《勾股定理、实数》测试题1
第十七章 勾股定理 单元测试训练卷

人教版八年级数学下册第十七章 勾股定理单元测试训练卷一、选择题(共10小题,每小题4分,共40分)1. 下列各组数中,为勾股数的是( )A .1,2,3B .3,4,5C .1.5,2,2.5D .5,10,122. 如图所示的数轴上的四点E ,F ,G ,H 中,表示实数- 5 的点是( )A .点EB .点FC .点GD .点H3. 若一直角三角形的两直角边的长分别是4和6,则它的斜边长为( )A .6B .213C .37D .104. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( ) A .365 B .1225C .94D .3345. 如图,矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和为( )A .14B .16C .20D .286. 如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为( )A .1013 13B .913 13C .813 13D .713 13 7. 若△ABC 的三边长a ,b ,c 满足(a -b)2+|a 2+b 2-c 2|=0,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .无法确定8. 如图是台阶的示意图,已知每级台阶的宽度都是30 cm ,每级台阶的高度都是15 cm ,连接AB ,则AB 等于( )A .195 cmB .200 cmC .205 cmD .210 cm 9. 如图是一块长、宽、高分别是6 cm ,4 cm ,3 cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需爬行的最短路程是( )A .(3+213 ) cmB .97 cmC .85 cmD .109 cm 10. 在△ABC 中,AB =10,AC =210BC 边上的高AD =6,则另一边BC 等于( )A .10B .8C .6或10D .8或10 二.填空题(共6小题,每小题4分,共24分)11. 在△ABC 中,∠ACB =90°,AC =6,AB =10,BC =________.12. 在平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为__ __.13. 公元3世纪初,中国古代数学家赵爽注《周髀算经》时创造了“赵爽弦图”.如图,设勾a =6,弦c =10,则小正方形ABCD 的面积是__ __.14. 如图,在△ABC 中,∠B =45°,AB 的垂直平分线交AB 于点D ,交BC 于点E(BE >CE),点F 是AC 的中点,连接AE ,EF ,若BC =7,AC =5,则△CEF 的周长为________.15. 如图,长方体的长、宽、高分别为8 cm,4 cm,5 cm.一只蚂蚁沿着长方体的表面从点A 爬到点B.则蚂蚁爬行的最短路径的长是__ __cm.16. 如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是__ _.三.解答题(共6小题,56分)17.(6分) 如图,在四边形ABCD中,已知AB=1,BC=2,CD=2,AD=3,且AB⊥BC,试说明:AC⊥CD.18.(8分) 如图,有一个长方形的场院ABCD,其中AB=9 m,AD=12 m,在B处竖直立着一根电线杆,在电线杆上距地面8 m的E处有一盏电灯,则点D到灯E的距离是多少?19.(8分) 如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.20.(10分) 如图,在一条公路CD的同一侧有A,B两个村庄,A,B到公路的距离AC,BD分别为50 m,70 m,且C,D两地相距50 m,若要在公路旁(在CD上)建一个集贸市场(看作一个点),求A,B两村庄到集贸市场的距离之和的最小值.21.(12分) 如图,某沿海城市A接到台风警报,在该城市正南方向260 km的B处有一台风中心,沿BC方向以15 km/h的速度向C移动,已知城市A到BC的距离AD=100 km,那么台风中心经过多长时间从B点移动到D点?如果在距台风中心30 km的圆形区域内都将受到台风的影响,正在D点休息的游人在接到台风警报后的几小时内撤离才可以免受台风的影响?22.(12分) 阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30 cm,然后分别以D,C为圆心,以50 cm与40 cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是__ __;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).参考答案1-5BABAD 6-10DCACC11.8 12. 513. 414. 8 15. 14516. 1017.解:在△ABC 中,AB ⊥BC ,根据勾股定理得AC 2=AB 2+BC 2=12+22=5, ∵在△ACD 中,AC 2+CD 2=5+4=9,AD 2=9,∴AC 2+CD 2=AD 2,∴根据勾股定理的逆定理得,△ACD 为直角三角形,∴AC ⊥CD.18.解:∵在Rt △ABD 中,∠BAD =90°,∴BD =AB 2+AD 2 =92+122 =15(m).又∵在Rt △BDE 中,∠EBD =90°,∴ED =EB 2+BD 2 =82+152 =17(m),∴点D 到灯E 的距离是17 m19.解:在Rt △BDC 中,BC 2=BD 2+DC 2,在Rt △ABC 中,AC 2=AB 2+BC 2,∴AC 2=AB 2+BD 2+DC 2,又∵BD =DC ,∴AC 2=AB 2+2CD 2=42+2×62=88,∴AC =222 ,即AC 的长为22220.解:设A 关于直线CD 的对称点为A′,连接A′B ,则A′B 即为A ,B 两村到集贸市场的距离之和的最小值,过A′作BD 的垂线A′H 交BD 的延长线于点H ,在Rt △BHA′中,BH =50+70=120 (m),A′H =50 m ,∴A′B =1202+502=130(m),故A ,B 两村庄到集贸市场的距离之和的最小值为130 m.21.解:由题意可知∠ADB =90°.在Rt △ABD 中,∵AB =260 km ,AD =100 km ,∴BD =2602-1002=240(km).∴台风中心从B 点移动到D 点所用的时间为24015=16(h). 在D 点休息的游人应在台风中心距D 点30 km 前撤离,30÷15=2(h),16-2=14(h). ∴在接到台风警报后的14 h 内撤离才可以免受台风的影响.22.解:(1)∵CD =30,DE =50,CE =40,∴CD 2+CE 2=302+402=502=DE 2,∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理,故答案为:勾股定理的逆定理(2)由作图方法可知,QR=QC,QS=QC,∴∠QCR=∠QRC,∠QCS=∠QSC,∵∠SRC +∠RCS+∠QSC=180°,即∠QCR+∠QCS+∠QRC+∠QSC=180°,∴2(∠QCR+∠QCS)=180°,∴∠QCR+∠QCS=90°,即∠RCS=90°(3)①如图③所示,直线PC即为所求;②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2019秋北师大八上(BS)版数学测试题及答案(1-6章)

八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。
武汉华一寄中学八年级数学下册第二单元《勾股定理》测试(答案解析)

一、选择题1.如图,一圆柱高8cm ,底面周长为12cm ,一只蚂蚁从A 点爬到点B ,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm2.如图,90MON ∠=︒,已知ABC ∆中,10AC BC ==,12AB =,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为( )A .12.5B .13C .14D .153.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,若30B ∠=︒,3AC =,2AD =,则ABD △的面积为( )A 3B .2C .23D .3 4.已知实数a ,b 为ABC 2a 1b 4b 40--+=,第三边c 5=第三边c 上的高的值是( )A .554B .455C .552D .2555.如图,在Rt ABC △中,6AB =,8BC =,AD 为BAC ∠的平分线,将ADC 沿直线AD 翻折得ADE ,则DE 的长为( )A .4B .5C .6D .7 6.在Rt △ABC 中,∠ACB =90°,AC =BC =1.点Q 在直线BC 上,且AQ =2,则线段BQ 的长为( )A .3B .5C .31+或31-D .51+或51- 7.有四个三角形,分别满足下列条件,其中不是直角三角形的是( )A .一个内角等于另外两个内角之和B .三个内角之比为3:4:5C .三边之比为5:12:13D .三边长分别为7、24、258.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( ) A .3:1:2 B .2:3:7 C .2:1:5 D .无法确定 9.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h =10.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为( )A .2B .3C .5D .6 11.若ABC 的三边a 、b 、c 满足2(3)450a b c -+-+-=,则ABC 的面积是( )A .3B .6C .12D .1012.如图,设每个小方格的边长都为1,则图中以小方格顶点为端点且长度为13的线段有( )A .1条B .2条C .3条D .4条二、填空题13.在直角坐标系中,点A (2,-2)与点B (-2,1)之间的距离AB =__________. 14.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.15.长方形零件图ABCD 中,2BC AB =,两孔中心M ,N 到边AD 上点P 的距离相等,且MP NP ⊥,相关尺寸如图所示,则两孔中心M ,N 之间的距离为__________mm .16.如图,已知正方形ABCD 的面积为4,正方形FHIJ 的面积为3,点D 、C 、G 、J 、I 在同一水平面上,则正方形BEFG 的面积为__________.17.在Rt ABC 中,90,8cm,4cm C BC AC ∠=︒==,在射线BC 上一动点D ,从点B 出发,以1厘米每秒的速度匀速运动,若点D 运动t 秒时,以A 、D 、B 为顶点的三角形恰为等腰三角形,则所用时间t 为_____________秒.18.如图,已知ABC ,AB 的垂直平分线交AB 于D ,交BC 于E ,AC 的垂直平分线交AC 于F ,交BC 于G ,若3BE =,4EG =,12BC =,则ABC 的面积为______.19.已知一个直角三角形的两边长分别是a ,b ,且a ,b 340a b --=.则斜边长是____________20.如图,四个全等的直角三角形围成一个大正方形ABCD ,中间阴影的部分是一个小正方形EFGH ,这样就组成了一个“赵爽弦图”.若AB =13,AE =12,则正方形EFGH 的面积为___________.三、解答题21.如图,在Rt△ABC中,∠C=90°,AC=8,AB=10,AB的垂直平分线分别交AB、AC 于点D、E.求AE的长.22.如果正方形网格中的每一个小正方形边长都是1则每个小格的顶点叫做格点.(1)在图1中,以格点为顶点画一个三角形,使三角形的三边长分别为,35 2;(2)在图2中,线段AB的端点在格点上,请画出以AB为一边的三角形使这个三角形的面积为6(要求至少画出3个);△的顶点M,N在格点上,P在小正方形的边上,问这个三角形的(3)在图3中,MNP面积相当于多少个小方格的面积?23.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?24.如图,在ABC 中,AB AC =,点D 是BC 的中点,连接AD ,CBE 45∠=︒,BE 分别交AC ,AD 于点E 、F ,若AB 13,BC 10==,求AF 的长度.25.如图,某人为了测量小山顶上的塔顶离地面的高度CD ,他在山下的点A 处测得塔尖点D 的仰角为45︒,再沿AC 方向前进60m 到达山脚点B ,测得塔尖点D 的仰角为60︒,求CD 的高度(结果保留根号)26.如图,在ABC 中,90C ∠=︒.(1)尺规作图:在BC 上作点D ,使得DA DB =;(保留作图痕迹,不写作法) (2)若3AC =,15B ∠=︒,求BC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【详解】沿着过点A的高将圆柱侧面展开,再过点B作高线BC,如图:则,∠ACB=90°,AC=12⨯12=6(cm),BC=8cm,由“两点之间,线段最短”可知:线段AB的长为蚂蚁爬行的最短路程,在Rt ABC∆中,()22226810AB AC BC cm=+=+=,故选C.【点睛】本题考查了平面展开图最短路径问题,解题的关键是根据题意画出展开图,表示各线段的长度.2.C解析:C【分析】取AB的中点D,连接CD,根据三角形的边角关系得到OC≤OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,根据D为AB中点,得到BD=3,根据三线合一得到CD垂直于AB,在Rt△BCD中,根据勾股定理求出CD的长,在Rt△AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD的值,进而求出DC+OD,即为OC的最大值.【详解】解:如图,取AB的中点D,连接CD,∵AC=BC=10,AB=12,∵点D 是AB 边中点,∴BD=12AB=6,CD ⊥AB , ∴CD=22221068BC BD -=-=,连接OD ,OC ,有OC≤OD+DC ,当O 、D 、C 共线时,OC 有最大值,最大值=OD+CD ,∵△AOB 为直角三角形,D 为斜边AB 的中点,∴OD=12AB=6 ∴OD+CD=6+8=14,即OC 的最大值=14,故选:C .【点睛】本题主要考查等腰三角形的性质,直角三角形的性质以及三角形三边之间的关系,掌握三角形任意两边之和大于第三边,是解题的关键.3.A解析:A【分析】根据含30度角的直角三角形性质可求出CD=1,过点D 作DE ⊥AB ,证明Rt △ACD ≌Rt △AED ,得AE=AC=3,再证明Rt △BED ≌Rt △AED ,得BE=AE=3,最后利用三角形面积公式即可求出答案.【详解】解:∵30B ∠=︒,90C ∠=︒,∴∠BAC=90゜-30゜=60゜∵AD 平分BAC ∠,∴∠BAD=∠CAD=1302BAC ∠=︒ 在Rt △ACD 中,由AD=2∴CD=1;过点D 作DE ⊥AB ,如图,∵AD 平分BAC ∠,90C ∠=︒,∴DE=DC=1又AD=AD∴Rt △ACD ≌Rt △AED ,∴在Rt △ADE 和Rt △BDE 中DAE DBE AED BED DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴Rt △BED ≌Rt △AED∴∴∴11122ABD S AB DE ∆=⨯=⨯⨯= 故选:A .【点睛】此题主要考查了角平分线的性质、含30度角的直角三角形的性质以及勾股定理,熟练掌握相关定理、性质是解答此题的关键. 4.D解析:D【分析】本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a 、b 的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c 边上高即可.【详解】()2b 20-=,所以a 10b 20-=-=,,解得a 1b 2==,;因为2222a b 125+=+=,22c 5==,所以222a b c +=,所以ABC 是直角三角形,C 90∠=︒,设第三边c 上的高的值是h ,则ABC的面积111222==⨯⨯,所以h = 故选:D .【点睛】本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.B解析:B【分析】由勾股定理求出AC=10,求出BE=4,设DE=x,则BD=8−x,得出(8−x)2+42=x2,解方程求出x即可得解.【详解】∵AB=6,BC=8,∠ABC=90°,∴10=,∵将△ADC沿直线AD翻折得△ADE,∴AC=AE=10,DC=DE,∴BE=AE−AB=10−6=4,在Rt△BDE中,设DE=x,则BD=8−x,∵BD2+BE2=DE2,∴(8−x)2+42=x2,解得:x=5,∴DE=5.故选B.【点睛】本题考主要查了勾股定理,直角三角形的性质,折叠的性质等知识,熟练掌握勾股定理是解题的关键.6.C解析:C【分析】分Q在CB延长线上和Q在BC延长线上两种情况分类讨论,求出CQ长,根据线段的和差关系即可求解.【详解】解:如图1,当Q在CB延长线上时,在Rt△ACQ中,CQ===∴1;如图2,当Q 在BC 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ+BC=31+;∴BQ 3131.故选:C【点睛】本题考查了勾股定理,根据题意画出图形,分类讨论是解题关键.7.B解析:B【分析】根据三角形的内角和定理或勾股定理的逆定理即可进行判断,从而得到答案.【详解】解:A 、设一个内角为x ,则另外两个内角之和为x ,则x +x =180°,解得x=90°,故是直角三角形;B 、设较小的角为3x ,则其于两角为4x ,5x ,则3x +4x+5x =180°,解得x=15°,则三个角分别为45°,60°,75°,故不是直角三角形;C 、因为52+122=132符合勾股定理的逆定理,故是直角三角形;D 、因为72+242=252符合勾股定理的逆定理,故是直角三角形.故选:B .【点睛】本题考查三角形内角和定理,勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.B解析:B【分析】作Rt △ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt △BCE 中∠BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出.【详解】解:如图①,作Rt △ABC 的三条中线AD 、BE 、CF ,∵∠ACB=90°, ∴12CF AB AB =≠, 又在Rt △ABC 中,AD >AC >BC ,,AD BC ∴≠ ∴满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt △BCE 中∠BCE=90°, ∴223,BC BE CE a =-在Rt △ABC 中,()()2222237,AB BC AC a a a =+=+=∴AC :BC :AB=237237.a a a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.9.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长2234+,高为12cm ,由勾股定理可得:杯里面管长22512+=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤故选:B .【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.10.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.11.B解析:B【分析】根据绝对值,乘方和算术平方根的非负性求得a 、b 、c 的值,再结合勾股定理逆定理判断△ABC 为直角三角形,由此根据直角三角形面积等于两直角边乘积的一半可得面积.【详解】解:∵2(3)450a b c ---=,∴30,40,50a b c -=-=-=,解得3,4,5a b c ===,又∵222223425a b c +=+==,∴△ABC 为直角三角形,∴13462ABC S =⨯⨯=△. 故选:B .【点睛】 本题考查非负数的性质,勾股定理的逆定理.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解题关键.12.D解析:D【分析】13是直角边长为2,3的直角三角形的斜边,据此画两条以格点为端点且长度为13的线段.【详解】解:∵2232+=13, ∴13是直角边长为2,3的直角三角形的斜边,如图所示,AB ,CD ,BE ,DF 的长都等于13;故选:D .【点睛】本题考查的知识点是勾股定理,找到无理数是直角边长为哪两个有理数的直角三角形的斜边长是解决本题的关键.二、填空题13.【分析】直接运用两点间的距离公式求解即可【详解】解:∵(2-2)(-21)∴AB=故答案为5【点睛】本题主要考查了两点间的距离公式牢记两点间的距离公式是解答本题的关键解析:【分析】直接运用两点间的距离公式求解即可.【详解】解:∵A (2,-2)、B (-2,1)∴()()()22222221435--+--=+-=⎡⎤⎣⎦. 故答案为5.【点睛】本题主要考查了两点间的距离公式,牢记两点间的距离公式是解答本题的关键.14.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】 解:由图可知,22125OB =+=, ∴5OA OB ==,则点A 表示的数为5-, ∵225(5)()2<,∴552<, ∴552->-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.15.【分析】作MQ ⊥BCNF ⊥AB 交于点O 作根据AAS 证明△得到由得出从而得出OMON 的长最后由勾股定理可求出MN 【详解】解:作MQ ⊥BCNF ⊥AB 交于点O 作MK ⊥AB 于点K 作∵四边形ABCD 是矩形∴M解析:262【分析】作MQ ⊥BC ,NF ⊥AB 交于点O ,作MM AD '⊥,NN AD '⊥,根据AAS 证明△M PM N NP ''≅∆得到PN MM ''=,NN M P ''=,由2BC AB =得出24NN '=,从而得出OM ,ON 的长,最后由勾股定理可求出MN .【详解】解:作MQ ⊥BC ,NF ⊥AB 交于点O ,作MK ⊥AB 于点K ,作MM AD '⊥,NN AD '⊥,∵四边形ABCD 是矩形,∴MK//AD//BC∴∠90KMM KMQ '=∠=︒∴M '、M 、Q 三点共线,∵∠90MPN =︒,∴∠90M PM N PN ''+∠=︒,∠90N PN PNN ''+∠=︒∴∠M PM PNN ''=∠又∠90PM M PN N ''=∠=︒,MP PN =∴△M PM N NP ''≅∆∴10PN MM ''==,NN M P ''=又∵10ON M P N P N M N M N N ''''+='=+=+则11AB NN '=+,5054104(10)BC ON NN '=+-=-+又∵2BC AB =,即104(10)2(11)NN NN ''-+=+∴24NN '=∴1014OM NN '=-=,1034ON NN '=+=在Rt OMN ∆中,)MN mm ====故答案为:【点睛】此题主要考查了运用勾股定理示线段的长,作辅助线构造直角三角形是解答此题的关键. 16.7【分析】根据已知利用全等三角形的判定可得到△BCG ≌△GJF 从而得到正方形BEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积【详解】解:∵∠BGC+∠FGJ=90°∠GFJ+∠FGJ=90解析:7【分析】根据已知利用全等三角形的判定可得到△BCG ≌△GJF ,从而得到正方形BEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积.【详解】解:∵∠BGC +∠FGJ =90°,∠GFJ +∠FGJ =90°∴∠BGC =∠GFJ∵∠BCG =∠GJF ,BG =GF∴△BCG ≌△GJF∴CG =FJ ,BC =GJ ,∴BG 2=BC 2+CG 2=BC 2+FJ 2∴正方形DEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积=4+3=7.【点睛】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.17.10和16【分析】求出当△ADB 是等腰三角形时BD 的长用其除以点D 运动的速度即可注意分情况讨论【详解】解:分三种情况如下图1所示当AD=DB 时∵BC=8∴CD=8-BD又AC=6在RT△ACD中由勾解析:254、10和16【分析】求出当△ADB是等腰三角形时BD的长,用其除以点D运动的速度即可,注意分情况讨论.【详解】解:分三种情况如下图1所示,当AD=DB时.∵BC=8,∴CD=8-BD又AC=6在RT△ACD中,由勾股定理得2226(8)BD BD+-=解得254 BD=除以点D运动的速度得所用时间t为254秒;如下图2所示,当AB=DB时.由勾股定理得22226810AC BC+=+=,除以点D运动的速度得t为10秒;如下图3所示,当AD=AB时.∵AC ⊥BC∴CD=BC=8∴BD=16除以点D 运动的速度得t 为16秒.综上所述,以A 、D 、B 为顶点的三角形恰为等腰三角形,D 所用时间t 为254秒、10秒或16秒.故答案为:254、10或16. 【点睛】此题考查等腰三角形的定义和性质,分情况讨论和用勾股定理列方程是关键. 18.18【分析】连接AEAG 根据中垂线的性质求出AEAG 的长结合勾股定理的逆定理推出进而即可求解【详解】连接AEAG ∵DE 垂直平分AB ∴∵FG 垂直平分AC ∴∵∴在中∴为直角三角形∴∴故答案是:18【点睛解析:18【分析】连接AE 、AG ,根据中垂线的性质,求出AE ,AG 的长,结合勾股定理的逆定理,推出AE BC ⊥,进而即可求解.【详解】连接AE 、AG∵DE 垂直平分AB ,∴3AE BE ==,∵FG 垂直平分AC ,∴AG CG =,∵3BE =,4EG =,12BC =,∴5CG AG ==,在AEG ∠中,29AE =,216EG =,225AG =,∴AEG △为直角三角形,∴AE BC ⊥, ∴111231822ABC S BC AE =⋅=⨯⨯=△. 故答案是:18【点睛】 本题主要考查垂直平分线的性质定理以及勾股定理的逆定理,掌握中垂线的性质定理,添加合适的辅助线,是解题的关键.19.5或4【分析】根据绝对值和算术平方根具有非负性可得ab 的值然后再利用勾股定理分类求出该直角三角形的斜边长即可【详解】∵满足∴a−3=0b−4=0解得:a =3b =4当ab 为直角边该直角三角形的斜边长为解析:5或4.【分析】根据绝对值和算术平方根具有非负性可得a 、b 的值,然后再利用勾股定理,分类求出该直角三角形的斜边长即可.【详解】∵a ,b 40b -=,∴a−3=0,b−4=0,解得:a =3,b =4,当a ,b 为直角边,5=;4也可能为斜边长.综上所述:直角三角形的斜边长为:5或4.故答案为:5或4.【点睛】此题主要考查了勾股定理和绝对值和算术平方根的非负性,关键是掌握绝对值和算术平方根具有非负性,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20.49【分析】根据正方形EFGH 的面积=大正方形面积﹣4个直角三角形面积即可求得正方形EFGH 的面积【详解】直角三角形直角边的较短边为=5正方形EFGH 的面积=13×13﹣4×=169﹣120=49故解析:49【分析】根据正方形EFGH 的面积=大正方形面积﹣4个直角三角形面积即可求得正方形EFGH 的面积.【详解】,正方形EFGH的面积=13×13﹣4×5122=169﹣120=49.故答案为:49.【点睛】此题考查勾股定理的运用,掌握勾股定理的推导过程是解决问题的关键.三、解答题21.25 4【分析】连接BE,先利用勾股定理求出BC的长,根据线段垂直平分线的性质可得AE=BE,然后设AE=BE=x,再由勾股定理可得方程(8−x)2+62=x2,求解后即可得出答案.【详解】解:连接BE,在Rt△ABC中,∵∠C=90°,AC=8,AB=10,∴AC2+BC2=AB2.即82+BC2=102,解得:BC=6.∵DE是AB的垂直平分线,∴AE=BE.设AE=BE=x,则EC=8−x,∵Rt△BCE中,EC2+BC2=BE2,∴(8−x)2+62=x2,解得:x=254,∴AE=254.【点睛】此题考查了线段垂直平分线的性质以及勾股定理,掌握线段垂直平分线的性质并结合勾股定理求解线段的长度是解题的关键,且要注意数形结合思想应用.22.(1)见解析;(2)见解析;(3)10【分析】(1)可先画长度为3的线段,根据勾股定理可得5为长为2,宽为1的矩形的对角线,22是边长为2的正方形的对角线,画图即可;(2)画高为3的三角形即可;(3)首先求出△MNP的面积,进而得出答案.【详解】解:(1)如图所示,(2)如图所示:(3)△MNP的面积为:1542⨯⨯=10,故这个小三角形的面积相当于10个小正方形的面积.【点睛】本题考查无理数概念、勾股定理的应用、三角形的面积,正确掌握三角形面积求法是解题关键.23.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a=米,利用勾股定理求出b的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c , ∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米, 由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 24.7AF =【分析】根据点D 是BC 的中点得到BD=5 ,由勾股定理计算可得AD 的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论.【详解】解:AB AC AD BC =⊥,,BD CD ∴=,10BC =,5BD ∴=,Rt ABD 中,13AB =, 222213512AD AB BD ∴=-=-=,Rt BDF 中,45CBE ∠=,BDF ∴是等腰直角三角形,5DF BD ∴==,1257AF AD DF ∴=-=-=.【点睛】本题主要考查的是等腰三角形的性质,勾股定理,等腰直角三角形,结合题干中条件找出对应量是关键.25.(90303)m +【分析】由题意得出∠DAC=45°,∠DBC=60°,∠DCA=90°,设BC=x ,表示出BD ,CD 和AC 的长,利用AB=60得到方程,求出x,最后根据DC=3x得到结果.【详解】解:由题知,∠DAC=45°,∠DBC=60°,∠DCA=90°,∴∠BDC=30°,△ACD是等腰直角三角形,设BC=x,∴BD=2x,∴CD=22BD BC-=3x=AC,∴AB=AC-BC=3x-x=(3-1)x=60,解得:x=6031-=()3031+,∴DC=3x=90303+,答:塔高约为(90303)m+.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用勾股定理的知识求解,难度一般.26.(1)见详解;(2)6+33【分析】(1)利用尺规作出AB的中垂线,中垂线与BC的交点,即为所求;(2)连接AD,先求出∠ADC=30°,根据直角三角形的性质以及勾股定理,即可求解.【详解】(1)如图,点D即为所求;(2)连接AD,∵DE垂直平分AB,∴DA=DB,∴∠DAB=∠B=15°,∴∠ADC=∠DAB+∠B=15°+15°=30°,在Rt∆ADC中,DA=2AC=6,∴DB=6,∵222AD DC AC=+,∴DC=∴BC=DB+DC=6+【点睛】本题主要考查尺规作图以及直角三角形的性质和勾股定理,熟练掌握直角三角形中,30°角所对的直角边等于斜边的一半,是解题的关键.。
八年级数学上册测试题及答案(1-6章)

八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
24-25八年级数学第一次月考卷(深圳专用,北师大版八上第1~2章:勾股定理+实数)(考试版A4)

2024-2025学年八年级数学上学期第一次月考卷(深圳专用)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版第一章勾股定理+第二章实数。
5.难度系数:0.68。
第Ⅰ卷一、选择题:本大题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列数中是无理数的是()A.2πB.3.1415926C.117D. 3.6-2.以下列各组数为边长,不能构成直角三角形的是()A.8,15,17B.7,24,25C.6,8,10D.1,13)A3=B=C6´=D+= 4.如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A.16B.25C.144D.1695.实数a ,b 在数轴上的位置如图所示,且|a |>|b ||2a +b |的结果为( )A .2a +b .﹣2a +b C .a +b D .2a ﹣b6.使代数式y =有意义的自变量x 的取值范围是( )A .4x ¹B .3x >C .3x ³D .3x ³且4x ¹7.在四边形ABCD 中,AD BC ∥,90D Ð=°,5AD =,3BC =,分别以A ,C 为圆心,大于12AC 的长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O ,若点O 是AC 的中点,则CD 的长为( )A B C .D .48.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC BD ,交于点O .若1AD =,4BC =,则22AB CD +等于( )A .15B .16C .17D .20第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。
2020秋北师大版八年级数学上第一、二章检测题含答案

B A八年级数学上第一章《勾股定理》一、选择题1.在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A .26 B .18 C .20 D .212.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A . 可能是锐角三角形 B . 不可能是直角三角形 C . 仍然是直角三角形 D . 可能是钝角三角形3.△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,AB =8,BC =15,CA =17,则下列结论不正确的是( )A .△ABC 是直角三角形,且AC 为斜边B .△ABC 是直角三角形,且∠ABC =90° C .△ABC 的面积是60D .△ABC 是直角三角形,且∠A =60°4.等边三角形的边长为2,则该三角形的面积为( )A .4 3B . 3C .2 3D .3 5.已知a 、b 、c 是三角形的三边长,如果满足(a -6)2+|b -8|+c -10=0,则三角形的形状是( ) A .底与边不相等的等腰三角形 B .等边三角形 C .钝角三角形 D .直角三角形6.一艘轮船以16海里∕小时的速度从港口A 出发向东北方向航行,同时另一轮船以12海里∕小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距( ) A .36 海里 B .48 海里 C .60海里 D .84海里7.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( ) A .4 B .8 C .10 D .128.如图中字母A 所代表的正方形的面积为( ) A .4 B .8 C .16 D .649.一直角三角形的一条直角边长是7cm ,另一条直角边与斜边长的和是49cm ,则斜边的长( ) A .18cm B .20cm C .24cm D .25cm10.在△ABC 中,AB =12cm , BC =16cm , AC =20cm , 则△ABC 的面积是( ) A .96cm² B .120cm² C .160cm² D .200cm² 11.适合下列条件的△ABC 中, 直角三角形的个数为( )①a =13,b =14,c =15; ②a =6,∠A =45°; ③∠A =32°,∠B =58°;④a =7,b =24,c =25;⑤a =2,b =2,c =4.A .2个B .3个C .4个D .5个12.如图:有一圆柱,它的高等于8cm ,底面直径等于4cm(取π=3)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约.( ) A .10cm B .12cmC .19mD .20cmA289 225(8题图)3220BA13.若△ABC 中,AB =13,AC =15,高AD =12,则BC 的长为( ) A .14 B .4 C .14或4 D .以上都不对 二.填空题14.木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面(填“合格”或“不合格”) ;15.将长为10米的梯子斜靠在墙上,若梯子的上端到墙的底端的距离为8米,则梯子的底端到墙的底端的距离为 ;16.等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为 ; 17.如图,∠C =∠ABD =90°,AC =4,BC =3,BD =12,,则AD = ;18.如图,小红欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达B 点200m ,结果他在水中实际游了520m ,则该河流的宽度为 。
勾股定理全学案人教版

勾股定理 课 堂 练 习(1)导入:如图,每个小方格的面积均为1,请你分别计算图1、图2中正方形A 、B 、C 的面积,并观察正方形A 、B 、C 的三个面积之间存在的关系.图1中:图2中:结论:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 . 勾股定理再证明:将四个全等的直角三角形如图围成一个大的正方形,请你利用两种不同的方法计算正方形的面积.探究1:一个门框的尺寸如图所示,一个长m 3,宽m 2.2的薄木板能否从门框内通过?说明理由.练习:1.在ABC Rt ∆中,︒=∠90C ,A ∠、B ∠、C ∠的对边分别为a 、b 和c⑴若2=a ,4=b ,则c = ; 斜边上的高为 .⑵若3=b ,4=c ,则a = . 斜边上的高为 . ⑶若3=ba ,且102=c ,则a = ,_______=b .斜边上的高为 . ⑷若21=c b ,且33=a ,则c = ,_______=b .斜边上的高为 . 2.正方形的边长为3,则此正方形的对角线的长为 .3.正方形的对角线的长为4,则此正方形的边长为 .4.有一个边长为50dm 的正方形洞口,想用一个圆盖去盖住这个洞口,求圆的直径至少多长(结果保留整数)--1--勾股定理 强化练习(1)一.选择题1.如图,正方形A 的面积为16,正方形B 的面积为9,则正方形C 的面积为( )A .7B .25C . 12.5D .1442.如上图,正方形C 的面积为16,正方形B 的面积为9,则正方形A 的面积为( )A .7B .25C . 12.5D .1443.若ABC Rt ∆的两直角边长分别为3cm 和4cm ,则斜边长为( )A .2cmB .7cmC .5cmD .12cm4.在ABC Rt ∆中,︒=∠90A ,cm a 13=,cm b 5=,则c 为( )A .194B .12C .8D .185.如图,在ABC ∆中,边AC 的长为( )A .1B .21C .3281D .96.已知直角三角形的两边长分别为3和4,则另一边长为( )A .7B .5C .7D .7或5二.填空题:7.在ABC Rt ∆中,已知两直角边长为6和8,则斜边长为 .8.如图1,在ABC ∆中,边AC 的长为 .9.如图2,在ABC ∆中,边AB 的长为 .10.在ABC ∆中,12=AB ,3:4:=BC AC ,则AC = .三.解答题:11.一旗杆离地面m 6处折断,旗杆顶部落在离旗杆底部m 8处,求旗杆折断之前有多高?12.如图,要从电杆离地面5米处向地面拉一条长为7米的钢缆,求地面钢缆固定点A 到电线杆底部B 的距离(保留根号)--2--勾股定理 课 堂 练 习(2)一.复习:如图,在ABC Rt ∆中,︒=∠90C ,A ∠、B ∠、C ∠的对边分别为a 、b 、c⑴若6=a ,8=b ,求c 的值 ⑵ 若5=a ,13=c ,求b 的值二.探究2:如图,一个m 3长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 的距离为m 5.2,如果梯子顶端A 沿墙下滑m 5.0,那么梯子底端B 也外移m 5.0吗?练习:如图,等边三角形的边长为6.⑴求高AD 的长;⑵求这个三角形的面积(保留根号)三.探究3:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示13的点吗?练习:请你在数轴上表示出下列各数的点:5,10,17--3--勾股定理 强化练习(2)1.计算:⑴⎪⎭⎫ ⎝⎛-÷a b a b 3232 ⑵ ()y x xy x xy -⋅-22.解方程:⑴xx x --=+-21321 ⑵ 11113122-=--+x x x3.已知y 是x 的反比例函数,且该函数的图象经过点A (2,3).⑴求这个函数的解析式;⑵画出该函数图象4.如图,池塘边有A 、B 两点,点C 是与BA 方向成直角的AC 方向上一点,测得m CB 60=,m AC 20=,你能求出A 、B 两点间的距离吗?(结果保留根号)5.请你在数轴上表示出下列各数的点:2,3,66.在ABC ∆中,︒=∠90C ,cm AC 1.2=,cm BC 8.2=.⑴求ABC ∆的面积; ⑵求斜边AB 的长; ⑶求高CD 的长.--4--勾股定理 课 堂 练 习(3)一.复习:如图,一个圆锥的高cm AO 4.2=,底面半径cm OB 7.0=,求AB 的长二.练习1.长方形零件尺寸(单位:mm )如图,求两孔中心的距离.2.在ABC ∆中,︒=∠90C ,10=AB .⑴︒=∠30A ,求BC ,AC 的长(精确到0.01) ⑵︒=∠45A ,求BC ,AC 的长(精确到0.01)3.如图,有一个圆柱形水杯,底面直径为15厘米.将一个塑料吸管靠在一边正好高出水杯5厘米,如果把它拉向另一边,它的顶端恰好到达水杯的顶沿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都天成教育个性化教育学案教师:周旋
《勾股定理、实数》测试题1
、选择题(每小题4分,共40分。
在每小题所给出
的四个选项中,只有一项符合题
意)
1
、
如图(1),带阴影的矩形面积是()平方厘米
2
、
3
、
4
、
A. 9 B . 24
F列各式中正确的是
F列各组数中以
如图,
.45 D . 51
、底=±3
=4 、-48 - 3=3.3
、a=2, b=3,c=4
、a=6,b=8,c=10
c为边的三角形不是Rt △的
B 、a=7,b=24,c=25
D 、a=3,b=4,c=5
数轴上A,B两点表示的数分别为-1和、
3
,
点B关于点A的对称点为C,则点C所表示的数为
3理
米
13
5、若某个自然数的算术平方根是X,则下一个自然数
的算术平方根是
\X2 1 C 、• X 1 D、x2 1
6、如果梯子的底端离建筑物5米,13米长的梯子可以达
到该建筑物的高度是
A、12 米
B、13 米
C、14 米D 、15 米
7、有两棵树,一棵高6米,另一棵高2米,两树相距5 米.
一只小鸟从一棵树的树梢飞到另一棵树的树梢,至
8、如图,有一块直角三角形纸片,两直角边AC =6cm,
BC =8cm,现将直角边AC沿直线AD折叠,使它落在斜
边AB上,且与AE重合,则CD等于
A、2 cm B > 3 cm C > 4 cm D 、5 cm
9、直角三角形的两条直角边长为a,b,斜边上的高为h,
则下列各式中总能成立的是A、ab=h 2
1 1 1 1 1 1
2 2 2 ———-2 T~2 T~2
B、a +b =2h C 、a+b=h D、a +b =h
二、填空题(每小题3分,共36分)
1、计算J
25
= _______ ; 土= ___________________ 。
2、比较大小:
5 7 ----- 4 11。
3、直角三角形两直角边长分别为3和4,则它斜边上的
高为 __________ 。
4、 ________________________________________________ 如
果一个正数的平方根为2a-1和4-a ,则a= _____________ ;
这个正数为 ______ 。
5、的6的算术平方根是________ ;
6、如果、x—2+(x—y —12) =0,那么3x+ y= ________ ;
7、用长4cm,宽3cm的邮票300枚不重叠、不留空隙地
摆成一个正方形,这个正方形的边长等于 __________ cm.
8、一只蚂蚁从长为4cm宽为3 cm,高是12 cm的长
方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的
长是 ____________ 。
9、 _________ 在一棵树的10米高处有两只猴子为抢吃池塘边
水果,一只猴子爬下树跑到A处(离树20米)的池塘边。
另一只爬到树顶D后直接跃到A处,距离以直线计算,如
果两只猴子所经过的距离相等,则这棵树高米。
10、如图,所有的四边形都是正方形,所有的三角形都
是直角三角形,其中最大的正方形的边长为7cm,则正方
形A, B, C, D的面积之和为___________ cm。
11、在Rt" ABC中,斜边AB = 2,贝U AB2+BC J+AC2= 。
12、如图,直线I过正方形ABCD勺顶点B,点A、点C 到直
线l的距离分别是3和4,则该正方形的边长是
三、计算题(每小题5分,共10分)
成都天成教育个性化教育学案
教师:周旋
2、 已知2a _ 1的平方根是_ 3,4是3a • b _ 1的算术 平方根,则a +2b = ____________ .
3、 已知 y = x - 2 ■ 2 - x • 3 ,贝 y y =
4、如图,E 为正方形ABCD 勺边AB 上的一点,AE=3,BE=1,P
为AC 上的动点,则PB+PE 的最小值为 ____ . 5、已知:直角△ ABC 的三边a 、b 、c ,且周长为15,斜
四、解答题(14分)
1、在一次消防演习中,消防员架起一架25米长的云梯, 如图斜靠在一面墙上,梯子底端离墙
7米.
(1) 求这个梯子的顶端距地面有多高? (2) 如果消防员接到命令,要求梯子的顶端下降
4米
(云梯长度不变),那么云梯的底部在水平方向应滑动 多少米?( 8分)
边c=7,则厶ABC 的面积 _____________
二、解答题
1、为了丰富少年儿童的业余 25km, CA = 15 km , DB = 10km ,试问:图书室 E 应该 建
在距点A 多少km 处,才能使它到两所学校的距离相 等?( 8分)
1、
生活,某社区要在如图所示 AB 所在的直线建一图书室, 本
社区有两所学校所在的位 置在点C 和点D 处,CAI AB 于A ,
DB 丄AB 于 B,已知AB=
2、观察例题:•••
7 ::: '•. 9,即 2 7 3
7的整数部分为2,小数部分为(7
~
2)。
请你观察
上述的规律后试解下面的问题:
如果 2的小数部分
I
为a ,
3
的小数部分为b ,求ab a b 的值。
(6 分)
2、如图,长方体盒子(无盖)的长、宽、高分别是 12cm ,8cm,30cm,在AB 中点C 处有一滴蜜糖,一只小虫 从D 处爬到C 处去吃,有无数种走法,(1)则最短路程 是多少?( 5分)(2)此长方体盒子(有盖)能放入木棒 的最大长度是多少?( 5分)
3
2、(一 1) +( 2009
教师:周旋
探B组
一、填空题(每小题4分,共20分)
1、计算(聶+2)2005(2 _ J5)2006= ___________
三、知识探索(每题6分,共12分)
1、细心观察右图和认真分析下列各式,然后解答问题:
(耐+1=2 S1 =T ;(J2)2+1 = 3
(1)请用含n的(n为正整数)的等式表示上述变化的规
律为
______________________________________________________________
OA io ?
2 2 2
⑶求出s •虽•…y。
的值。
2、如图,A B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M使铺设水管的费用最节省,并求出总费用是多少?
(T3)2 +1 =4 S3;
(2)推算出OA5二
0 1
参考答案
A卷(共100分)
、选择题
二、填空题
丄12 亠5 亠49
1、5 ± 9
2、V 3 、 4 、-3 或49 或。
5、2
5 3 9
6、-2 7 、60 8、193cm 9、15 10、49 11 、8 12 、5
三、计算题
1、14 321
、一一32
四、解答题(14分)
1
、
(1) 24m(2) 8m 2、6-1
B卷(50分)、填空题
1
、 5 -2 2 、14 3 、94、5 5 、15 4
、
解答题
1
、
10km 2、(1)25 cm (2)2 277cm
三
、1、(1) (.n)2 1 = n Q n Sn 二
2
( 20 、、510 1 -(3)45
24
2、作A关于CD的对称点A , 连接A B与CD)的交点为M点为所求
点
可求得AM+BM='AB=50千米,总费用为50X 3=150万元。