac 2-bc +c =0, 即方程有一个根为x =﹣c ,由②知﹣c =OA ,而当x =OA 是方程的根,∴x =﹣c 是方程的根,即假设成立,故④正确.故选C. 【点睛】本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.3.已知,二次函数y=ax 2+bx+a 2+b (a≠0)的图象为下列图象之一,则a 的值为( )A .-1B .1C .-3D .-4【答案】A 【解析】 【分析】分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0,a 2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a 2=3,由抛物线与x 的交点坐标得到x 2=-a ,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1,0)代入解析式得到a-b+a 2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2,0)和(0,0)分别代入解析式可计算出a的值.【详解】解:若二次函数的图形为第一个,对称轴为y轴,则b=0,y=ax2+a2,其顶点坐标为(0,a2),而a2>0,所以二次函数的图形不能为第一个;若二次函数的图形为第二个,对称轴为y轴,则b=0,y=ax2+a2,a2=3,而当y=0时,x2=−a,所以−a=4,a=−4,所以二次函数的图形不能为第二个;若二次函数的图形为第三个,令x=−1,y=0,则a−b+a2+b=0,所以a=−1;若二次函数的图形为第四个,令x=0,y=0,则a2+b=0①;令x=−2,y=0,则4a−2b+a2+b=0②,由①②得a=−2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.故选A.【点睛】本题考查了二次函数y=ax2+bx+c(a≠0)的图象与系数的关系:a>0,开口向上;a<0,开口向下;抛物线的对称轴为直线x=-;顶点坐标为(-,);也考查了点在抛物线上则点的坐标满足抛物线的解析式.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论:①abc<0;②2a+b =0;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定解答.【详解】①由抛物线的对称轴可知:﹣>0,∴ab<0,∵抛物线与y轴的交点在正半轴上,∴c>0,∴abc<0,故①正确;②∵﹣=1,∴b=﹣2a,∴2a +b =0,故②正确.③∵(0,c )关于直线x =1的对称点为(2,c ), 而x =0时,y =c >0, ∴x =2时,y =c >0, ∴y =4a +2b +c >0,故③正确; ④由图象可知:△>0, ∴b 2﹣4ac >0,故②正确; 故选:D . 【点睛】本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中考常考题型.5.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C 【解析】 【分析】利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12bx a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断. 【详解】解:Q 抛物线开口向上,0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =,即12ba-=, 20a b ∴+=,所以③正确; Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误. 综上所述:③正确;①②④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.6.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.7.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2ba->0, ∴b >0,∴abc <0,故①正确; ②由对称轴可知:2ba-=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c,∴9a﹣6a+c=0,∴3a+c=0,故②正确;③当x=1时,y取最大值,y的最大值为a+b+c,当x取全体实数时,ax2+bx+c≤a+b+c,即ax2+bx≤a+b,故③正确;④(﹣0.5,y1)关于对称轴x=1的对称点为(2.5,y1):∴y1=y2,故④错误;故选:C.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a+2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc 的图象一定不过第二象限.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】由图可知,x=2时函数值小于0,故(1)正确,函数与x轴的交点为x=1.x=3,都大于0,故(2)正确,由图像知(3)错误,由图象开口向上,a>0,与y轴交于正半轴,c>0,对称轴x=﹣=1,故b<0,bc<0,即可判断一次函数y=x+bc的图象.【详解】①由x=2时,y=4a+2b+c,由图象知:y=4a+2b+c<0,故正确;②方程ax2+bx+c=0两根分别为1,3,都大于0,故正确;③当x<2时,由图象知:y随x的增大而减小,故错误;④由图象开口向上,a>0,与y轴交于正半轴,c>0,x=﹣=1>0,∴b<0,∴bc<0,∴一次函数y=x+bc的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C.【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.9.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断 【详解】解:抛物线的开口向下,则a <0; 抛物线的对称轴为x=1,则-2ba=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值 ∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误) 由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0 ∵1x ≠2x ∴a(x 1+x 2)+b=0 ∴x 1+x 2=2b aa a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.10.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D 【解析】 【分析】根据抛物线开口方向得到a 0>,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确. ②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确. 故答案选D. 【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

二次函数中考题型汇编(含答案)

二次函数中考题型汇编(含答案)

5.(10 分)(2019•成都一模)某公司推出一款产品,成本价 10 元/千克,经过市场调查,该 产品的日销售量 y(千克)与销售单价 x(元/千克)之间满足一次函数关系,该产品的日 销售量与销售单价之间的几组对应值如表:
销售单价 x(元/千克)
14
18
22
26
日销售量 y(千克)
240
180
120
7.(11 分)(2019•葫芦岛模拟)如图 1,在平面直角坐标系 xOy 中,直线 l:
与x
轴、y 轴分别交于点 A 和点 B(0,﹣1),抛物线 另一个交点为 C(4,n).
经过点 B,且与直线 l 的
(1)求 n 的值和抛物线的解析式; (2)点 D 在抛物线上,且点D 的横坐标为 t(0<t<4).DE∥y 轴交直线 l 于点 E,点 F 在直线 l 上,且四边形 DFEG 为矩形(如图 2).若矩形DFEG 的周长为 p,求 p 与 t 的 函数关系式以及 p 的最大值; (3)M 是平面内一点,将△AOB 绕点 M 沿逆时针方向旋转 9△0°后,得到 A1O1B1,点 A、O、B 的对应点分别是点 A1、O1、B1.若 A△1O1B1 的两个顶点恰好落在抛物线上, 请直接写出点 A1 的横坐标. 8.(11 分)(2017•开封一模)如图,在平面直角坐标系中,抛物线 y=﹣x2+bx+c(a≠0) 经过 A、B、C 三点,点 A、C 的坐标分别是(0,4)、(﹣1,0). (1)求此抛物线的解析式; (2)点 P 是第一象限内抛物线上的一动点,当△ABP 的面积最大时,求出此时 P 的坐 标及面积的最大值; (3)若 G 为抛物线上的一动点,F 为 x 轴上的一动点,点 D 坐标为(1,4),点 E 坐标 为(1,0),当 D、E、F、G 构成平行四边形时,请直接写出点 G 的坐标.

全国中考数学二次函数的综合中考真题汇总及详细答案

全国中考数学二次函数的综合中考真题汇总及详细答案

法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.
3.如图,抛物线 y=ax2+bx+4 与 x 轴交于点 A(﹣1,0)、B(3,0),与 y 轴交于点 C. (1)求抛物线的解析式; (2)如图 1,D 为抛物线对称轴上一动点,求 D 运动到什么位置时△ DAC 的周长最小; (3)如图 2,点 E 在第一象限抛物线上,AE 与 BC 交于点 F,若 AF:FE=2:1,求 E 点坐 标; (4)点 M、N 同时从 B 点出发,分别沿 BA、BC 方向运动,它们的运动速度都是 1 个单位
【答案】(1)
(2) (3)P 的坐标为(-1,12)或(6,5)或(2,-3)或(3,-4) 【解析】
【分析】
(1)由 B(5,0),C(0,5),应用待定系数法即可求直线 BC 与抛物线的解析式。 (2)构造 MN 关于点 M 横坐标的函数关系式,应用二次函数最值原理求解。 (3)根据 S1=6S2 求得 BC 与 PQ 的距离 h,从而求得 PQ 由 BC 平移的距离,根据平移的性
(2)该宾馆每天的房间收费 p(元)关于 x(元)的函数关系式;
(3)该宾馆客房部每天的利润 w(元)关于 x(元)的函数关系式;当每个房间的定价为
每天多少元时,w 有最大值?最大值是多少?
【答案】(1)y=60- x ;(2)z=- 1 x2+40x+12000;(3)w=- 1 x2+42x+10800,当每个房
∴ PH=BH= 12 , 5
BP= 24 , 5
∴ OP=BP﹣OB= 24 3 9 ,
5
5
∴ P3(﹣ 9 ,0); 5
③当 PN=PB 时,
取 NB 中点 K,作 KP⊥BN,交 x 轴于点 P,

人教全国各地中考数学分类:二次函数综合题汇编含答案解析

人教全国各地中考数学分类:二次函数综合题汇编含答案解析

一、二次函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,∴n=14m 2-m+1, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(14m 2-m+1)+1, 整理得:(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值,∴000220001110222220230y x y x y y ⎧--⎪⎪-+⎨⎪+--⎪⎩===, ∴0021x y ⎧⎨⎩==, ∴定点F 的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元. 【解析】 【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论. (2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题. 【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100, 解得:x =40, 60﹣40=20元,答:这一星期中每件童装降价20元; (2)设利润为w ,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q553)M (1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=5或5(舍弃),∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.4.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【答案】(1)y=﹣x2+2x+3.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(3)y=﹣x+3;P点到直线BC 92,此时点P的坐标为(32,154).【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+3;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+3,∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC=2232OB OC+=,∴P点到直线BC的距离的最大值为272928832⨯=,此时点P的坐标为(32,154).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.5.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y xy x=+⎧⎨=-+⎩,得45215xy⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E,(0,1)F∵点M在AOB∆内,∴45b<<当点,C D关于抛物线对称轴(直线x b=)对称时,1344b b-=-,∴12b=且二次函数图象的开口向下,顶点M在直线41y x=+上综上:①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.6.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b , 把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩, ∴直线AB 的解析式为y =2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n ,把M (t ,0)代入得2t+n =0,解得n =﹣2t ,∴直线MN 的解析式为y =2x ﹣2t , 解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+ 21(t 3)33=--+, 当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO ,∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=, 解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0);解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【点睛】 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.7.如图,抛物线22y ax bx =++交x 轴于A (1,0)-,(4,0)B 两点,交y 轴于点C ,与过点C 且平行于x 轴的直线交于另一点221(6)()82x x -+=,点P 是抛物线上一动点. (1)求抛物线解析式及点D 的坐标;(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标;(3)过点P 作直线CD 的垂线,垂足为Q ,若将CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出此时点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;点D 坐标为(32),; (2)P 1(0,2); P 2(412,-2);P 3(3412-,-2) ; (3)满足条件的点P 13 132),(13-132). 【解析】【分析】1)用待定系数法可得出抛物线的解析式,令y=2可得出点D 的坐标(2)分两种情况进行讨论,①当AE 为一边时,AE ∥PD,②当AE 为对角线时,根据平行四边形对顶点到另一条对角线距离相等,求解点P 坐标(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),分情况讨论,①当P 点在y 轴右侧时,②当P 点在y 轴左侧时,运用解直角三角形及相似三角形的性质进行求解即可【详解】解:(1)∵抛物线22y ax bx =++经过A (10)-,,B (40),两点, ∴2016420a b a b -+=⎧⎨++=⎩,解得:12a =-,32b =, ∴抛物线解析式为:213222y x x =-++; 当2y =时,2132222x x -++=,解得:13x =,20x =(舍),即:点D 坐标为(32),.(2)∵A ,E 两点都在x 轴上,∴AE 有两种可能:①当AE 为一边时,AE ∥PD ,此时点P 与点C 重合(如图1),∴1(0,2)P , ②当AE 为对角线时,P 点、D 点到直线AE (即x 轴)的距离相等,∴P 点的纵坐标为2-(如图2),把2y =-代入抛物线的解析式,得:2132222x x -++=-, 解得:13412x =,23412x =, ∴P 点的坐标为3+41(2)-,341(2)2-, 综上所述:1(0,2)P ; 2P 3+412)-;3P 341(2)2- . (3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F , 点P 的坐标为(a ,213222a a -++), ①当P 点在y 轴右侧时(如图3),p CQ x a ==,2132(2)22c p PQ y y a a =-=--++=21322a a -, 又∵CQ O FQ P ''∠+∠=18018090CQ P PQC '︒-∠=︒-∠=︒,90CQ O OCQ ''∠+∠=︒∴FQ P OCQ ''∠=∠,又90COQ Q FP ''∠=∠=︒,∴COQ Q FP '', ∴'''Q C Q P CO Q F=, ∵Q C CQ a '==,2CO =,Q P PQ '==21322a a -,∴213222'a a a Q F-=,∴'3Q F a =-,∴(3)OQ OF Q F a a ''=-=--3=,CQ =CQ '2222'2313CO OQ +=+= 即13a =,∴点p 139132-), ②当p 点在y 轴左侧时(如图4),此时0a <,2132022a a -++<,CQ =P x =a -, PQ =2-(213222a a -++)=21322a a -, 又∵90CQ O FQ P CQ P PQC '''∠+∠=∠=∠=︒,90CQ O OCQ ''∠+∠=︒, ∴FQ P OCQ ''∠=∠,又90COQ Q FP ''∠=∠=︒∴COQ Q FP '',∴'''Q C Q P CO Q F=, ∵Q C CQ a '==-,2CO =,Q P PQ '==21322a a -, ∴213222'a a a Q F--=,∴'3Q F a =-, ∴3()3OQ Q F OF a a ''=-=---=,CQ =CQ '2222'2313CO OQ +=+= 此时13a =P 的坐标为(13913--). 综上所述,满足条件的点P 139132-+),(13-913--). 【点睛】此题考查二次函数综合题,解题关键在于运用待定系数法的出解析式,难度较大8.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=1 6-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C⎛⎫⎪⎝⎭在抛物线上所以41719326cb c=⎧⎪⎨=-⨯++⎪⎩,解得24bc=⎧⎨=⎩,所以21246y x x=-++所以,当62bxa=-=时,10ty=≦答:21246y x x=-++,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得12623,623x x =+=-1243x x -=答:两排灯的水平距离最小是43考点:二次函数的实际应用.9.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),∴1640 4206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:3 4 3 26abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF×AG+12×DF×EH=12×4×DF=2×(2384m m--+)=23250233m-++(),∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA =29n +,PE =212n ++(),AE =16425+=,分三种情况讨论: 当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.10.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式; (2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为49、151296±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213. 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D的坐标,过点D分别作DE⊥x轴、DF⊥y轴,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得168020a ca c-+=⎧⎨++=⎩,解得:2383ac⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x+-,∵过点B的直线y=kx+23,∴代入(1,0),得:k=﹣23,∴BD解析式为y=﹣2233x+;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得t=151296±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,即52=52,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC =3CFP O,即523=103t,解得:t=49,∴t的值为49、151296±、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小.则△EOF∽△NHD′设点N坐标为(a,﹣21033a-),∴OENH =OFHD',即52104()33a---=1032a-,解得:a=﹣2,则N点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1,当x=﹣32时,y=﹣54,∴M点坐标为(﹣32,﹣54),此时,DM+MN点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.。

中考数学真题分项汇编(四川专用)专题10 二次函数(解析版)

专题10二次函数一、选择题1.(2023·四川绵阳·统考中考真题)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是()A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【答案】D【分析】先根据平移原则:上加下减,左加右减写出解析式,再列方程组,有公共点则△≥0,则可求出b 的取值.【详解】解:由题意得:平移后得到的二次函数的解析式为:2=(3)1y x --,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12--=+x x b ,2880-+-=x x b ,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .【点睛】主要考查的是二次函数图象的平移和两函数的交点问题,二次函数与一次函数图象有公共点.2.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0,对称轴为直线=1x -,下列四个结论:①<0abc ;②420a b c -+<;③30a c +=;④当31x -<<时,20ax bx c ++<;其中正确结论的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】根据二次函数开口向上,与y 轴交于y 轴负半轴,00a c ><,,根据对称轴为直线=1x -可得20b a =>,由此即可判断①;求出二次函数与x 轴的另一个交点坐标为()3,0-,进而得到当2x =-时,0y <,由此即可判断②;根据1x =时,0y =,即可判断③;利用图象法即可判断④.A.4个B【答案】B【分析】由抛物线的开口方向、与正确;由抛物线的对称轴为判断③正确;由图知x=A .1个B .【答案】B 【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与可.【详解】解:由图可知,二次函数开口方向向下,与 图象与x 轴交于点(3,0A -10420a b c ∴-+=.5a ∴- 12b a-=-,2b a ∴=.当30a c ∴+=,3c a ∴=-,∴A .1个B .2【答案】C 【分析】开口方向,对称轴,与④即可.【详解】∵抛物线的开口向下,对称轴为直线0,0,0a b c <<<∴()11,A x y 和点()22,B x y 关于对称轴对称,∴abc B.A.<0【答案】C【分析】根据开口方向,与即可判断A;根据对称性可得当线开口向上,对称轴为直线【详解】解:∵抛物线开口向上,与A.抛物线的对称轴为直线C.A,B两点之间的距离为【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数∴二次函数解析式为y故A,B选项不正确,不符合题意;a=>,抛物线开口向上,当∵10y=时,2x x+意;当0A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,5⎛ ⎝【答案】C 【分析】如图所示,过点C 作CD AB ⊥于D ,连接CP 三角形,即90C ∠=︒,进而利用等面积法求出24CD =【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.11.(2023·四川雅安·统考中考真题)如图,二次函数A.①②【答案】C【分析】根据抛物线开口方向可得函数的对称性可得∴-【点睛】本题考查圆的的性质,二次函数图象的性质,19.(2022·四川广元·统考中考真题)二次函数1,0),对称轴为直线x=2,下列结论:2,y1)、点B(﹣12,y2)、点C(72,为常数).其中正确的结论有()【详解】解:A 、根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),且对称轴在y 轴的左侧可知0a >,该说法正确,故该选项不符合题意;B 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3)可知03a b c c ++=⎧⎨=-⎩,解得3a b +=,该说法正确,故该选项不符合题意;C 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),对称轴在y 轴的左侧,则抛物线不经过(-1,0),该说法错误,故该选项符合题意;D 、关于x 的一元二次方程ax 2+bx +c =-1根的情况,可以转化为抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的交点情况,根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),310-<-<,结合抛物线开口向上,且对称轴在y 轴的左侧可知抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C .【点睛】本题考查二次函数的图像与性质,涉及到开口方向的判定、二次函数系数之间的关系、方程的根与函数图像交点的关系等知识点,根据题中条件得到抛物线草图是解决问题的关键.21.(2022·四川成都·统考中考真题)如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是()A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>【答案】D 【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即a<0,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对8A.4B.92∵P 与OB 、AB 均相切,∴△OBP 边OB 上的高为∵P (m ,-m +6);∴△AOP 边OA 上的高为-m +6,∵AOB AOP APB BOP S S S S =++ ,∴1168622⨯⨯=⨯⨯2y ax =过点P ,∴5a =.故选D .二、填空题①当31x -≤≤时,1y ≤;AOB 内存在唯一点P ,使得其中正确的结论是___________【答案】②③【分析】根据条件可求抛物线与∴12ABM AMF BMF S S S MF =+=⨯V V V 把()0,3B a -,()30A -,代入得:当=1x -是,2y a =-,∴(F -∵点B 是抛物线与y 轴的交点,∴当则'AOA ,'POP 为等边三角形,∴∵'AOA 为等边三角形,(A -当320,2B ⎛⎫- ⎪ ⎪⎝⎭时,∵'2A B 骣琪=琪琪桫当()0,3B -时,2'232A B 骣骣琪琪琪=+琪琪琪琪桫桫【答案】149/519【分析】根据已知得出直角坐标系,通过代入x =4代入抛物线解析式得出下降高度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴通过以上条件可设顶点式y =ax 2+2,把点A 点坐标(∴920a +=,∴29a =-,∴抛物线解析式为:当水面下降,水面宽为8米时,有把4x =代入解析式,得∴水面下降149米;故答案为:149;【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题【答案】8【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高设y=ax2+bx+2.5,将(2.5,0)代入解析式得出0)代入解析式得9a+3b+4=0,联立可求出时的解析式为y=ax2+bx+h,将(4,0)代入可求出【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,【答案】17【分析】根据题意可知,当直线经过点(线只有一个交点时,(x-5)2+8=kx-3,可得出【详解】解:当直线经过点(1,12)时,当直线与抛物线只有一个交点时,(x-5)∴10+k=±12,解得k=2或k=-22(舍去),∴∴k的最大值与最小值的和为15+2=17.故答案为:【答案】1【分析】根据抛物线22y x x k =++与x 轴只有一个交点可知方程22x x k ++=0根的判别式△=0,解方程求出k 值即可得答案.【详解】∵抛物线22y x x k =++与x 轴只有一个交点,∴方程22x x k ++=0根的判别式△=0,即22-4k =0,解得:k =1,故答案为:1【点睛】本题考查二次函数与x 轴的交点问题,对于二次函数2y ax bx c =++(k≠0),当判别式△>0时,抛物线与x 轴有两个交点;当k=0时,抛物线与x 轴有一个交点;当x <0时,抛物线与x 轴没有交点;熟练掌握相关知识是解题关键.三、解答题支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】【答案】(1)()()18300500w m x x =--<≤,()220.018800300w x x x =-+-<≤(2)()15003970w m =-+最大元,1420w =2最大(3)当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润,理由见解析【分析】(1)根据题木所给的利润计算公式求解即可;(2)根据(1)所求利用一次函数和二次函数的性质求解即可;(3)比较(2)中所求A 、B 两种产品的最大利润即可得到答案.【详解】(1)解:由题意得,()()18300500w m x x =--<≤,()()()2222012800.010.018800300w x x x x x =--+=-+-<≤(2)解:∵46m ≤≤,∴80m ->,∴1w 随x 增大而增大,∴当500x =时,1w 最大,最大为()()8500305003970m m -⨯-=-+元;()2220.018800.014001520w x x x =-+-=--+,∵0.010-<,∴当400x <时,2w 随x 增大而增大,∴当300x =时,2w 最大,最大为()20.0130040015201420-⨯-+=元;(3)解:当50039701420m -+>,即4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点【答案】(1)223y x x =-++(2)PBC 的最大面积为278,32P ⎛ ⎝(3)存在,()4,17或()4,17-或()2,143-+,(2,143--+【分析】(1)利用待定系数法代入求解即可;(2)利用待定系数法先确定直线BC 的解析式为3y x =-+作PD x ⊥轴于点D ,交BC 于点E ,得出23PE x x =-+,然后得出三角形面积的函数即可得出结果;(3)分两种情况进行分析:若BC 为菱形的边长,利用菱形的性质求解即可.【详解】(1)解:将点()()()1,0,3,,00,3A B C -代入解析式得:0930a b c a b c -+=⎧⎪12a b =-⎧⎪∴(),3E x x -+,∴2PE x =-+∴(1122PBCS PE OB ∆=⨯⨯=⨯-∴当32x =时,PBC 的最大面积为(3)存在,()2,2N 或(4,17∵()()3,0,0,3B C ,∵抛物线的解析式为设点()()1,,M t N x y ,,若BC 则22BC CM =,即(2181t =+∵31003x t y +=+⎧⎨+=+⎩,∴4,x y t ==-【答案】(1)21262y x x =-++(2)①【分析】(1)根据抛物线对称轴为待定系数法求得c ,即可解答;(设CD a =,则()0,6D a -,求得即可求出CD 的长;②过,E F1322S S S += ,2AD EF ∴+=设21,262F h h h ⎛⎫-++ ⎪⎝⎭,则AH ,EG AB FH AB ⊥⊥ ,EG ∴∥DI EG ⊥ ,90DIE ∴∠=︒,∴112333DI AB h ∴==+,即点D(1)求抛物线的表达式.(2)若直线值时,使得AN MN +有最大值,并求出最大值.一动点,将抛物线向左平移点M ,是否能与A 、P 、Q 【答案】(1)223y x x =-++(2)①当以AM 为对角线时,22Q P A M x x x x ++∴=,即-Q 在抛物线24y x =-+上AQ(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ 、PO ,其中于点E ,设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.【答案】(1)214y x x =-(2)()6,3N (3)1【分析】(1)待定系数法求解析式即可求解;(2),过点M 作2MD x ⊥=,垂足为D 根据已知条件得出:BD CD =:3:5BM MQ =,进而列出方程,解方程,即可求解;1⎛⎫⎛设21,4M m m m ⎛⎫- ⎪⎝⎭,则212,4D m m ⎛⎫- ⎪⎝⎭,∵MD QC ∥,∴:BD CD =:3:BM MQ =∵()2,2C -,∴()2210341524m m m m ⎛⎫-- ⎪⎝⎭=---,解得:∵其中点MQ 在抛物线对称轴的左侧.∴k b ⎧+⎪(1)求该运动员从跳出到着陆垂直下降了多少(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s【答案】(1)该运动员从跳出到着陆垂直下降了过点B 作BD y ⊥轴于点D .在Rt OBD △中,sin 37OD AB =⋅︒=答:该运动员从跳出到着陆垂直下降了(2)解:在Rt OBD △中,BD =【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.【详解】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.47.(2022·四川广元·统考中考真题)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【答案】(1)科技类图书的单价为38元,文学类图书的单价为26元.(2)社区至少要准备2700元购书款.【分析】(1)设科技类图书的单价为x 元,文学类图书的单价为y 元,然后根据题意可列出方程组进行求解;(2)设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)及题意可分当3040m ≤<时,当4050m ≤≤时及当5060m <≤时,进而问题可分类求解即可.【详解】(1)解:设科技类图书的单价为x 元,文学类图书的单价为y 元,由题意得:2315445282x y x y +=⎧⎨+=⎩,解得:3826x y =⎧⎨=⎩;答:科技类图书的单价为38元,文学类图书的单价为26元.(2)解:设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)可得:①当3040m ≤<时,则有:()3826100122600w m m m =+-=+,∵12>0,∴当m =30时,w 有最小值,即为36026002960w =+=;②当4050m ≤≤时,则有:()()2384026100522600w m m m m m =-++-=-++,∵-1<0,对称轴为直线26m =,∴当4050m ≤≤时,w 随m 的增大而减小,∴当m =50时,w 有最小值,即为250525026002700w =-+⨯+=;③当5060m <≤时,此时科技类图书的单价为785028-=(元),则有()282610022600w m m m =+-=+,∵2>0,∴当m =51时,w 有最小值,即为10226002702w =+=;综上所述:社区至少要准备2700元的购书款.【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.48.(2021·四川雅安·统考中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.【答案】(1)5150y x =-+;(2)当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点为t ,PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点说明理由.【答案】(1)22y x x =-(2)2312S t t =-++(3)存在,(1,1)-N 或(3,3)【分析】(1)由二次函数的最小值为1-,点(1,)M m 是其对称轴上一点,得二次函数顶点为顶点式2(1)1y a x =--,将点(0,0)O 代入即可求出函数解析式;(2)连接OP ,根据AOB OAP OBP S S S S =+-△△△求出S 与t 的函数关系式;当0y =时,220x x -=,0x ∴=或 点P 在抛物线22y x x =-上,∴AOB OAP OBP S S S S ∴=+-△△△12=⨯(3)设()2,2N n n n -,当AB 为对角线时,由中点坐标公式得,当AM 为对角线时,由中点坐标公式得,当AN 为对角线时,由中点坐标公式得,综上:(1,1)-N 或(3,3)或(1,3)-.。

(易错题精选)初中数学二次函数真题汇编附答案解析

(易错题精选)初中数学二次函数真题汇编附答案解析一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确; Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.4.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.5.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.6.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

初三数学09 二次函数-2024年中考数学真题分项汇编(全国通用)(解析版)

专题09 二次函数一.选择题1.(2022·陕西)已知二次函数223y x x =--的自变量123,,x x x 对应的函数值分别为1y ,2y ,3y .当110x -<<,212x <<,33x >时,1y ,2y ,3y 三者之间的大小关系是( )A .123y y y <<B .231y y y <<C .312y y y <<D .213y y y <<【答案】D【分析】先将抛物线配成顶点式,求出对称轴为1x =,再求出抛物线与x 轴的两个交点坐标为(1,0)-和(3,0),根据开口向上即可判断.【详解】解: 抛物线2223(1)4y x x x =--=--,∴对称轴1x =,顶点坐标为(1,4)-,当0y =时,2(1)40--=x ,解得1x =-或3x =,∴抛物线与x 轴的两个交点坐标为:(1,0)-,(3,0),∴当110x -<<,212x <<,33x >时,213y y y <<,故选:D .【点睛】本题考查抛物线的性质,熟练掌握抛物线的性质是解决问题的关键,记住在抛物线的左右函数的增减性不同,确定对称轴的位置是关键,属于中考常考题型.2.(2022·山东潍坊)抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( )A .14-B .14C .4-D .4【答案】B【分析】根据抛物线与x 轴只有一个公共点,得到根的判别式等于0,即可求出c 的值.【详解】解:∵y =x 2+x +c 与x 轴只有一个公共点,∴x 2+x +c =0有两个相等的实数根,∴△=1-4c =0,解得:c =14.故选:B .【点睛】此题考查了抛物线与x 轴的交点,弄清根的判别式的意义是解本题的关键.3.(2022·湖南郴州)关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大【答案】D 【分析】由抛物线的表达式和函数的性质逐一求解即可.【详解】解:对于y =(x -1)2+5,∵a =1>0,故抛物线开口向上,故A 错误;顶点坐标为(1,5),故B 错误;该函数有最小值,是小值是5,故C 错误;当1x >时,y 随x 的增大而增大,故D 正确,故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.4.(2022·山东青岛)已知二次函数2y ax bx c =++的图象开口向下,对称轴为直线1x =-,且经过点(30)-,,则下列结论正确的是( )A .0b >B .0c <C .0a b c ++>D .30a c +=【答案】D【分析】图象开口向下,得a <0, 对称轴为直线12b x a=-=-,得b =2a ,则b <0,图象经过(30)-,,根据对称性可知,图象经过点(1)0,,故c >0,当x =1时,a +b +c =0,将b =2a 代入,可知3a +c =0.【详解】解:∵图象开口向下,∴a <0,∵对称轴为直线12b x a=-=-,∴b =2a ,∴b <0,故A 不符合题意;根据对称性可知,图象经过(30)-,,∴图象经过点(1)0,,∴c >0,故B 不符合题意;当x =1时,a +b +c =0,故C 不符合题意;将将b =2a 代入,可知3a +c =0,故D 符合题意.故选:D .【点睛】本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.5.(2022·黑龙江哈尔滨)抛物线22(9)3y x =+-的顶点坐标是( )A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-【答案】B【分析】根据二次函数的顶点式2()y a x h k =-+可得顶点坐标为(,)h k 即可得到结果.【详解】∵二次函数解析式为22(9)3y x =+- ,∴顶点坐标为(9,3)--;故选:B .【点睛】本题主要考查了二次函数顶点式的顶点坐标的求解,准确理解是解题的关键.6.(2022·浙江湖州)把抛物线y=x 2向上平移3个单位,平移后抛物线的表达式是( )A .y=2x -3B .y=2x +3C .y=2(3)x +D .y=2(3)x -【答案】B【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】∵抛物线y=x 2向上平移3个单位,∴平移后的抛物线的解析式为:y=x 2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.7.(2022·湖北武汉)二次函数()2y x m n =++的图象如图所示,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】D 【分析】根据抛物线的顶点在第四象限,得出m <0,n <0,即可得出一次函数y =mx +n 的图象经过二、三、四象限.【详解】解:∵抛物线的顶点(-m ,n )在第四象限,∴-m >0,n <0,∴m <0,∴一次函数y =mx +n 的图象经过二、三、四象限,故选:D .【点睛】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n 、m 的符号.8.(2022·广西玉林)小嘉说:将二次函数2y x =的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度 ④沿x 轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A .1个B .2个C .3个D .4个【答案】D【分析】根据二次函数图象的平移可依此进行求解问题.【详解】解:①将二次函数2y x =向右平移2个单位长度得到:()22y x =-,把点(2,0)代入得:()2220y =-=,所以该平移方式符合题意;②将二次函数2y x =向右平移1个单位长度,再向下平移1个单位长度得到:()211y x =--,把点(2,0)代入得:()22110y =--=,所以该平移方式符合题意;③将二次函数2y x =向下平移4个单位长度得到:24y x =-,把点(2,0)代入得:2240y =-=,所以该平移方式符合题意;④将二次函数2y x =沿x 轴翻折,再向上平移4个单位长度得到:24y x =-+,把点(2,0)代入得:2240y =-+=,所以该平移方式符合题意;综上所述:正确的个数为4个;故选D .【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.9.(2022·湖南岳阳)已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-【答案】A 【分析】先求出抛物线的对称轴及抛物线与y 轴的交点坐标,再分两种情况:0m >或0m <,根据二次函数的性质求得m 的不同取值范围便可.【详解】解:∵二次函数2243y mx m x =--,∴对称轴为2x m =,抛物线与y 轴的交点为()0,3-,∵点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,∴①当0m >时,对称轴20x m =>,此时,当4x =时,3y ≤-,即2244433m m ⋅-⋅-≤-,解得m 1≥;②当0m <时,对称轴20x m =<,当04x ≤≤时,y 随x 增大而减小,则当04p x ≤≤时,3p y ≤-恒成立;综上,m 的取值范围是:m 1≥或0m <.故选:A .【点睛】本题考查了二次函数的性质,关键是分情况讨论.10.(2022·四川宜宾)已知抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,若以AB 为直径的圆与在x 轴下方的抛物线有交点,则a 的取值范围是( )A .13a ≥B .13a >C .103a <<D .103a <≤【答案】A【分析】根据题意,设抛物线的解析式为()()24y a x x =+-,进而求得顶点的的坐标,结合图形可知当顶点纵坐标小于或等于-3满足题意,即可求解.【详解】解: 抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,设抛物线的解析式为()()24y a x x =+-()222819y ax ax a a x a ∴=--=--顶点坐标为()1,9a -,6AB = ,以AB 为直径的圆与在x 轴下方的抛物线有交点,则圆的半径为3,如图,93a ∴-≤-解得13a ≥故选:A【点睛】本题考查了圆的的性质,二次函数图象的性质,求得抛物线的顶点纵坐标的范围是解题的关键.11.(2022·山东威海)如图,二次函数y =ax 2+bx (a ≠0)的图像过点(2,0),下列结论错误的是( )A .b >0B .a +b >0C .x =2是关于x 的方程ax 2+bx =0(a ≠0)的一个根D .点(x 1,y 1),(x 2,y 2)在二次函数的图像上,当x 1>x 2>2时,y 2<y 1<0【答案】D【分析】根据二次函数的图像和性质作出判断即可.【详解】解:根据图像知,当1x =时,0y a b =+>,故B 选项结论正确,不符合题意,0a < ,0b ∴>,故A 选项结论正确,不符合题意;由题可知二次函数对称轴为12b x a=-=,2b a ∴=-,20a b a a a ∴+=-=->,故B 选项结论正确,不符合题意;根据图像可知2x =是关于x 的方程()200++=≠ax bx c a 的一个根,故C 选项结论正确,不符合题意,若点()11,x y ,()22,x y 在二次函数的图像上,当122x x >>时,120y y <<,故D 选项结论不正确,符合题意,故选:D .【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的图像和性质是解题的关键.12.(2022·广西)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】D【分析】先由反比例函数图象得出b >0,再分当a >0,a <0时分别判定二次函数图象符合的选项,在符合的选项中,再判定一次函数图象符合的即可得出答案.【详解】解:∵反比例函数(0)b y b x =≠的图象在第一和第三象限内,∴b >0,若a <0,则-2b a >0,所以二次函数开口向下,对称轴在y 轴右侧,故A 、B 、C 、D 选项全不符合;当a >0,则-2b a<0时,所以二次函数开口向上,对称轴在y 轴左侧,故只有C 、D 两选项可能符合题意,由C 、D 两选图象知,c <0,又∵a >0,则-a <0,当c <0,a >0时,一次函数y =cx -a 图象经过第二、第三、第四象限,故只有D 选项符合题意.故选:D .【点睛】本题考查函数图象与系数的关系,熟练掌握反比例函数图象、一次函数图象、二次函数图象与系数的关系是解题的关键.13.(2022·山东潍坊)如图,在▱ABCD 中,∠A =60°,AB =2,AD =1,点E ,F 在▱ABCD 的边上,从点A 同时出发,分别沿A →B →C 和A →D →C 的方向以每秒1个单位长度的速度运动,到达点C 时停止,线段EF 扫过区域的面积记为y ,运动时间记为x ,能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】分0≤x ≤1,1<x <2,2≤x ≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x ≤1时,过点F 作FG ⊥AB 于点G ,∵∠A=60°,AE=AF=x,x,∴AG=12由勾股定理得FG,AE×FG2,图象是一段开口向上的抛物线;∴y=12当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=1,2由勾股定理得DH(DF+AE)×DH∴y=12当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI x),CF×EI x)22,图象是一段开口向下的抛物线;∴y= AB×DH -12观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.14.(2022·辽宁)如图,在Rt ABC 中,90,24ABC AB BC ∠=︒==,动点P 从点A 出发,以每秒1个单位长度的速度沿线段AB 匀速运动,当点P 运动到点B 时,停止运动,过点P 作PQ AB ⊥交AC 于点Q ,将APQ 沿直线PQ 折叠得到A PQ ' ,设动点P 的运动时间为t 秒,A PQ ' 与ABC 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】D【分析】由题意易得AP t =,1tan 2A ∠=,则有12PQ t =,进而可分当点P 在AB 中点的左侧时和在AB 中点的右侧时,然后分类求解即可.【详解】解:∵90,24ABC AB BC ∠=︒==,∴1tan 2A ∠=,由题意知:AP t =,∴1tan 2PQ AP A t =⋅∠=,由折叠的性质可得:,90A P AP APQ A PQ ''=∠=∠=︒,当点P 与AB 中点重合时,则有2t =,当点P 在AB 中点的左侧时,即02t ≤<,∴A PQ ' 与ABC 重叠部分的面积为211112224A PQ S A P PQ t t t ''=⋅=⋅= ;当点P 在AB 中点的右侧时,即24t ≤≤,如图所示:由折叠性质可得:,90A P AP t APQ A PQ ''==∠=∠=︒,1tan tan 2A A '∠=∠=,∴4BP t =-,∴24A B t '=-,∴tan 2BD A B A t ''=⋅∠=-,∴A PQ ' 与ABC 重叠部分的面积为()()2111324442224PBDQ S BD PQ PB t t t t t ⎛⎫=+⋅=+-⋅-=-+- ⎪⎝⎭梯形;综上所述:能反映A PQ ' 与ABC 重叠部分的面积S 与t 之间函数关系的图象只有D 选项;故选D .【点睛】本题主要考查二次函数的图象及三角函数,熟练掌握二次函数的图象及三角函数是解题的关键.15.(2022·贵州铜仁)如图,若抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,若OAC OCB ∠=∠.则ac 的值为( )A .1-B .2-C .12-D .13-【答案】A 【分析】观察图象,先设11(,0)(<0)A x x ,22(,0)(>0)B x x ,(0,)C c (>0)c ,根据已知条件OAC OCB ∠=∠及OC AB ⊥证明OAC OCB ∽△△,得出21212x x c x x ⋅==-⋅,利用根与系数的关系知12c x x a ⋅=,最后得出答案.【详解】设11(,0)(<0)A x x ,22(,0)(>0)B x x ,(0,)C c (>0)c ,∵二次函数2y ax bx c =++的图象过点(0,)C c ,∴OC c =,∵OAC OCB ∠=∠,OC AB ⊥,∴OAC OCB ∽△△,∴OA OC OC OB=,∴2OC OA OB =⋅,即21212x x c x x ⋅==-⋅,令20ax bx c ++=,根据根与系数的关系知12c x x a ⋅=,∴212c x x c a -=-=,故1ac =- 故选:A .【点睛】本题考查了二次函数2y ax bx c =++(0)a ≠与关于方程20ax bx c ++=(0)a ≠之间的相互转换,同时要将线段的长转化为点的坐标之间的关系,灵活运用数形结合的思想是解题关键.16.(2022·黑龙江牡丹江)若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点( )A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)【答案】A【详解】根据点在曲线上,点的坐标满足方程的关系,将P (-2,4)代入2y ax =,得()2421a a =-⇒=,∴二次函数解析式为2y x =.∴所给四点中,只有(2,4)满足2y x =.故选A .17.(2022·内蒙古通辽)在平面直角坐标系中,将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A .()221y x =--B .()223y x =-+ C .21y x =+ D .21y x =-【答案】D【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()2211121y x x =-++-=-故选D .【点睛】本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.18.(2022·四川遂宁)如图,D 、E 、F 分别是ABC 三边上的点,其中8BC =,BC 边上的高为6,且DE //BC ,则DEF 面积的最大值为( )A .6B .8C .10D .12【答案】A 【分析】过点A 作AM ⊥BC 于M ,交DE 于点N ,则AN ⊥DE ,设AN a =,根据∥DE BC ,证明ADE ABC ,根据相似三角形对应高的比等于相似比得到43DE a =,列出DEF 面积的函数表达式,根据配方法求最值即可.【详解】如图,过点A 作AM ⊥BC 于M ,交DE 于点N ,则AN ⊥DE ,设AN a =,DE BC ∥,,ADE B AED C ∴∠=∠∠=∠,ADE ABC ∴ ,DE AN BC AM ∴=,86DE a ∴=,∴43DE a =,2211422(6)4(3)622333DEF S DE MN a a a a a ∴=⋅⋅=⨯⨯-=-+=--+ ,∴当3a =时,S 有最大值,最大值为6,故选:A .【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数求最值,熟练掌握知识点是解题的关键.19.(2022·四川自贡)已知A(−3,−2),B(1,−2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥−2;②当x>0时,一定有y随x的增大而增大;③若点D横坐标的最小值为−5,点C横坐标的最大值为3;④当四边形ABCD为平行四边形时,a=12.其中正确的是()A.①③B.②③C.①④D.①③④【答案】D【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,可判断①;根据二次函数的增减性判断②;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断④.【详解】解:∵点A,B的坐标分别为(-3,-2)和(1,-2),∴线段AB与y轴的交点坐标为(0,-2),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c) ,∴C≥-2,(顶点在y轴上时取“=”),故①正确;∵抛物线的顶点在线段AB上运动,开口向上,∴当x>1时,一定有y随x的增大而增大,故②错误;若点D的横坐标最小值为-5,则此时对称轴为直线x=-3,根据二次函数的对称性,点C的横坐标最大值为1+2=3,故③正确;令y=0,则ax2+bx+c=0,设该方程的两根为x1,x2,则x1+x2=-ba,x1x2=ca,∴CD2=( x1-x2) 2=( x1+x2) 2-4x1x22224 ()4b c b aca a a-=--⨯=,根据顶点坐标公式,2424ac ba-=-,∴248ac ba-=-,即248b aca-=,∵四边形ACDB为平行四边形,∴CD=AB=1-(-3)=4,∴8a=42=16,解得a=12,故④正确;综上所述,正确的结论有①③④.故选:D ..【点睛】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,要注意顶点在y 轴上的情况.20.(2022·江苏泰州)已知点()()()1233,,1,,1,y y y --在下列某一函数图像上,且312y y y <<那么这个函数是( )A .3y x=B .23y x =C .3y x =D .3y x=-【答案】D【分析】先假设选取各函数,代入自变量求出y 1、y 2、y 3的值,比较大小即可得出答案.【详解】解:A .把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-9,y 2=-3,y 3=3,所以y 1<y 2<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;B .把点()()()1233,,1,,1,y y y --代入y =3x 2,解得y 1=27,y 2=3,y 3=3,所以y 1>y 2=y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;C . 把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-1,y 2=-3,y 3=3,所以y 2<y 1<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;D . 把点()()()1233,,1,,1,y y y --代入y =-3x ,解得y 1=1,y 2=3,y 3=-3,所以312y y y <<,这与已知条件312y y y <<相符,故选项正确,符合题意;故选:D .【点睛】此题考查了一次函数、反比例函数以及二次函数,解题的关键是掌握函数值的大小变化和函数的性质.21.(2022·广西贺州)已知二次函数y =2x 2−4x −1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .4【答案】D【分析】先找到二次函数的对称轴和顶点坐标,求出y =15时,x 的值,再根据二次函数的性质得出答案.【详解】解:∵二次函数y =2x 2-4x -1=2(x -1)2-3,∴抛物线的对称轴为x =1,顶点(1,-3),∵1>0,开口向上,∴在对称轴x =1的右侧,y 随x 的增大而增大,∵当0≤x ≤a 时,即在对称轴右侧,y 取得最大值为15,∴当x =a 时,y =15,∴2(a -1)2-3=15,解得:a =4或a =-2(舍去),故a 的值为4.故选:D .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.22.(2022·内蒙古包头)已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .2【答案】A【分析】由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解.【详解】解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .【点睛】本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.23.(2022·黑龙江齐齐哈尔)如图,二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,对称轴为1x =-,函数最大值为4,结合图象给出下列结论:①2b a =;②32a -<<-;③24<0ac b -;④若关于x 的一元二次方程24ax bx c m ++=- (0)a ≠有两个不相等的实数根,则m >4;⑤当x <0时,y 随x 的增大而减小.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B 【分析】根据二次函数图象与性质逐个结论进行分析判断即可.【详解】解:∵二次函数2y ax bx c =++(0)a ≠的对称轴为1x =-,∴1,2b x a=-=- ∴2,b a =故①正确;∵函数图象开口向下,对称轴为1x =-,函数最大值为4,∴函数的顶点坐标为(-1,4)当x =-1时,4-+=a b c∴24a a c -+=∴4c a =+,∵二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,∴1<c <2∴1<4+a <2∴32a -<<-,故②正确;∵抛物线与x 轴有两个交点,∴240b ac ->∴24<0ac b -,故③正确;∵抛物线的顶点坐标为(-1,4)且方程24ax bx c m ++=-有两个不相等的实数根,∴044m <-<∴48m <<,故④错误;由图象可得,当x >-1时,y 随x 的增大而减小,故⑤错误.所以,正确的结论是①②③,共3个,故选:B【点睛】本题主要考查了二次函数图象与性质,,熟练掌握二次函数的图象与性质是解答本题的关键.24.(2022·湖北鄂州)如图,已知二次函数y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)的图像顶点为P (1,m ),经过点A (2,1);有以下结论:①a <0;②abc >0;③4a +2b+c =1;④x >1时,y 随x 的增大而减小;⑤对于任意实数t ,总有at 2+bt ≤a +b ,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C 【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a 、b 、c 的正负即可解答;③将点A 的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【详解】解:①由抛物线的开口方向向下,则a <0,故①正确;②∵抛物线的顶点为P (1,m )∴12b a-=,b =-2a ∵a <0∴b >0∵抛物线与y 轴的交点在正半轴∴c >0∴abc <0,故②错误;③∵抛物线经过点A (2,1)∴1=a ·22+2b +c ,即4a +2b +c =1,故③正确;④∵抛物线的顶点为P (1,m ),且开口方向向下∴x >1时,y 随x 的增大而减小,即④正确;⑤∵a <0∴at 2+bt -(a +b )= at 2-2at -a +2a = at 2-2at +a =a (t 2-2t +1)= a (t -1)2≤0∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故答案为C .【点睛】本题主要考查了二次函数图像的性质,灵活运用二次函数图像的性质以及掌握数形结合思想成为解答本题的关键.25.(2022·四川雅安)抛物线的函数表达式为y =(x ﹣2)2﹣9,则下列结论中,正确的序号为( )①当x =2时,y 取得最小值﹣9;②若点(3,y 1),(4,y 2)在其图象上,则y 2>y 1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x ﹣5)2﹣5;④函数图象与x 轴有两个交点,且两交点的距离为6.A .②③④B .①②④C .①③D .①②③④【答案】B【分析】由二次函数的开口向上,函数有最小值,可判断①,由二次函数的增减性可判断②,由二次函数图象的平移可判断③,由二次函数与x 轴的交点坐标可判断④,从而可得答案.【详解】解: y =(x ﹣2)2﹣9,图象的开口向上,∴当x =2时,y 取得最小值﹣9;故①符合题意;y =(x ﹣2)2﹣9的对称轴为2x =,而3242,-<- 21,y y ∴> 故②符合题意;将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x +1)2﹣5,故③不符合题意;当0y =时,则()2290,x --= 解得:125,1,x x ==- 而()516,--= 故④符合题意;故选B【点睛】本题考查的是二次函数的图象与性质,二次函数与x 轴的交点问题,掌握“二次函数的图象与性质”是解本题的关键.二.填空题26.(2022·辽宁营口)如图1,在四边形ABCD 中,,90,45BC AD D A ∠=︒∠=︒∥,动点P ,Q 同时从点A 出发,点P /s 的速度沿AB 向点B 运动(运动到B 点即停止),点Q 以2cm /s 的速度沿折线AD DC →向终点C 运动,设点Q 的运动时间为(s)x ,APQ 的面积为()2cm y ,若y 与x 之间的函数关系的图像如图2所示,当7(s)2x =时,则y =____________2cm .【答案】354【分析】根据题意以及函数图像可得出AED APQ ∽,则点Q 在AD 上运动时,APQ 为等腰直角三角形,然后根据三角形面积公式得出当面积最大为9时,此时3x =,则26cm AD x ==,当34x <≤时,过点P 作PF AD ⊥于点F ,则此时APQ APF ADQ PQDF S S S S =+- 四边形,分别表示出相关线段可得y 与x 之间的函数解析式,将7(s)2x =代入解析式求解即可.【详解】解:过点D 作DE AB ⊥,垂足为E ,在Rt ADE △中,∵90AED ∠=︒,45EAD ∠=︒,∴AE AD =,∵点P /s ,点Q 的速度为2cm /s ,∴,2AP AQ x =,∴AP AQ 在APQ 和AED 中,∵AE AP AD AQ =45A ∠=︒,∴AED APQ ∽,∴点Q 在AD 上运动时,APQ 为等腰直角三角形,∴AP PQ ==,∴当点Q 在AD 上运动时,21122y AP AQ x =⋅==,由图像可知,当9y =此时面积最大,3x =或3-(负值舍去),∴26cm AD x ==,当34x <≤时,过点P 作PF AD ⊥于点F ,如图:此时APQ APF ADQ PQDF S S S S =+- 四边形,在Rt APQ 中,AP =,45A ∠=︒,∴AF PF x ==,6FD x =-,26QD x =-,∴2111(26)(6)6(26)222APQ S x x x x x =++-⋅--⨯⨯- ,即26y x x =-+,所以当7(s)2x =时,227735(6(cm )224y =-+⨯=,故答案为:354.【点睛】本题考查了动点问题的函数图像,求出各段函数的函数关系式是解答本题的关键.27.(2022·江苏无锡)把二次函数y =x 2+4x +m 的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:________.【答案】m >3【分析】先求得原抛物线的顶点坐标为(-2,m -4),再求得平移后的顶点坐标为(1,m -3),根据题意得到不等式m -3>0,据此即可求解.【详解】解:∵y =x 2+4x +m =(x +2)2+m -4,此时抛物线的顶点坐标为(-2,m -4),函数的图象向上平移1个单位长度,再向右平移3个单位长度后的顶点坐标为(-2+3,m -4+1),即(1,m -3),∵平移后所得抛物线与坐标轴有且只有一个公共点,∴m -3>0,解得:m >3,故答案为:m >3.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.28.(2022·福建)已知抛物线22y x x n =+-与x 轴交于A ,B 两点,抛物线22y x x n =--与x 轴交于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.【答案】8【分析】先求出抛物线22y x x n =+-与x 轴的交点,抛物线22y x x n =--与x 轴的交点,然后根据2AD BC =,得出224AD BC =,列出关于n 的方程,解方程即可。

2024年中考数学真题汇编专题14 二次函数的图象与性质+答案详解

2024年中考数学真题汇编专题14 二次函数的图象与性质+答案详解(试题部分)一、单选题1.(2024·内蒙古包头·中考真题)将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为( ) A .()213y x =+− B .()=+−2y x 12C .()213y x =−−D .()212y x =−−2.(2024·广东广州·中考真题)函数21y ax bx c =++与2ky x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <−B .10x −<<C .02x <<D .1x >3.(2024·四川凉山·中考真题)抛物线()2213y x c =−+经过()()1235202y y y ⎛⎫− ⎪⎝⎭,,,,,三点,则123y y y ,,的大小关系正确的是( ) A .123y y y >>B .231y y y >>C .312y y y >>D .132y y y >>4.(2024·四川达州·中考真题)抛物线2y x bx c =−++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( ) A .1b c +>B .2b =C .240b c +<D .0c <5.(2024·四川泸州·中考真题)已知二次函数()2231y ax a x a =+−+−(x 是自变量)的图象经过第一、二、四象限,则实数a 的取值范围为( ) A .918a ≤< B .302a << C .908a <<D .312a ≤<6.(2024·陕西·中考真题)已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,则下列关于这个二次函数的结论正确的是( ) A .图象的开口向上B .当0x >时,y 的值随x 的值增大而增大C .图象经过第二、三、四象限D .图象的对称轴是直线1x =7.(2024·湖北·中考真题)抛物线2y ax bx c =++的顶点为()1,2−−,抛物线与y 轴的交点位于x 轴上方.以下结论正确的是( ) A .0a <B .0c <C .2a b c −+=−D .240b ac −=8.(2024·广东·中考真题)若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( ) A .321y y y >>B .213y y y >>C .132y y y >>D .312y y y >>9.(2024·四川自贡·中考真题)一次函数24y x n =−+,二次函数2(1)3y x n x =+−−,反比例函数1n y x+=在同一直角坐标系中图象如图所示,则n 的取值范围是( )A .1n >−B .2n >C .11n −<<D .12n <<10.(2024·四川遂宁·中考真题)如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x −,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2−,()0,3−之间(不含端点),则下列结论正确的有多少个( )①0abc >; ②930a b c −+≥;③213a <<; ④若方程21ax bx c x +=++两根为(),m n m n <,则31m n −<<<.A .1B .2C .3D .411.(2024·江苏连云港·中考真题)已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =−;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )A .①②B .②③C .③④D .②④12.(2024·四川广安·中考真题)如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫− ⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A .1个B .2个C .3个D .4个13.(2024·四川眉山·中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于点()3,0A ,与y 轴交于点B ,对称轴为直线1x =,下列四个结论:①0bc <;②320a c +<;③2ax bx a b +≥+;④若21c −<<−,则8433a b c −<++<−,其中正确结论的个数为( )A .1个B .2个C .3个D .414.(2024·福建·中考真题)已知二次函数()220y x ax a a =−+≠的图象经过1,2a A y ⎛⎫ ⎪⎝⎭,()23,B a y 两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <15.(2024·贵州·中考真题)如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )A .二次函数图象的对称轴是直线1x =B .二次函数图象与x 轴的另一个交点的横坐标是2C .当1x <−时,y 随x 的增大而减小D .二次函数图象与y 轴的交点的纵坐标是316.(2024·四川乐山·中考真题)已知二次函数()2211y x x x t =−−≤≤−,当=1x −时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A .02t <≤B .04t <≤C .24t ≤≤D .2t ≥17.(2024·黑龙江绥化·中考真题)二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0bc> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A .1个B .2个C .3个D .4个18.(2024·四川广元·中考真题)如图,已知抛物线2y ax bx c =++过点()0,2C −与x 轴交点的横坐标分别为1x ,2x ,且110x −<<,223x <<,则下列结论:①<0a b c −+;②方程220ax bx c +++=有两个不相等的实数根; ③0a b +>; ④23a >; ⑤2244b ac a −>.其中正确的结论有( )A .1个B .2个C .3个D .4个19.(2024·黑龙江牡丹江·中考真题)在平面直角坐标系中,抛物线()20y ax bx c a =++≠与x 轴交于A 、B两点,()()3,0,1,0A B −,与y 轴交点C 的纵坐标在3−~2−之间,根据图象判断以下结论:①20abc >;②423b <<;③若221122ax bx ax bx −=−且12x x ≠,则122x x +=−;④直线56y cx c =−+与抛物线2y ax bx c =++的一个交点(,)(0)m n m ≠,则12m =.其中正确的结论是( )A .①②④B .①③④C .①②③D .①②③④20.(2024·内蒙古赤峰·中考真题)如图,正方形ABCD 的顶点A ,C 在抛物线24y x =−+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是( )A .1m n +=B .1m n −=C .1mn =D .1m n= 21.(2024·四川宜宾·中考真题)如图,抛物线()20y ax bx c a =++<的图象交x 轴于点()3,0A −、()1,0B ,交y 轴于点C .以下结论:①0a b c ++=;②320a b c ++<;③当以点A 、B 、C 为顶点的三角形是等腰三角形时,c =3c =时,在AOC 内有一动点P ,若2OP =,则23CP AP +.其中正确结论有( )A .1个B .2个C .3个D .4个22.(2024·黑龙江齐齐哈尔·中考真题)如图,二次函数()220y ax bx a =++≠的图象与x 轴交于()1,0−,1(,0)x ,其中123x <<.结合图象给出下列结论:①0ab >;②2a b −=−;③当1x >时,y 随x 的增大而减小;④关于x 的一元二次方程()2200ax bx a ++=≠的另一个根是2a−;⑤b 的取值范围为413b <<.其中正确结论的个数是( ) A .2B .3C .4D .5二、填空题23.(2024·四川内江·中考真题)已知二次函数221y x x =−+的图象向左平移两个单位得到抛物线C ,点()12,P y ,()23,Q y 在抛物线C 上,则1y 2y (填“>”或“<”);24.(2024·吉林长春·中考真题)若抛物线2y x x c =−+(c 是常数)与x 轴没有交点,则c 的取值范围是 .25.(2024·黑龙江牡丹江·中考真题)将抛物线23y ax bx =++向下平移5个单位长度后,经过点()24,−,则637a b −−= .26.(2024·四川成都·中考真题)在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是 .27.(2024·上海·中考真题)对于一个二次函数2()y a x m k =−+(0a ≠)中存在一点(),P x y '',使得0x m y k '−='−≠,则称2x m '−为该抛物线的“开口大小”,那么抛物线211323y x x =−++“开口大小”为 .28.(2024·湖北武汉·中考真题)抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论: ①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤.其中正确的是 (填写序号).29.(2024·四川德阳·中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,3n ⎛⎫− ⎪⎝⎭,与x 轴的一个交点位于0和1之间,则以下结论:①0abc >;②520b c +<;③若抛物线经过点()()126,,5,y y −,则12y y >;④若关于x 的一元二次方程24ax bx c ++=无实数根,则4n <.其中正确结论是 (请填写序号).30.(2024·山东烟台·中考真题)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x −<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y −−均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x −或3x >.其中正确结论的序号为 .三、解答题31.(2024·江苏扬州·中考真题)如图,已知二次函数2y x bx c =−++的图像与x 轴交于(2,0)A −,(1,0)B 两点.(1)求b c 、的值;(2)若点P 在该二次函数的图像上,且PAB 的面积为6,求点P 的坐标.32.(2024·安徽·中考真题)已知抛物线2y x bx =−+(b 为常数)的顶点横坐标比抛物线22y x x =−+的顶点横坐标大1. (1)求b 的值;(2)点()11,A x y 在抛物线22y x x =−+上,点()11,B x t y h ++在抛物线2y x bx =−+上. (ⅰ)若3h t =,且10x ≥,0t >,求h 的值; (ⅱ)若11x t =−,求h 的最大值.33.(2024·北京·中考真题)在平面直角坐标系xOy 中,已知抛物线()2220=−≠y ax a x a .(1)当1a =时,求抛物线的顶点坐标;(2)已知()11,M x y 和()22,N x y 是抛物线上的两点.若对于13x a =,234x ≤≤,都有12y y <,求a 的取值范围. 34.(2024·浙江·中考真题)已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A −,对称轴为直线12x =−.(1)求二次函数的表达式;(2)若点(1,7)B 向上平移2个单位长度,向左平移m (0m >)个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值;(3)当2x n −≤≤时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围.35.(2024·广西·中考真题)课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++−的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =−,求二次函数223y x ax a =++−的最小值. ①请你写出对应的函数解析式;②求当x 取何值时,函数y y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.” 甲同学:“我发现,老师给了a 值后,我们只要取x a =−,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++−,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.36.(2024·云南·中考真题)已知抛物线21y x bx =+−的对称轴是直线32x =.设m 是抛物线21y x bx =+−与x 轴交点的横坐标,记533109m M −=.(1)求b 的值;(2)比较M 37.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.38.(2024·山东·中考真题)在平面直角坐标系xOy 中,点()2,3P −在二次函数()230y ax bx a =+−>的图像上,记该二次函数图像的对称轴为直线x m =. (1)求m 的值;(2)若点(),4Q m −在23y ax bx =+−的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+−的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <−<,求a 的取值范围. 39.(2024·四川乐山·中考真题)在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =−+(a 为常数且0a >)与y 轴交于点A .(1)若1a=,求抛物线的顶点坐标;(2)若线段OA(含端点)上的“完美点”个数大于3个且小于6个,求a的取值范围;=交于M、N两点,线段MN与抛物线围成的区域(含边界)内恰有4个“完美点”,(3)若抛物线与直线y x求a的取值范围.2024年中考数学真题汇编专题14 二次函数的图象与性质+答案详解(答案详解)一、单选题1.(2024·内蒙古包头·中考真题)将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为( ) A .()213y x =+− B .()=+−2y x 12C .()213y x =−−D .()212y x =−− 【答案】A【分析】本题主要考查了二次函数的平移以及顶点式,根据平移的规律“上加下减.左加右减”可得出平移后的抛物线为222y x x =+−,再把222y x x =+−化为顶点式即可.【详解】解:抛物线22y x x =+向下平移2个单位后,则抛物线变为222y x x =+−,∴222y x x =+−化成顶点式则为 ()213y x =+−,故选:A .2.(2024·广东广州·中考真题)函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <−B .10x −<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .3.(2024·四川凉山·中考真题)抛物线()2213y x c =−+经过()()1235202y y y ⎛⎫− ⎪⎝⎭,,,,,三点,则123y y y ,,的大小关系正确的是( )A .123y y y >>B .231y y y >>C .312y y y >>D .132y y y >>4.(2024·四川达州·中考真题)抛物线2y x bx c =−++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( )A .1b c +>B .2b =C .240b c +<D .0c <【答案】A【分析】本题考查了二次函数的性质,设抛物线2y x bx c =−++与x 轴交于两点,横坐标分别为1212,,x x x x <,依题意,121,1x x <>,根据题意抛物线开口向下,当1x =时,0y >,即可判断A 选项,根据对称轴即可判断B 选项,根据一元二次方程根的判别式,即可求解.判断C 选项,无条件判断D 选项,据此,即可求解.【详解】解:依题意,设抛物线2y x bx c =−++与x 轴交于两点,横坐标分别为1212,,x x x x <依题意,121,1x x <>∵10a =−<,抛物线开口向下,∴当1x =时,0y >,即10b c −++>5.(2024·四川泸州·中考真题)已知二次函数()2231y ax a x a =+−+−(x 是自变量)的图象经过第一、二、四象限,则实数a 的取值范围为( )A .918a ≤<B .302a <<C .908a <<D .312a ≤< 【详解】解:二次函数6.(2024·陕西·中考真题)已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,则下列关于这个二次函数的结论正确的是( )A .图象的开口向上B .当0x >时,y 的值随x 的值增大而增大C .图象经过第二、三、四象限D .图象的对称轴是直线1x =7.(2024·湖北·中考真题)抛物线2y ax bx c =++的顶点为1,2−−,抛物线与轴的交点位于x 轴上方.以下结论正确的是( )A .0a <B .0c <C .2a b c −+=−D .240b ac −= 【答案】C【分析】本题考查了二次函数的性质以及二次函数图像与系数的关系.根据二次函数的解析式结合二次函数的性质,画出草图,逐一分析即可得出结论.【详解】解:根据题意画出函数2y ax bx c =++的图像,如图所示:∵开口向上,与y 轴的交点位于x 轴上方,∴0a >,0c >,∵抛物线与x 轴有两个交点,∴240b ac ∆=−>,∵抛物线2y ax bx c =++的顶点为()1,2−−,∴2a b c −+=−,观察四个选项,选项C 符合题意,故选:C .8.(2024·广东·中考真题)若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A .321y y y >>B .213y y y >>C .132y y y >>D .312y y y >> 【答案】A【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上, ∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<, ∴321y y y >>,故选∶A .9.(2024·四川自贡·中考真题)一次函数24y x n =−+,二次函数2(1)3y x n x =+−−,反比例函数1n y x+=在同一直角坐标系中图象如图所示,则n 的取值范围是( )A .1n >−B .2n >C .11n −<<D .12n <<【答案】C10.(2024·四川遂宁·中考真题)如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x −,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2−,()0,3−之间(不含端点),则下列结论正确的有多少个( )①0abc >;②930a b c −+≥;③213a <<; ④若方程21ax bx c x +=++两根为(),m n m n <,则31m n −<<<.A .1B .2C .3D .4 【答案】B【分析】本题主要考查二次函数和一次函数的性质,根据题干可得0a >,20b a =>,32c −<<−,即可判断①错误;根据对称轴和一个交点求得另一个交点为()3,0−,即可判断②错误;将c 和b 用a 表示,即可得到332a −<−<−,即可判断③正确;结合抛物线2y ax bx c =++和直线1y x =+与x 轴得交点,即可判断④正确.【详解】解:由图可知0a >,11.(2024·江苏连云港·中考真题)已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =−;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )A .①②B .②③C .③④D .②④【答案】B0a <,02b ∴−<即a bc ++2c a ∴=−c ∴的值可正也可负,a<2,b a =−∴抛物线为09a =−12a ∴=−,故③正确;抛物线12.(2024·四川广安·中考真题)如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫− ⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A .1个B .2个C .3个D .4个 <02b a−,<0b ∴.>0abc ∴.故①错误;对称轴是直线而(1−−−−故选:B.【点睛】本题考查了二次函数图像与系数之间的关系,解题的关键在于通过图像判断对称轴,开口方向以及与坐标轴的交点.13.(2024·四川眉山·中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于点()3,0A ,与y 轴交于点B ,对称轴为直线1x =,下列四个结论:①0bc <;②320a c +<;③2ax bx a b +≥+;④若21c −<<−,则8433a b c −<++<−,其中正确结论的个数为( )A .1个B .2个C .3个D .4【详解】解:①函数图象开口方向向上,对称轴在②二次函数2b a =−,1x ∴=−时,a b c ∴−+3a c ∴+=③对称轴为直线④2c −<<∴根据抛物线与相应方程的根与系数的关系可得3c a =−,23a ∴−<−<−1233a <<,2b a =−,a bc ∴++83a ∴−<+故④正确;综上所述,正确的有②③④,14.(2024·福建·中考真题)已知二次函数()220y x ax a a =−+≠的图象经过1,2a A y ⎛⎫ ⎪⎝⎭,()23,B a y 两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <【详解】解:二次函数解析式为当15.(2024·贵州·中考真题)如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )A .二次函数图象的对称轴是直线1x =B .二次函数图象与x 轴的另一个交点的横坐标是2C .当1x <−时,y 随x 的增大而减小D .二次函数图象与y 轴的交点的纵坐标是3 【答案】D【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A 、B 、C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D .【详解】解∶ ∵二次函数2y ax bx c =++的顶点坐标为()1,4−, ∴二次函数图象的对称轴是直线=1x −,故选项A 错误;∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3−,对称轴是直线=1x −, ∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误; ∵抛物线开口向下, 对称轴是直线=1x −,∴当1x <−时,y 随x 的增大而增大,故选项C 错误; 设二次函数解析式为()214y a x =++, 把()3,0−代入,得()20314a =−++,解得1a =−, ∴()214y x =−++,当0x =时,()20143y =−++=,∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确, 故选D .16.(2024·四川乐山·中考真题)已知二次函数()2211y x x x t =−−≤≤−,当=1x −时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A .02t <≤B .04t <≤C .24t ≤≤D .2t ≥【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由()22211y x x x =−=−−,可知图象开口向上,对称轴为直线1x =,顶点坐标为()11−,,当=1x −时,3y =,即()13−,关于对称轴对称的点坐标为()33,,由当=1x −时,函数取得最大值;当1x =时,函数取得最小值,可得113t ≤−≤,计算求解,然后作答即可. 【详解】解:∵()22211y x x x =−=−−,∴图象开口向上,对称轴为直线1x =,顶点坐标为()11−,, 当=1x −时,3y =,∴()13−,关于对称轴对称的点坐标为()33,, ∵当=1x −时,函数取得最大值;当1x =时,函数取得最小值, ∴113t ≤−≤, 解得,24t ≤≤,故选:C .17.(2024·黑龙江绥化·中考真题)二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0bc> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A .1个B .2个C .3个D .4个18.(2024·四川广元·中考真题)如图,已知抛物线2y ax bx c =++过点()0,2C −与x 轴交点的横坐标分别为1x ,2x ,且110x −<<,223x <<,则下列结论:①<0a b c −+;②方程220ax bx c +++=有两个不相等的实数根; ③0a b +>; ④23a >; ⑤2244b ac a −>.其中正确的结论有( )A .1个B .2个C .3个D .4个【详解】解:①抛物线开口向上,∴2244b ac a −>,故⑤符合题意; 故选:C .19.(2024·黑龙江牡丹江·中考真题)在平面直角坐标系中,抛物线()20y ax bx c a =++≠与x 轴交于A 、B两点,()()3,0,1,0A B −,与y 轴交点C 的纵坐标在3−~2−之间,根据图象判断以下结论:①20abc >;②423b <<;③若221122ax bx ax bx −=−且12x x ≠,则122x x +=−;④直线56y cx c =−+与抛物线2y ax bx c =++的一个交点(,)(0)m n m ≠,则12m =.其中正确的结论是( )A .①②④B .①③④C .①②③D .①②③④20.(2024·内蒙古赤峰·中考真题)如图,正方形ABCD 的顶点A ,C 在抛物线24y x =−+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是( )A .1m n +=B .1m n −=C .1mn =D .1mn= 先证明(AAS)ANB DMA ≌2)4n +.(2m n E +,4b +−,AM m =,四边形AC ∴、BD 互相平分,AB =90BAN DAM ∴∠+∠=︒,DAM ∠BAN ADM ∴∠=∠.90BNA AMD ∠=∠=︒,BA (AAS)ANB DMA ∴≌.AM NB ∴=,DMAN =.点A 、C 的横坐标分别为24(,)A m m ∴+−,(C (m n E +∴,2m n −−点21.(2024·四川宜宾·中考真题)如图,抛物线()20y ax bx c a =++<的图象交x 轴于点()3,0A −、()1,0B ,交y 轴于点C .以下结论:①0a b c ++=;②320a b c ++<;③当以点A 、B 、C 为顶点的三角形是等腰三角形时,c =3c =时,在AOC 内有一动点P ,若2OP =,则23CP AP +.其中正确结论有( )A.1个B.2个C.3个D.4个3⎝⎭∴42323 OHOP==,∵23 OPOA=,∴OH OP OP OA=,又∵HOP POA∠=∠,Rt OCH 中,由勾股定理得∴正确的有3个,故选:C .【点睛】本题主要考查了二次函数图象的性质,熟练掌握二次函数的相关知识是解题的关键.22.(2024·黑龙江齐齐哈尔·中考真题)如图,二次函数()220y ax bx a =++≠的图象与x 轴交于()1,0−,1(,0)x ,其中123x <<.结合图象给出下列结论:①0ab >;②2a b −=−;③当1x >时,y 随x 的增大而减小;④关于x 的一元二次方程()2200ax bx a ++=≠的另一个根是2a−;⑤b 的取值范围为413b <<.其中正确结论的个数是( ) A .2 B .3 C .4 D .5该函数图象与该图象中,当2b a =+∴关于x 的一元二次方程b x −±=0a <,(1a x −∴=∴④正确;123x <<解得1−<a b −=−1b ∴−<−413b ∴<<∴⑤正确.综上,②③④⑤正确,共二、填空题23.(2024·四川内江·中考真题)已知二次函数221y x x =−+的图象向左平移两个单位得到抛物线C ,点()12,P y ,()23,Q y 在抛物线C 上,则1y 2y (填“>”或“<”); 【答案】<【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线C 的解析式为()21y x =+,再利用二次函数图象的性质可得出答案. 【详解】解:()22211y x x x =−+=−,∵二次函数221y x x =−+的图象向左平移两个单位得到抛物线C , ∴抛物线C 的解析式为()21y x =+, ∴抛物线开口向上,对称轴为=1x −, ∴当1x >−时,y 随x 的增大而增大, ∵23<, ∴12y y <, 故答案为:<.24.(2024·吉林长春·中考真题)若抛物线2y x x c =−+(c 是常数)与x 轴没有交点,则c 的取值范围是 .25.(2024·黑龙江牡丹江·中考真题)将抛物线23y ax bx =++向下平移5个单位长度后,经过点()24,−,则637a b −−= . 【答案】2【分析】此题考查了二次函数的平移,根据平移规律得到函数解析式,把点的坐标代入得到23a b −=,再整体代入变形后代数式即可.【详解】解:抛物线23y ax bx =++向下平移5个单位长度后得到22352y ax bx ax bx =++−=+−, 把点()24,−代入得到,()24222a b =⨯−−−,得到23a b −=,∴()6373273372a b a b −−=−−=⨯−=, 故答案为:226.(2024·四川成都·中考真题)在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是 .27.(2024·上海·中考真题)对于一个二次函数2()y a x m k =−+(0a ≠)中存在一点(),P x y '',使得0x m y k '−='−≠,则称2x m '−为该抛物线的“开口大小”,那么抛物线211323y x x =−++“开口大小”为 .y 28.(2024·湖北武汉·中考真题)抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论: ①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤.其中正确的是 (填写序号).29.(2024·四川德阳·中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,3n ⎛⎫− ⎪⎝⎭,与x 轴的一个交点位于0和1之间,则以下结论:①0abc >;②520b c +<;③若抛物线经过点()()126,,5,y y −,则12y y >;④若关于x 的一元二次方程24ax bx c ++=无实数根,则4n <.其中正确结论是 (请填写序号).30.(2024·山东烟台·中考真题)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x −<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y −−均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x −或3x >.其中正确结论的序号为 .【答案】①②④由2228y x y x x =−+⎧⎨=−−+⎩,解得1120x y =⎧⎨=⎩,2235x y =−⎧⎨=⎩, ∴()2,0A ,()3,5B −,由图形可得,当3x <−或2x >时,2282x x x −−+<−+,即()212ax b x c +++<,故⑤错误;综上,正确的结论为①②④, 故答案为:①②④.三、解答题31.(2024·江苏扬州·中考真题)如图,已知二次函数2y x bx c =−++的图像与x 轴交于(2,0)A −,(1,0)B 两点.(1)求b c 、的值;(2)若点P 在该二次函数的图像上,且PAB 的面积为6,求点P 的坐标. 【答案】(1)12b c =−=,(2)122434()()P P −−−,,,【分析】本题主要考查二次函数与几何图形的综合,掌握待定系数法求解析式,解一元二次方程的方法是1PABS=4n =,4n =±,32.(2024·安徽·中考真题)已知抛物线2y x bx =−+(b 为常数)的顶点横坐标比抛物线22y x x =−+的顶点横坐标大1. (1)求b 的值;(2)点()11,A x y 在抛物线22y x x =−+上,点()11,B x t y h ++在抛物线2y x bx =−+上. (ⅰ)若3h t =,且10x ≥,0t >,求h 的值; (ⅱ)若11x t =−,求h 的最大值. 【答案】(1)4b =33.(2024·北京·中考真题)在平面直角坐标系xOy 中,已知抛物线()2220=−≠y ax a x a .(1)当1a =时,求抛物线的顶点坐标;(2)已知()11,M x y 和()22,N x y 是抛物线上的两点.若对于13x a =,234x ≤≤,都有12y y <,求a 的取值范围.综上,当01a <<或4a <−,都有12y y <.34.(2024·浙江·中考真题)已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A −,对称轴为直线12x =−.(1)求二次函数的表达式;(2)若点(1,7)B 向上平移2个单位长度,向左平移m (0m >)个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值;(3)当2x n −≤≤时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围.35.(2024·广西·中考真题)课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++−的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =−,求二次函数223y x ax a =++−的最小值. ①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.” 甲同学:“我发现,老师给了a 值后,我们只要取x a =−,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++−,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.36.(2024·云南·中考真题)已知抛物线21y x bx =+−的对称轴是直线32x =.设m 是抛物线21y x bx =+−与x 轴交点的横坐标,记533109m M −=.(1)求b 的值;(2)比较M。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用三角形相似知识进行分析求解.
【详解】
解:(1)设二次函数的解析式为 y=a(x﹣b)(x﹣c),
∵ y=ax2+bx+与 x 轴 r 的两个交点 A、B 的坐标分别为(1,0)和(3,0),
∴ 二次函数解析式:y=a(x﹣1)(x﹣3).
又∵ 点 D(4,3)在二次函数上,
∴ (4﹣3)×(4﹣1)a=3,
∴ 解得:a=1.
∴ 二次函数的解析式:y=(x﹣1)(x﹣3),即 y=x2﹣4x+3.
(2)如图 1 所示.
因点 P 在二次函数图象上,设 P(p,p2﹣4p+3). ∵ y=x2﹣4x+3 与 y 轴相交于点 C, ∴ 点 C 的坐标为(0,3). 又∵ 点 B 的坐标为 B(3,0), ∴ OB=OC ∴ △ COB 为等腰直角三角形. 又∵ PF//y 轴,PE//x 轴, ∴ △ PEF 为等腰直角三角形.
m
m2 4பைடு நூலகம் 3
化简得:m2﹣5m+5=0.
解得:m1= 5 5 ,m2= 5 5 .
2
2
∴ M 点坐标为( 5 5 ,3)或( 5 5 ,3)
2
2
②如图 3 所示:
当∠ CBN=90°时,过 B 作 BG⊥CD, ∵ ∠ NBF=∠ CBG,∠ NFB=∠ BGC=90°, ∴ △ BFN∽ △ CGB. ∵ △ BFN 为等腰直角三角形, ∴ BF=FN, ∴ 0﹣(m2﹣4m+3)=3﹣m. ∴ 化简得,m2﹣5m+6=0. 解得,m=2 或 m=3(舍去) ∴ M 点坐标为,(2,3).
【答案】(1)y=x2﹣4x+3;(2)EF 的最大值为 9 2 ;(3)M 点坐标为可以为(2, 4
3),( 5 5 ,3),( 5 5 ,3).
2
2
【解析】
【分析】
(1)根据题意由 A、B 两点坐标在二次函数图象上,设二次函数解析式的交点式,将 D 点
坐标代入求出 a 的值,最后将二次函数的交点式转化成一般式形式.
∴AD=BC,∠ABC=∠BCD=∠ADE=∠DAF=90° 由折叠得∠DEF=∠DAF,AD=DE ∴∠DEF=90° 又∵∠ADE=∠DAF=90°, ∴四边形 ADEF 是矩形 又∵AD=DE, ∴四边形 ADEF 是正方形 ∴AD=EF=DE,∠FDE=45° ∵AD=BC, ∴BC=DE 由折叠得∠BCO=∠DCO=45° ∴∠BCO=∠DCO=∠FDE. ∴OC=OD. 在△OBC 与△OED 中,
二次函数中考真题汇编[解析版]
一、初三数学 二次函数易错题压轴题(难)
1.如图,二次函数 y=ax2+bx+c 交 x 轴于点 A(1,0)和点 B(3,0),交 y 轴于点 C,抛 物线上一点 D 的坐标为(4,3) (1)求该二次函数所对应的函数解析式; (2)如图 1,点 P 是直线 BC 下方抛物线上的一个动点,PE//x 轴,PF//y 轴,求线段 EF 的 最大值; (3)如图 2,点 M 是线段 CD 上的一个动点,过点 M 作 x 轴的垂线,交抛物线于点 N,当 △ CBN 是直角三角形时,请直接写出所有满足条件的点 M 的坐标.
综上所述,满足题意的 M 点坐标为可以为(2,3),( 5 5 ,3),( 5 5 ,3).
2
2
【点睛】
本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识
点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.
2.如图①是一张矩形纸片,按以下步骤进行操作: (Ⅰ)将矩形纸片沿 DF 折叠,使点 A 落在 CD 边上点 E 处,如图②; (Ⅱ)在第一次折叠的基础上,过点 C 再次折叠,使得点 B 落在边 CD 上点 B′处,如图③,两 次折痕交于点 O; (Ⅲ)展开纸片,分别连接 OB、OE、OC、FD,如图④. (探究) (1)证明: OBC≌ OED; (2)若 AB=8,设 BC 为 x,OB2 为 y,是否存在 x 使得 y 有最小值,若存在求出 x 的值并 求出 y 的最小值,若不存在,请说明理由.
(2)由题意可知点 P 在二次函数图象上,坐标为(p,p2﹣4p+3).又因为 PF//y 轴,点 F
在直线 BC 上,P 的坐标为(p,﹣p+3),在 Rt△ FPE 中,可得 FE= 2 PF,用纵坐标差的
绝对值可求线段 EF 的最大值.
(3)根据题意求△ CBN 是直角三角形,分为∠ CBN=90°和∠ CNB=90°两类情况计算,利
【答案】(1)见解析;(2)x=4,16 【解析】 【分析】 (1)连接 EF,根据矩形和正方形的判定与性质以及折叠的性质,运用 SAS 证明
OBC≌ OED 即可; (2)连接 EF、BE,再证明△OBE 是直角三角形,然后再根据勾股定理得到 y 与 x 的函数关 系式,最后根据二次函数的性质求最值即可. 【详解】 (1)证明:连接 EF. ∵四边形 ABCD 是矩形,
∴ EF= 2 PF.
设一次函数的 lBC 的表达式为 y=kx+b, 又∵ B(3,0)和 C(0,3)在直线 BC 上,
3k b b 3
0

k 1 解得: b 3 ,
∴ 直线 BC 的解析式为 y=﹣x+3. ∴ yF=﹣p+3. FP=﹣p+3﹣(p2﹣4p+3)=﹣p2+3p.
∴ EF=﹣ 2 p2+3 2 p.
∵ C、D 两点的坐标为(0,3)和(4,3),
∴ CD∥ x 轴.
又∵ ∠ CNE=∠ NBF,∠ CEN=∠ NFB=90°,
∴ △ CNE∽ △ NBF.
∴ CE = NF , NE BF
又∵ CE=﹣m2+4m,NE=m;NF=3﹣m,BF=﹣m2+4m﹣3,

m2 4m = 3 m ,
BC DE, BCO FDE, OC OD,
∴△OBC≌△OED(SAS);
∴ 线段 EF 的最大值为,EFmax= 0 9 2 = 9 2 . 4 2 4
(3)①如图 2 所示:
若∠ CNB=90°时,点 N 在抛物线上,作 MN//y 轴,l//x 轴交 y 轴于点 E,
BF⊥l 交 l 于点 F.
设点 N 的坐标为(m,m2﹣4m+3),则点 M 的坐标为(m,3),
相关文档
最新文档