等比数列的通项公式(教案)
高中数学《等比数列的概念和通项公式》教案

一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。
2. 培养学生运用等比数列知识解决实际问题的能力。
3. 提高学生对数列这一数学思想的认知,培养学生的逻辑思维能力。
二、教学内容1. 等比数列的概念2. 等比数列的通项公式3. 等比数列的性质三、教学重点与难点1. 教学重点:等比数列的概念,等比数列的通项公式。
2. 教学难点:等比数列通项公式的推导和应用。
四、教学方法1. 采用问题驱动法,引导学生主动探索等比数列的概念和性质。
2. 运用案例分析法,让学生通过具体例子理解等比数列的通项公式。
3. 采用小组讨论法,培养学生的合作意识和团队精神。
五、教学过程1. 导入新课:通过回顾数列的概念,引导学生思考等比数列的特点。
2. 讲解等比数列的概念:借助具体例子,讲解等比数列的定义和性质。
3. 推导等比数列的通项公式:引导学生运用已知知识,推导出等比数列的通项公式。
4. 应用等比数列通项公式:通过实例,展示等比数列通项公式的应用。
5. 课堂练习:布置相关练习题,巩固所学知识。
6. 总结与拓展:对本节课内容进行总结,提出拓展问题,激发学生课后思考。
7. 课后作业:布置适量作业,巩固所学知识。
六、教学评价1. 通过课堂表现、作业和练习,评价学生对等比数列概念和通项公式的掌握程度。
2. 结合课后作业和课堂讨论,评估学生运用等比数列知识解决实际问题的能力。
3. 通过小组讨论和课堂提问,了解学生对数列思想的认知和逻辑思维能力的提升。
七、教学资源1. PPT课件:制作包含等比数列概念、性质和通项公式的PPT课件,以便于学生理解和记忆。
2. 练习题库:准备一定数量的等比数列练习题,包括基础题、应用题和拓展题,以供课堂练习和课后作业使用。
3. 教学视频:搜集相关的教学视频,如等比数列的动画演示、讲解等,以辅助教学。
八、教学进度安排1. 第一课时:介绍等比数列的概念和性质。
2. 第二课时:推导等比数列的通项公式,讲解应用实例。
高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

等比数列的概念及通项公式教学设计
将一张很大的薄纸对折,对折30次后有多厚?
不妨假设这张纸的厚度为0.01毫米。
1 看一看纸的厚度的变化
提示:
折1次折2次折3次折4次 (30)
厚度2 (21)4 (22)8 (23)16 (24) (230)
反之,任给指数函数
f(x)=ka x (k,a为常数,k≠0,
a>0且 a≠1)
则f(1)=ka ,f(2)=ka2,⋯,f(n)=ka n,⋯
构成一个等比数列{ka n},其首项为ka,公比为a.
等比数列的单调性
由等比数列的通项公式与指数型函数的关系可得等比数列的单调性如下:
(1)当a1>0,q>1或 a1<0,0<q<1时,等比数列{a n}为递增数列;
(2)当a1>0,0<q<1或 a1<0,q>1时,等比数列{a n}为递减数列;
(3)当q=1时,数列{a n}为常数列;
(4)当q<0时,数列{a n}为摆动数列.
下面,我们利用通项公式解决等比数列的一些问题.
例1 若等比数列{a n}的第4项和第6项分别为。
等比数列概念及通项公式经典教案

等比数列概念及通项公式经典教案等比数列的概念及通项公式【学习目标】1.准确理解等比数列、等比中项的概念,掌握等比数列通项公式的求解方法,能够熟练应用通项公式解决等比数列的相关问题.2.通项对等比数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生对数学问题的观察、分析、概括和归纳的能力.3.激情参与、惜时高效,利用数列知识解决具体问题,感受数列的应用价值.【重点】:等比数列的概念及等比数列通项公式的推导和应用.【难点】:对等比数列中“等比”特征的理解、把握和应用.【学法指导】1. 阅读探究课本上的基础知识,初步掌握等比数列通项公式的求法; 2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测;3. 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处.一、知识温故1.数列有几种表示方法?2.数列的项与项数有什么关系?3函数与数列之间有什么关系?教材助读1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n na a =q (q ≠0)。
注:1︒“从第二项起”与“前一项”之比为常数q {na }成等比数列⇔n n a a1+=q (+∈N n ,q ≠0) 2︒ 隐含:任一项00≠≠q a n 且3︒ q= 1时,{a n }为常数列.2.等比数列的通项公式① 111(0)n n a a q a q -=⋅⋅≠ ②1(0)n m n m a a q a q -=⋅⋅≠3.既是等差又是等比数列的数列:非零常数列.4.等比中项的定义:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.且2G ac =5.证明数列{}n a 为等比数列: ①定义:证明1n n a a +=常数, ②中项性质:212121n n n n n n n a a a a a a a +++++==或;6. 等比数列的性质:(1)n m n m a a q -=(,m n N +∈); (2)对于k 、l 、m 、n ∈N*,若m n p q +=+,则a k a l =a m a n .; (3)每隔k 项(k N +∈)取出一项,按原来顺序排列,所得的新数列为等比数列;(4)在等比数列中,从第二项起,每一项都是与它等距离的前后两项的等比中项。
高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的性质。
2. 引导学生掌握等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
二、教学内容1. 等比数列的概念2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的求和公式5. 运用通项公式解决实际问题三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及其应用。
2. 教学难点:等比数列通项公式的推导和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。
2. 利用多媒体课件,生动展示等比数列的图形和性质,提高学生的直观认识。
3. 结合例题,讲解等比数列通项公式的应用,培养学生解决问题的能力。
4. 开展小组讨论,促进学生之间的交流与合作,提高学生的团队意识。
五、教学过程1. 引入新课:通过讲解现实生活中的例子,引出等比数列的概念。
2. 讲解等比数列的性质:引导学生发现等比数列的规律,总结等比数列的性质。
3. 推导等比数列的通项公式:引导学生利用已知的数列性质,推导出通项公式。
4. 讲解等比数列的求和公式:结合通项公式,讲解等比数列的求和公式。
5. 运用通项公式解决实际问题:选取典型例题,讲解等比数列通项公式的应用。
6. 课堂练习:布置适量习题,巩固所学知识。
7. 总结与反思:引导学生总结本节课所学内容,反思自己的学习过程。
8. 课后作业:布置课后作业,巩固所学知识,提高学生的应用能力。
9. 教学评价:对学生的学习情况进行评价,了解学生对等比数列知识的掌握程度。
10. 教学反思:总结本节课的教学效果,针对存在的问题,调整教学策略。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生深刻理解等比数列的概念和性质。
2. 互动教学:鼓励学生积极参与课堂讨论,提问引导学生思考,增强课堂的互动性。
高一数学“四步教学法”教案:2.3 等比数列的通项公式

答:在等比数列中,当公比小于零时,数列中的奇数项同号,偶数项同号。
练习:已知 是一个等比数列的前三项,求第四项.
例3、已知等比数列在例3中,等比数列的通项公式为 ,是一个常数与指数式的乘积,因为数列是特殊的函数,故表示这个数列的各点 均在函数 的图象上。
课
堂
小
结
课后
作业
习题2.3(1)3、4、5
板
书
设
计
等比数列的通项公式
通项公式:例1练习
公式推导:例2
公式变形:例3
课后
反思
教
学
过
程
及
方
法
环节四当堂检测
二次备课
1.在等比数列 中,(1)已知 ;
(2)已知 ,求 .
2.已知数列 为等比数列, ,求 的值.
3.已知数列 满足条件: ,且 。求 的值.
选作题:
1.公差不为0的等差数列 中, 成等比数列,求公比。比.
2.已知数列 满足
(1)求证: 是等比数列;(2)求 的通项 .
自学指导
(1)观察等比数列,你能找到数列的各项与其序号之间有什么关系
(2)根据猜想,类比等差数列通项公式的推导方法,如何推导等比数列的通项公式?
(3)根据等比数列的通项公式,你能写出公式的哪些变形形式?
(4)如何判断一个数是否为等比数列的项?
(5)数列是特殊的函数,那么等比数列和哪类函数有关系?
(6)如果一个数列 的通项公式为 ,其中 都是非零常数,那么这个数列一定是等比数列吗?
通过观察发现 …… ……
,即:
说明:这种证明方法在以后的数列证明中有重要应用.
高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。
2. 引导学生推导等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力、运算能力和解决问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质和判定方法。
2. 等比数列的通项公式:引导学生推导通项公式,并进行证明。
3. 等比数列的求和公式:介绍等比数列前n项和的公式。
三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式和求和公式。
2. 教学难点:等比数列通项公式的推导和证明。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析和归纳等比数列的性质。
2. 运用类比法,让学生理解等比数列与等差数列的异同。
3. 利用多媒体辅助教学,展示等比数列的动态变化过程。
4. 开展小组讨论,培养学生的合作意识和解决问题的能力。
五、教学过程1. 导入新课:通过引入日常生活中的实例,如银行存款利息问题,引导学生思考等比数列的概念。
2. 讲解等比数列的定义和性质:让学生通过观察、分析和归纳等比数列的性质,得出等比数列的定义。
3. 推导等比数列的通项公式:引导学生利用已知条件,通过变换和代数运算,推导出等比数列的通项公式。
4. 证明等比数列的通项公式:让学生理解并证明等比数列通项公式的正确性。
5. 介绍等比数列的求和公式:引导学生运用通项公式,推导出等比数列前n项和的公式。
6. 课堂练习:布置一些有关等比数列的题目,让学生巩固所学知识。
7. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程,提高学习效果。
8. 课后作业:布置一些有关等比数列的练习题,巩固所学知识。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生更好地理解等比数列的概念和性质。
2. 互动提问:在教学过程中,教师应引导学生积极参与课堂讨论,提问等方式来巩固学生对等比数列的理解。
高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标:1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。
2. 引导学生掌握等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。
二、教学内容:1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。
2. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
3. 等比数列的性质:探讨等比数列的性质,如相邻项之比、公比等。
4. 等比数列的求和公式:介绍等比数列的求和公式,并解释其推导过程。
5. 应用:通过例题展示等比数列通项公式的应用,让学生学会解决实际问题。
三、教学重点与难点:1. 教学重点:等比数列的概念、通项公式、求和公式及其应用。
2. 教学难点:等比数列通项公式的推导和求和公式的理解。
四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究等比数列的性质和公式。
2. 利用多媒体辅助教学,通过动画和图形展示等比数列的特点,增强学生的直观感受。
3. 通过例题和练习题,让学生在实践中掌握等比数列的运用。
五、教学过程:1. 引入:通过生活中的实例,如银行利息计算,引出等比数列的概念。
2. 讲解:详细讲解等比数列的定义、特点和通项公式,引导学生理解并掌握。
3. 互动:学生提问,教师解答,共同探讨等比数列的相关问题。
4. 练习:布置练习题,让学生运用通项公式解决问题,巩固所学知识。
6. 作业:布置作业,让学生进一步巩固等比数列的知识。
六、教学评估:1. 课堂问答:通过提问的方式检查学生对等比数列概念和通项公式的理解程度。
2. 练习题:布置课堂练习题,评估学生运用通项公式解决问题的能力。
3. 作业批改:对学生的作业进行批改,了解学生对所学知识的掌握情况。
七、教学反思:1. 针对学生的反馈,反思教学过程中的不足之处,如讲解不清、学生理解困难等问题。
2. 针对教学方法的适用性,调整教学策略,以提高教学效果。
高中数学等比数列教案

高中数学等比数列教案
一、教学目标:
1. 掌握等比数列的定义及判断方法;
2. 掌握等比数列的通项公式及前 n 项和公式;
3. 能够灵活应用等比数列解决实际问题。
二、教学重点:
1. 等比数列的定义及判断方法;
2. 等比数列的通项公式及前 n 项和公式。
三、教学难点:
1. 灵活运用等比数列解决复杂问题;
2. 培养学生数学思维和逻辑推理能力。
四、教学内容:
1. 等比数列的定义及性质;
2. 等比数列通项公式及前 n 项和公式的推导;
3. 等比数列的应用实例。
五、教学过程:
1. 引入:通过生活中的实例引入等比数列的概念,让学生了解等比数列的特点和应用场景。
2. 学习等比数列的性质和判断方法,让学生能够判断一个数列是否为等比数列。
3. 学习等比数列的通项公式及前 n 项和公式的推导,让学生掌握这两个公式的用法和计算
方法。
4. 练习与巩固:让学生通过练习题巩固所学知识,培养他们的解题能力和推理思维。
5. 应用实例:通过一些实际问题,让学生运用等比数列解决实际问题,培养他们的数学建
模能力。
六、作业布置:
1. 课后练习:布置一些等比数列相关的习题,巩固学生所学知识。
2. 探究性问题:布置一些拓展性问题,让学生能够进一步应用所学知识解决问题。
七、课堂反馈:
1. 通过课堂讨论和作业批改,及时纠正学生的错误,加深他们对等比数列的理解和掌握。
八、教学总结:
1. 总结本节课所学知识,梳理等比数列的性质和应用场景,巩固学生的学习成果。
2. 展望下一节课内容,引导学生进行自主学习和提前预习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列的通项公式(教案)
一、教学目标
1、掌握等比数列的通项公式,并能够用公式解决一些相关问题。
2、掌握由等比数列的通项公式推导出的相关结论。
二、教学重点、难点各种结论的推导、理解、应用。
三、教学过程
1、导入复习等比数列的定义:
通项公式:
用归纳猜测的方法得到,用累积法证明
2、新知探索例1 在等比数列中,(1)已知;(2)已知、,分析(1)根据等比数列的通项公式,得(2)可以根据等比数列的通项公式列出一个二元一次方程组解得所以问:上面的第(2)题中,可以不求而只需求得q就得到吗?分析在归纳猜测等比数列的通项公式时,有这样一系列式子:注意观察等式右边各项的下标与q的次方的和,可以发现,的表达式中,始终满足结论1 数列是等比数列,则有。
再来看一下例1中(2)的另一种解法:,所以q=2,所以习题2、3(1)
2、在等比数列中,(1)已知;(2)已知、分析(1)可以根据定义和结论1给出两种解法。
方法一方法二,所以q=3,所以。
(2),所以例2 在243和3中间插入3个数,使这5个数
成等比数列。
分析设此三个数为,公比为q,则由题意得243,,3成等比数列;,所以得故插入的三个数为81,27,9或-81,27,-9、问:观察一下例2中,当时,这5个数分别为243,-81,27,-9,3,可以发现什么规律?答:在等比数列中,当公比小于零时,数列中的奇数项同号,偶数项同号。
习题2、3(1)
6、在等比数列中,,,求的值。
分析得,同理得例3 已知等比数列的通项公式为,求首项和公比q、分析在例3中,等比数列的通项公式为,是一个常数与指数式的乘积,因为数列是特殊的函数,故表示这个数列的各点均在函数的图像上。
问:如果一个数列的通项公式为,其中,都是不为零的常数,那么这个数列一定是等比数列吗?分析,,所以是等比数列。
一般可以看作是等比数列通项公式的变形,,其中结论2 等比数列的通项公式均可写成(,为不等于零的常数)的形式。
反之成立。
习题2、3(1)
5、在等比数列中,(1)是否成立?是否成立?(2)
(n>2)是否成立?(3)你能得到更一般的结论吗?分析
(1),所以成立。
(2),所以成立。
(3)从(1)(2)可以看出,等式两边各项的下表和相等,左边是同一项的平方,如果把左边换成两个不同项的乘积呢?同时,类比等差数列中的一个结论:在等差数列中,当m+n=p+q(m,n,p,q都是正整数)时,有,可以猜测:在等比数列中,当m+n=p+q(m,n,p,q都是正整数)时,有、证,所以、结论3 在等比数列中,当m+n=p+q(m,n,p,q都是
正整数)时,有、习题在等比数列中,,是方程的两个实根,求、分析可以利用结论3、因为,是方程的两个实根,所以可得=16,所以==
16、在结论3中,当m=n或p=q时,可以发现此项总是处于另两项的中间。
结论4 若,G,b成等比数列,则称G为和b的等比中项,且。
习题2、3(1)
7、(1)求45和80的等比中项;(2)已知两个数k+9和6-k的等比中项是2k,求k、分析(1)设此等比中项是G,则
=4580=3600,所以G=
60、(2),化简,得,所以
四、归纳总结本节课的主要内容是由等比数列的通项公式引深而得到的几个结论,要求学生能牢记并灵活运用。
五、布置作业做与本节课内容相关的练习册。
六、教学反思本节课的内容都是由等比数列的通项公式推导而得到。
在上课的时候,我先是把等比数列的通项公式推导一遍,再由相关的例题或习题引出相关的结论,在讲解中引导学生思考,充分发挥学生的主体作用,使学生能够与我产生互动,调节课堂气氛,使学生积极思考。
在上课的过程中,有些地方因缺乏经验不能很好地连贯在一起,这在以后的讲课中要注意。