蛋白质的空间结构

合集下载

蛋白质的结构知识要点总结

蛋白质的结构知识要点总结


1.蛋白质的二级结构

定义:指蛋白质分子中某一段肽链的局部空间结构,即蛋 白质主链原子的局部空间排布(不涉及侧链原子的位置)。 维持二级结构的化学键:氢键 二级结构的主要类型 ■α-螺旋 ■β-折叠 ■3-转角 ■3-凸起 ■无规则卷曲

(1)α一螺旋 多肽链主链的段(肽段)从 N端到C端形成顺时针方向 的右手螺旋结构。 特征


结枃域指多肽链在超二级结构基础上进一步绕曲折叠 成的近似球状的紧密结构。
3.蛋白质的三级结构

定义:指球状蛋白的多肽链在二级结构、超二级结构和结 构域等结构层次的基础上,组装而成的完整的结构单元。 换一句话说。三级结构指多肽链上包括主链和侧链在内 的所有原子在三维空间内的分布。 化学健:疏水键和氢键、离子键、范德华力等来维持其空 间结构的相对稳定。



1、每隔3.6个AA残基螺 旋上升一圈,螺距0.54nm
2、螺旋体中所有氨基酸 残基R侧链都伸向外侧链中 的全部>C=0和>N-H几乎都 平行于螺旋轴 3、每个氨基酸残基的 >NH与前面第四个氨基酸残 基的>C=0形成氢键,肽链上 所有的肽键都参与氢键的形 成

(2)β-折叠

β-折叠(β结构或β构象)是一种重复性的结构,可以把它想 象为由折叠的条状纸片侧向并排而成,每条纸片可看成是 一肽链。在这里主链沿纸条形成锯齿状.R-基垂直于折平 面,交替分布于平面的上下。
β-凸起的结构

(5)无规卷曲 无规卷曲指没有一定规律的松散肽链结构。但对一 定的球蛋白而言,特定的区域有特定的卷曲方式,因此,将 其归入二级结构。酶的功能部位常常处于这种构象区域 里。所以受到人们的重视。

蛋白质的三维结构

蛋白质的三维结构

蛋白质的三维结构蛋白质是构成生命体的重要组成部分,它们通过不同的结构和功能满足生命体各种复杂的需求。

蛋白质的结构可以分为三个层次:一级结构、二级结构和三级结构。

其中,三级结构是指蛋白质分子链上不同氨基酸残基间的空间排布形态。

蛋白质的三维结构非常复杂,它包含了丰富的信息,如蛋白质的形态、功能、稳定性等。

研究蛋白质的三维结构对于生物学、医学和药学等领域都具有重要的意义。

了解蛋白质的三维结构,可以为药物研发、基因工程以及治疗疾病等方面提供有价值的信息。

那么,蛋白质的三维结构是如何形成的呢?蛋白质的三级结构是由一级和二级结构组装而成的,其中,一级结构是由氨基酸残基按照特定的顺序排列在一起,形成的线性分子链;而二级结构则是由氨基酸残基之间的氢键作用形成的空间结构。

蛋白质的三级结构是由一级和二级结构之间的非共价作用力、共价作用力和其他物理化学过程共同作用形成的。

其中,非共价作用力包括氢键、范德华力、离子键等;共价作用力包括硫氢键、二硫键等。

这些作用力通过折叠和旋转等方式,将蛋白质分子链上的不同氨基酸残基排列在一起,形成特定的结构。

在蛋白质的折叠过程中,通常会形成一系列的中间态,这些中间态对于蛋白质的结构和功能有着重要的作用。

在一些情况下,蛋白质的折叠可能出现异常,导致蛋白质失去原有的结构和功能,进而引起一系列的疾病。

例如,阿尔茨海默病和帕金森病等神经系统疾病,就与蛋白质的异常折叠有关。

如何解析蛋白质的三维结构呢?目前,我们可以利用各种科学方法手段对蛋白质的三维结构进行研究。

其中,常见的方法包括X射线晶体衍射、核磁共振技术、电子显微镜等。

X射线晶体衍射是一种较为常见的方法,它利用X射线的波长和能量特性,对蛋白质晶体进行研究。

通过测量X射线在晶体中的散射情况,可以确定蛋白质的原子间距和空间排布情况。

这种方法极为准确,但需要大量的样品和长时间的数据收集和分析。

核磁共振技术是一种能够测量蛋白质分子空间结构的技术。

通过对不同核自旋状态的探测和研究,可以获得蛋白质的结构和动力学信息。

蛋白质的一二三四结构

蛋白质的一二三四结构

一、蛋白质的一级结构蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。

它是由基因上遗传密码的排列顺序所决定的。

各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。

迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。

蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。

二、蛋白质的空间结构蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。

蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。

例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。

蛋白质的空间结构就是指蛋白质的二级、三级和四级结构。

(一)蛋白质的二级结构蛋白质的二级结构(secondary structure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。

1.肽键平面(或称酰胺平面,amide plane)。

Pauling等人对一些简单的肽及氨基酸的酰胺等进行了X线衍射分析,得出图1-2所示结构,从一个肽键的周围来看,得知:(1)中的C-N键长0.132nm,比相邻的N-C单键(0.147nm)短,而较一般C=N双键(0.128nm)长,可见,肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内。

蛋白质的空间构象

蛋白质的空间构象

蛋白质的空间构象
蛋白质的空间构象是指蛋白质在三维空间中的折叠方式和结构形态。

一般来说,蛋白质的空间构象包括原始结构、二级结构、三级结构和四级结构。

1. 原始结构:指的是蛋白质的氨基酸序列。

蛋白质的原始结构是由一系列氨基酸组成的多肽链,每个氨基酸通过肽键连接。

2. 二级结构:指的是蛋白质中氨基酸多肽链的局部折叠方式。

常见的二级结构包括α-螺旋和β-折叠。

α-螺旋是一种具有螺
旋形状的结构,多肽链会紧密地缠绕在一起。

β-折叠是由平行
或反平行排列的β-片段组成的结构,多肽链以折叠方式相互
连接。

3. 三级结构:指的是蛋白质中氨基酸多肽链在整体上的三维空间折叠方式。

蛋白质的三级结构由二级结构区域的折叠和连接决定,决定了蛋白质的整体形状。

4. 四级结构:指的是蛋白质中多个氨基酸多肽链的相互组装和综合。

一些蛋白质由多个互相连接的氨基酸多肽链组成,这种组合形式称为四级结构。

蛋白质的空间构象决定了其功能和性质。

不同的空间构象决定了蛋白质的结构和功能多样性,成为生物体内各种生化反应和信号传导的关键分子。

蛋白质的三维结构

蛋白质的三维结构

二、稳定蛋白质三维结构的作用力
R基团间的相互作用及稳定蛋白质三维构象的作用力 a.盐键 b.氢键 c.疏水键 d.范得华力 e.二硫键
共价键和次级键键能对比
• 肽键 • 二硫键 • 离子键 • 氢键 • 疏水键 • 范德华力
90kcal/mol
3kcal/mol 1kcal/mol 1kcal/mol 0.1kcal/mol
3.肽链中连续出现带庞大侧链的氨基 酸如Ile,由于空间位阻,也难以形成α 螺旋。
4.在多肽链中只要出现 pro,α -螺旋就被中断,产 生一个弯曲(bend)或结 (kink)。因为脯氨酸的 —亚氨基上 氢原子参与肽 键的形成后,没有多余的氢 原子形成氢键;另外,脯氨 酸的 环内—碳原子参与R 基吡咯环的形成,其C-N键 不能自由旋转,不易形成 -螺旋。
一些侧链基团虽然不参与螺旋,但 他们可影响α -螺旋的稳定性 1.在多肽链中连续的出现带同种电荷的 极性氨基酸,α -螺旋就不稳定。如多聚Lys、 多聚Glu。而当这些残基分散存在时,不影响 α螺旋稳定。 2.Gly的R基太小,Φ角和Ψ角可取较大范 围,在肽中连续存在时,使形成α螺旋所需 的二面角的机率很小,不易形成α螺旋。如 丝心蛋白含50%Gly,所以也是螺旋的破坏者。
一、蛋白质的三维结构
蛋白质的空间结构(构象、高级结构) ——蛋白质分子中所有原子在三维空间的 排列分布和肽链的走向。
一、蛋白质的三维结构
二级结构 超二级结构和结构域
蛋白质的三维结构
三级结构
四级结构
研究蛋白质构象的方法
构型和构象 构型--构型是指在立体异构中,一 组特定的原子或基团在空间上的几何布 局。两种不同构型的转变总是伴随着共 价键的断裂和重新形成。 构象--当单键旋转时可能形成不同 的立体结构。不涉及共价键的断裂。 (一)X射线衍射法 (二)研究溶液中蛋白质构象的光谱学 方法 如:紫外差光谱、荧光和荧光偏震、 圆二色性、核磁共振(NMR)吸收

蛋白质的四层结构

蛋白质的四层结构

蛋白质的四层结构蛋白质是生命体中最基本的分子之一,它在维持生命活动中发挥着至关重要的作用。

蛋白质的功能与其结构密切相关,而蛋白质的结构又可分为四个层次,即一级结构、二级结构、三级结构和四级结构。

本文将从这四个层次依次进行描述。

一级结构是蛋白质最基本的结构层次,它由氨基酸的线性排列所决定。

蛋白质是由20种不同的氨基酸组成的,这些氨基酸通过肽键相连形成多肽链。

一级结构的具体序列决定了蛋白质的性质和功能。

例如,人体内的胰岛素蛋白质就是由51个氨基酸组成的多肽链,它的一级结构决定了它的胰岛素活性。

二级结构是指蛋白质中由氢键相连的局部结构。

其中最常见的二级结构是α-螺旋和β-折叠。

α-螺旋是一种右旋螺旋结构,其特点是氨基酸侧链朝向螺旋外侧,而β-折叠则是由多个β-片段相互连接而成的结构。

这些二级结构不仅赋予了蛋白质一定的稳定性,还对其功能发挥起着重要作用。

三级结构是指蛋白质中各个二级结构之间的空间排列。

蛋白质的三级结构是由各种非共价键相互作用所决定的,例如氢键、离子键、范德华力等。

这些相互作用使得蛋白质能够折叠成特定的形状,并且能够维持其稳定性和功能性。

例如,人体内的酶蛋白质就是通过其特定的三级结构来催化化学反应的。

四级结构是指由多个多肽链相互组装而成的复合物结构。

这些多肽链可以是相同的,也可以是不同的。

多肽链之间通过各种非共价键相互作用来维持其稳定性和功能性。

例如,人体内的抗体蛋白质就是由两个相同的多肽链和两个不同的多肽链组装而成的四级结构。

蛋白质的四层结构在维持生命活动中发挥着重要作用。

不同的结构层次决定了蛋白质的不同性质和功能。

一级结构决定了蛋白质的序列和基本特征,二级结构赋予了蛋白质稳定的空间结构,三级结构使得蛋白质能够折叠成特定的形状,而四级结构则使得蛋白质能够组装成复杂的功能单位。

这四层结构的相互作用使得蛋白质能够发挥其特定的功能,从而维持生命的正常运转。

总结起来,蛋白质的四层结构涵盖了其从基本的氨基酸序列到复杂的多肽链组装的全过程。

蛋白质空间结构

蛋白质空间结构

蛋白质结构与功能的关系――――蛋白质的一级结构一、蛋白质的空间结构决定了其生物学功能。

下面以肌红蛋白和血红蛋白为例,说明蛋白质空间结构和功能关系。

(一)蛋白质的一级结构决定其高级结构如核糖核酸酶含124个氨基酸残基,含4对二硫键,在尿素和还原剂β-巯基乙醇存在下松解为非折叠状态。

但去除尿素和β—巯基乙醇后,该有正确一级结构的肽链,可自动形成4对二硫键,盘曲成天然三级结构构象并恢复生物学功能。

(二)一级结构与功能的关系已有大量的实验结果证明,如果多肽或蛋白质一级结构相似,其折叠后的空间构象以及功能也相似。

几种氨基酸序列明显相似的蛋白质,彼此称为同源蛋白质。

可认为同源蛋白质来自同一祖先,它们的基因编码序列及蛋白质氨基酸组成有较大的保守性,构成蛋白质家族。

在进化过程中祖先蛋白的基因发生突变,蛋白质结构逐渐发生变异,同源蛋白质序列的相似性大小反映蛋白质之间的进化关系的近远。

比较广泛存在各种生物的某种蛋白质,如细胞色素C的一级结构,通过分析不同物种的细胞色素C一级结构间相似程度,可反映出该物种在进化中的位置。

二、蛋白质的空间结构与功能的关系蛋白质的空间结构决定了其生物学功能。

下面以肌红蛋白和血红蛋白为例,说明蛋白质空间结构和功能关系。

(一)肌红蛋白(Mb)和血红蛋白(Hb)的结构的相似性决定了功能的相似性肌红蛋白与血红蛋白都都能与氧结合,因为它们以血红素为辅基,并且在血红素周围以疏水性氨基酸残基为主,形成空穴,为铁原子与氧结合创造了结构环境。

(二)肌红蛋白(Mb)和血红蛋白(Hb)的结构的差异性决定了功能的不同肌红蛋白为单肽链蛋白质,而血红蛋白是由四个亚基组成的寡聚蛋白,这样的空间结构差异决定了它们之间的功能的各自特性。

肌红蛋白的主要功能是储存氧。

其三级结构折叠方式使辅基血红素对环境中O2的浓度改变非常敏感,当环境中的O2分压高时,Mb与O2结合能力极高,起到对O2的储存功能;当环境中的O2分压低时,Mb与O2结合能力大大降低,对外释放O2,为环境提供O2供机体所需。

生化生物化学问答(1)重点知识总结

生化生物化学问答(1)重点知识总结

1.什么是蛋白质的一级结构?为什么说蛋白质的一级结构决定其空间结构?答:蛋白质一级结构指蛋白质多肽链中氨基酸残基的排列顺序。

因为蛋白质分子肽链的排列顺序包含了自动形成复杂的三维结构(即正确的空间构象)所需要的全部信息,所以一级结构决定其高级结构。

2.什么是蛋白质的空间结构?蛋白质的空间结构与其生物功能有何关系?答:蛋白质的空间结构是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链走向。

蛋白质的空间结构决定蛋白质的功能。

空间结构与蛋白质各自的功能是相适应的。

3.蛋白质的α- 螺旋结构有何特点?答:(1)多肽链主链绕中心轴旋转,形成棒状螺旋结构,每个螺旋含有3.6个氨基酸残基,螺距为0.54nm,氨基酸之间的轴心距为0.15nm.。

(2)α-螺旋结构的稳定主要靠链内氢键,每个氨基酸的N—H与前面第四个氨基酸的C=O形成氢键。

(3)天然蛋白质的α-螺旋结构大都为右手螺旋。

4.蛋白质的β- 折叠结构有何特点?答:β-折叠结构又称为β-片层结构,它是肽链主链或某一肽段的一种相当伸展的结构,多肽链呈扇面状折叠。

(1)两条或多条几乎完全伸展的多肽链(或肽段)侧向聚集在一起,通过相邻肽链主链上的氨基和羰基之间形成的氢键连接成片层结构并维持结构的稳定。

(2)氨基酸之间的轴心距为0.35nm(反平行式)和0.325nm(平行式)。

(3)β-折叠结构有平行排列和反平行排列两种。

5.举例说明蛋白质的结构与其功能之间的关系。

答:蛋白质的生物学功能从根本上来说取决于它的一级结构。

蛋白质的生物学功能是蛋白质分子的天然构象所具有的属性或所表现的性质。

一级结构相同的蛋白质,其功能也相同,二者之间有统一性和相适应性。

6.什么是蛋白质的变性作用和复性作用?蛋白质变性后哪些性质会发生改变?答:蛋白质变性作用是指在某些因素的影响下,蛋白质分子的空间构象被破坏,并导致其性质和生物活性改变的现象。

蛋白质变性后会发生以下几方面的变化:(1)生物活性丧失;(2)理化性质的改变,包括:溶解度降低,因为疏水侧链基团暴露;结晶能力丧失;分子形状改变,由球状分子变成松散结构,分子不对称性加大;粘度增加;光学性质发生改变,如旋光性、紫外吸收光谱等均有所改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同的.构成DNA分子的基本单位是脱氧核苷酸,许许多多脱氧核苷酸通过一定的化学键连接起来形成脱氧核苷酸链,每个DNA分子是由两条脱氧核苷酸链组成.DNA分子结构的特点是:①DNA分子的基本骨架是磷酸和脱氧核糖交替排列的两条主链;②两条主链是平行但反向,盘旋成的规则的双螺旋结构,一般是右手螺旋,排列于DNA分子的外侧;③两条链之间是通过碱基配对连接在一起,碱基与碱基间是通过氢键配对在一起的
蛋白质的结构:(氨基酸-多肽-肽链-蛋白质)
一级结构:构成蛋白质的单元氨基酸通过肽键连接形成的线性序列,为多肽链.
氨基酸在蛋白质分子中的连接方式
1.肽键
蛋白质分子中的氨基酸之间是通过肽键相连的,—个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合,即形成肽键(酰胺键,图2-1-2).
2.肽与多肽链
图2-1-2 肽与肽键
氨基酸通过肽键(-CO-NH-)相连而形成的化合物称为肽(peptide).由两个氨基酸缩合成的肽称为二肽,三个氨基酸缩合成三肽,以此类推.一般由十个以下的氨基酸缩合成的肽统称为寡肽,由十个以上氨基酸形成的肽被称为多肽(polypeptide)或多肽链.
氨基酸在形成肽链后,氨基酸的部分基团已参加肽键的形成,已经不是完整的氨基酸,称为氨基酸残基.肽键连接各氨基酸残基形成肽链的长链骨架,即…Cα-CO-NH-Cα…结构称为多肽主链.各氨基酸侧链基团称为多肽侧链.每个肽分子都有一个游离的α-NH2末端(称氨基末端或N端)和一个游离α-COOH末端(称羧基末端或C端).每条多肽链中氨基酸顺序编号从N端开始.书写某多肽的简式时,—般将N端书写在左侧端.
(二)蛋白质分子的一级结构
1.蛋白质分子的一级结构
多肽链中氨基酸的排列顺序称为蛋白质的一级结构.氨基酸排列顺序是由遗传信息决定的,氨基酸的排列顺序是决定蛋白质空间结构的基础,而蛋白质的空间结构则是实现其生物学功能的基础.1953年,英国生物化学家Fred Sanger报道了胰岛素(insulin)的一级结构,这是世界上第一个被确定一级结构的蛋白质(图2-1-3).同年,Watson与Crick发现DNA的双螺旋结构.生物化学由此迈向了一个更高层次——分子生物学时代.
图2-1-3 人胰岛索的一级结构
(三)蛋白质分子的空间结构
蛋白质分子井非如一级结构那样是完全展开的“线状”,而是处于更高级的水平.天然蛋白质可折叠、盘曲成—定的空间结构(三维结构).蛋白质的空间结构指蛋白质分子内各原子围绕某些共价键的旋转而形成的各种空间排布及相互关系,这种空间结构称为构象.按不同层次,蛋白质的高级结构可分为二,三和四级结构. 1.蛋白质的二级结构
多肽链主链中各原子在各局部的空间排布,即多肽链主链构象称为蛋白质的二级结构.
(1)形成二级结构的基础——肽键平面:20世纪30年代末,Pauling L和Corey R开始对肽进行x线结晶衍射图研究,以探索蛋白质的精细结构.他们测定了分子中各原子间的标准键长和键角,发现肽单元(主链的-CαCN-)呈刚性平面(rigid plane),即肽键平面(图2-1-4).
图2-1-4 肽键平面和Cα“关节”示意图
由于C-N键具有部分双键性质,因此C=O和C—N均不能自由旋转.所以整个肽链的主链原子(-CαCN-CαCN-)中只有N-Cα和Cα-N之间的单键可以旋转,N -Cα之间的旋转角为φ (phi),Cα-C之间的旋转角为ψ(psi).φ和ψ的大小就决定了Cα相邻两个肽键平面之间的相对位置关系,于是肽键平面就成为主链构象的结构基础.如每个氨基酸的ψ和φ已知,整个多肽链的主链构象就确定了.
(2)蛋白质二级结构的基本形式:蛋白质的肽链局部盘曲、折叠的主要有α-螺旋、β-折叠、β-转角和不规则卷曲等几种形式.
1) α-螺旋:肽链的某段局部盘曲成螺旋形结构,称为α-螺旋(图2-1-5).α-螺旋的特征是:①—般为右手螺旋;②每螺旋圈包含3.6个氨基酸残基,每个残基跨距为0.15nm,螺旋上升1圈的距离(螺距)为
3.6×0.15=0.54nm; = 3 \* GB3 ③螺旋圈之间通过肽键上的>C=O和-NH-间形成氢键以保持螺旋结构的稳定;④影响α-螺旋形成的主要因素是氨基酸侧链的大小、形状及所带电荷等性质.
图2-1-5 α-螺旋示意图
2)β-折叠:为—种比较伸展、呈锯齿状的肽链结构.两段以上的β-折叠结构平行排布并以氢键相连所形成的结构称为β-片层或β-折叠层.β-片层可分顺向平行(肽链的走向相同,即N、C端的方向一致)和逆向平行
(两肽段走向相反)结构(图2-1-6).
图2-1-6 β—折叠结构示意图
3) β-转角:此种结构指多肽链中出现的一种180°的转折.β-转角通常由4个氨基酸残基构成,由第1个残基的>C=O与第4个残基的-NH-形成氢键,以维持转折结构的稳定.
4)不规则卷曲:此种结构为多肽链中除以上几种比较规则的构象外,多肽链中其余规则性不强的—些区段的构象.
各种蛋白质依其一级结构特点在其多肽链的不同区段可形成不同的二级结构.如蜘蛛网丝蛋白中有很多α-螺旋及β-折叠层,也有β-转角和不规则卷曲(图2-1-7).
图2-1-7 蜘蛛网丝蛋白
2.蛋白质的三级结构
多肽链中,各个二级结构的空间排布方式及有关侧链基团之间的相互作用关系,称为蛋白质的三级结构.换言之,蛋白质的三级结构系指每一条多肽链内所有原子的空间排布,即多肽链的三级结构=主链构象+侧链构象,三级结构是在二级结构的基础上由侧链相互作用形成的.
多肽链的侧链(也就是氨基酸的侧链)分为亲水性的极性侧链和疏水性的非极性侧链(详见氨基酸分类).水介质中球状蛋白质的折叠总是倾向于把多肽链的疏水性侧链或疏水性基团埋藏在分子的内部.这一现象被称之为疏水作用或疏水效应(图2-1-8).疏水作用的本质是疏水基团或疏水侧链出自避开水的需要而被迫相互靠近,并不是疏水基团之间有什么吸引力的缘故,因此,将疏水作用称之为“疏水键”是不正确的.疏水作用是维系蛋白质三级结构最主要的动力.除疏水作用外,维系蛋白质的三级结构的动力还有氢键、盐键(离子键)、范德华力和二硫键等.
图2-1-8 肌红蛋白三级结构
蛋白质中的肽键称为主键,氢键、盐键、疏水作用、离子键、二硫键等是副键(次级键,图2-1-9),副键因外力作用(如热)容易断裂,导致蛋白质变性失活.
图2-1-9 稳定和维系蛋白质三级结构的键
三级结构对于蛋白质的分子形状及其功能活性部位的形成起重要作用,通过三级结构的形成,可将肽链中某些局部的几个二级结构汇成“口袋”或“洞穴”状,这种结构称为结构域(domain),它们的核心部分多为疏水氨基酸构成,结合蛋白质的辅基常镶嵌在其中,这种结构域多半是蛋白质的活性部位.有的蛋白质分子中只有一个特异的结构域,有的则有多个结构域.最近,在很多蛋白质分子中发现有两段β-折叠之间通过一段α-螺旋相连而形成的球状结构,以及多个α-螺旋形成的螺旋束,或三个二硫键将肽链连接成的三环状结构等结构域与功能活性有密切关系.
3.蛋白质的四级结构
有的蛋白质分子由两条以上具有独立三级结构的肽链通过非共价键相连聚合而成,其中每一条肽链称为一个亚基或亚单位(subunit).各亚基在蛋白质分子内的空间排布及相互接触称为蛋白质的四级结构.具有四级结构的蛋白质,其几个亚基的结构可以相同,也可以不同.如红细胞内的血红蛋白(hemoglobin,Hb,图2-1-10)是由4个亚基聚合而成的,4个亚基两两相同,即含两个α亚基和两个β亚基.在一定条件下,这种蛋白质分子可以解聚成单个亚基,亚基在聚合或解聚时对某些蛋白质具有调节活性的作用.有的蛋白质虽由两条以上肽链构成,但几条肽链之间是通过共价键(如二硫键)连接的,这种结构不属于四级结构,如前面提到过的胰岛素就是1例.
二级结构:多肽链的某些部分氨基酸残基周期性的空间排列.
三级结构:在二级结构基础上进一步折叠成紧密的三维形式.
四级结构:由蛋白质亚基结构形成的多于一条多肽链的蛋白质分子的空间排列.。

相关文档
最新文档