中职高二数学测试卷
中职数学 2023-2024学年河南省洛阳市中等职业学校高二(下)期末数学试卷(选考)

2023-2024学年河南省洛阳市中等职业学校高二(下)期末数学试卷(选考)一、选择题(每小题5分,共30分)二、填空题(每小题5分,共30分)A .(2,-2)B .(2,2)C .(2,0)D .(2,-4)1.(5分)已知a =(0,-2),b =(1,0)则a +2b =( )→→→→A .-4B .-3C .3D .42.(5分)等差数列{a n }的通项公式是a n =-3n +2,则公差d 是( )A .186B .192C .189D .1953.(5分)等比数列{a n }中,若a 2=6,a 3=12,则S 6等于( )A .x =B .x =-C .y =D .y =-4.(5分)抛物线y =2x 2的准线方程是( )18181818A .+=1B .+=1C .+=1D .+=15.(5分)对称中心在原点,焦点坐标为(-2,0),(2,0),椭圆上一点到两个焦点的距离的和等于6的椭圆的标准方程为( )x 29y 25x 25y 29x 236y 232x 232y 236A .y =±x B .y =±x C .y =±x D .y =±x 6.(5分)双曲线-=1的渐近线方程是( )x 29y 24233249947.(5分)已知向量a =(1,2),b =(3,k ),a ∥b ,则实数k = .→→→→三、计算题(每小题10分,共30分)四.证明题(10分)8.(5分)若a 是单位向量,则|a |= .→→9.(5分)双曲线-=1的离心率为 .x 216x 2910.(5分)抛物线x 2=8y 的焦点到准线的距离为 .11.(5分)已知a =(3,-4),则|a |= .→→12.(5分)抛物线16y +x 2=0的焦点坐标是 .13.(10分)求椭圆+=1的焦点、顶点坐标.x 28y 2514.(10分)已知a =(5,m ),b =(3,-1),且a -3b 与a +b 互相垂直,求m 的值.→→→→→→15.(10分)在等比数列{a n }中,若a 3-a 1=1,a 4-a 2=2,求首项a 1和公比q .16.(10分)如图,P -ABCD 的底面ABCD 是平行四边形,E 是PA 中点.求证:PC ∥平面BDE .。
职业高中高二下学期期末数学试题卷1(含答案)

职业高中下学期期末考试高二《数学》试题一。
选择题1. 5,4,3,2,1中任取一个数,得到奇数的概率为( ) A .21B . 51C . 52D . 532. 从4,3,2,1四个数字中任取3个数字,要组成没有重复数字,且不超过300的三位数共有个( ) A . 12B . 18C . 24D . 723. 已知1sin()63πα-=,且02πα<<,则cos α等于( )4. 已知3sin 5α=,且(,)2παπ∈,则2sin 2cos αα的值等于( ) A.32 B.32- C.34 D.34- 5. 对称中心在原点,焦点坐标为(-2,0),(2,0),长轴长为6的椭圆的标准方程为( )A. 15922=+y xB. 19522=+y xC. 1323622=+y xD. 1363222=+y x6. 已知椭圆方程是204522=+y x ,则它的离心率为 ( )A. 21 B.2 C.25 D.557. 有4名男生5名女生排成一排照相,其中女生必须排在两端的排法有( )种A 、99PB 、22P 77PC 、25C 77PD 、25P 77P8. 把4本不同的书分给两人,每人至少一本,不同分法有( )种A 、6B 、12C 、14D 、169. 椭圆的短轴长为8,焦距为6,弦AB 过1F ,则2ABF ∆的周长是( )A. 10B. 15C. 20D. 2510. 已知53sin =α,⎪⎭⎫⎝⎛∈ππα,2,则αα2cos 2sin 的值等于( ) A 、23 B 、-23 C 、43 D 、-43二。
填空题11. 椭圆13422=+y x 的长轴长为 ,短轴长为 ,焦距为 。
12. 双曲线的两个焦点坐标为)5,0(),5,0(21F F -,且2a =8,则双曲线的标准方程为 。
13.从1,2,3,4,5这五个数字中任取2个,至多有一个偶数的取法 有 种。
14. 20件产品,其中3件次品,从中任取3件,恰有一件次品的取法有 种。
中职数学高二练习题

中职数学高二练习题1. (1) 已知函数 f(x) 的定义域为实数集,且当 x > 0 时,f(x) = ax^2 + bx + 1.(2) 函数 g(x) = 1 - a/x, 在(0, +∞) 内递增.(3) 函数 h(x) = ln(x + c), 其中 c 为任意实数.请根据上述信息,回答以下问题:a) 求函数 f(x) 的表达式,并确定 a 和 b 的值。
b) 求函数 g(x) 的表达式,并确定 a 的值。
c) 若 f(g(x)) = h(x),求 c 的值。
解答:a) 由题意可知,当 x > 0 时,f(x) = ax^2 + bx + 1.由于 g(x) 在(0, +∞) 内递增,说明其可以取到任意大的正数值。
因此,当 x 趋近于正无穷时,g(x) 的值也趋近于正无穷。
再由题意 f(g(x)) = h(x),可得 f(x) = h(g(x)) = h(1 - a/x) = ln((1 - a/x) + c).由两个函数相等可得到两个函数的表达式相等:ax^2 + bx + 1 =ln((1 - a/x) + c).整理得:ax^2 + bx + 1 = ln((x - a)/x + c).由于左边是一个二次函数,右边是一个对数函数,它们恒等意味着在定义域内的每一个 x 都满足对应的值相等,所以等式两边的导数也应该相等。
求 f(x) 的导数:f'(x) = 2ax + b.求 h(g(x)) 的导数:h'(g(x)) = 1/(g(x) + c) * g'(x).求 g(x) 的导数:g'(x) = a/x^2.将两边的导数相等的表达式带入:2ax + b = 1 / ((1 - a/x) + c) * a / x^2.化简得:2ax + b = a / (x^2 - ax + x^2c).由于等式两边的定义域相同,所以等式两边的系数也应相等。
中职数学练习题 2023-2024学年浙江省温州市综合高中(3+2)中职高二(上)期中数学试卷

2023-2024学年浙江省温州市万全综合高中(3+2)中职高二(上)期中数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .-2B .-1C .2D .11.(4分)方程3x −1=19的解是( )A .36°B .30°C .24°D .12°2.(4分)把π5化成角度制是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.(4分)若角α=3rad ,则角α是( )A .4B .-4C .1D .-14.(4分)若直线2x +my +1=0与直线3x +6y -1=0平行,则m =( )A .2B .12C .−12D .-25.(4分)已知直线l 1:x +2y +3=0,l 2:x +ay +1=0,若l 1⊥l 2,则实数a 的值为()A .k 4<k 3<k 2<k 1B .k 1<k 2<k 3<k 4C .k 3<k 4<k 1<k 2D .k 2<k 1<k 3<k 46.(4分)如图,若直线l 1,l 2,l 3,l 4的斜率分别为k 1,k 2,k 3,k 4,则( )A .a >b >cB .c >b >aC .c =a >bD .b >a =c 7.(4分)若a =20.4,b =30.3,c =40.2,则( )二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.A .0B .12C .1D .28.(4分)已知函数f (x )=V W X log 2(2−x ),x ≤0f (x −4),x >0,则f (2022)=( )A .13B .4C .5D .379.(4分)已知M (2,1)、N (-1,5),则|MN |=( )√√A .B .C .D .10.(4分)函数f (x )=xlg (x 2+1)+2x 的部分图象大致为( )11.(4分)已知点A (2,-3),B (3,-2),则线段AB 的中点坐标为 .12.(4分)函数f (x )=log a (x -b )+2(a >0且a ≠1)恒过定点(3,2),则b = .13.(4分)已知过点(0,-2)的直线l 与以点A (3,1),B (-2,5)为端点的线段AB 相交,则直线l 的斜率的取值范围为 .14.(6分)计算:(1)2sin π6•812= ;(2)log 289+log 218−log 31= .15.(6分)直线l :x =1的倾斜角为 ;点P (2,5)到直线l 的距离为 .16.(6分)已知某扇形的圆心角为π6,弧长为2π3,则该扇形的半径为 ;面积为 .17.(6分)已知函数f (x )=2x +11−x+lg (3x +1),则f (0)= 函数定义域是 .√。
职业中学高二数学试题

职高第二学期高二年级毕业考试数学试题(卷)一、 选择题(本题15小题,每题3分,共45分)1.=105sin ___________A.426- B.426+ C. 226- D.226+ 2.=+20sin 80sin 20cos 80cos ___________A.23 B. 23-C.21D. 21-3.函数)42sin(3π-=x y 的周期为___________A.πB. π2C. 2πD. 32π4.在△ABC 中,=︒=∠==b B c a 则边,150,2,33___________ A.13B. 34C.7D.495.在移轴过程中,设新坐标系的原点在旧坐标系中的坐标是(1,2),点M 的旧坐标是(2,1),则M 的新坐标是__________ A.(1,-1) B.(3,3)C.(-1,1)D.(3,1)6.参数方程 ty t x 4123--=-= (t 为参数),表示的是__________ A.射线B.直线C.线段D.圆7.在复平面内,复数i 53+表示的点位于__________ A.第一象限B. 第二象限C. 第三象限D. 第四象限8. )75()34(i i +++=__________A. i 49+B. i 109+C. i 41+D. i 41+-9. =1000i__________A. iB.-iC.-1D.110.下列语句是命题的是__________ A.0>xB.2008年我们去北京旅游吗?C.7大于8D.请把门打开11.已知命题p :2+3=8, q :24是3的倍数,则下列正确的是__________A.为真pB.为真q p ∧C.为真q p ∨D. 为假q p ∨12.逻辑运算=+B A AB __________ A. A B.A C. B D. B13.命题p :0,2=-+∈∃m x x R m 的否定是__________ A. 0,2=-+∉∃m x x R m B. 0,2=-+∈∀m x x R m C. 0,2≠-+∈∀m x x R mD. 0,2≠-+∈∃m x x R m14.将函数x y sin =的图象__________得到函数)3sin(π+=x y 的图象A.向左平移3π个单位 B. 向右平移3π个单位 C.向上平移3π个单位D. 向下平移3π个单位15.下面两个复数互为共轭复数的是__________A.i i +-+11与B. i i --+11与C.i i -+11与D. i i 与+1二、填空题(本题5小题,每题3分,共15分)16.=-8sin 8cos22ππ __________ 17.复数i z 31+=的模长为__________班级:__________________姓名:__________________考号:__________________…………………………………密……………………………………封………………………………线………………………………18.某射击运动员进行射击练习,成绩如下:则该射击运动员射击的环数的平均值为__________ 19. 将(11101.01)2化为十进制__________20. 命题01,:2>+∈∀x R x p 是__________命题(填“真”或“假”)三、解答题(本题4小题,每题10分,共40分)21.已知。
中职高二数学期末试卷

中职高二数学期末试卷职中高二级下学期数学期末模拟试卷一、选择题(将唯一正确答案代号填入表格对应题号内,每题3分,共计36分)1.点A (-3,-4)到x 轴的距离是:A.3B.4C.5D.7 2.点A (0,4),B (-2,0)的中点是:A.(-2,4)B.(-1,2)C.(-2,2)D.(0,2)3.已知直线l 的斜率是3,则直线l 的倾斜角是:A.060B.045C.030D.02404.已知直线l 的倾斜角β=090,则直线l 的斜率是:A.1B.-1C.不能确定D.不存在 5.直线1=x 与y 轴:A.平行B.相交C.重合D.不能确定 6.圆16)7()2(22=-+-y x 的圆心坐标是:A.(2,7)B.(-2,-7)C.(-2,7)D.(2,-7) 7.圆25)6()3(22=-+-y x 的半径长为:A.10B.25C.5D.58.一个棱锥的底面积是402cm ,高是12cm ,则它的体积是 3cm π。
A.130B.140C.150D.1609.一个球的半径增大一倍,那么它的体积增大了几倍。
A.1B.2C.7D.810.一个圆锥的母线是10cm ,侧面展开图是半圆,则圆锥的底面半径是:A.10 cmB.8cmC.6 cmD.5cm11.直线06=+-y x 与直线0=+y x 的交点坐标为A .(-3,3)B .(3,-3)C .(4,2)D .(3,3) 12.某中职学校二年级有12名女排运动员,要从中选出3人调查学习负担情况,调查应采用的抽样方法是:A.随机抽样法B.分层抽样法C.系统抽样法D.无法确定 二、填空题(将最合适的答案填写在对应的位置,每题3分,共15分)。
1.过点A (1,-1)且与x 轴平行的直线方程为 2.一个正方体的体积是83cm ,则它的表面积为 2cm 3.抛一枚硬币,出现一枚正面在上的概率是4.已知一直线的倾斜角是 45,则该直线的斜率是 5.过直线外一点作直线的垂线有 条三、判断(正确的记“√”,错误的记“╳”,每题2分,共10分)。
中职高二数学试题及答案

中职高二数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. -2B. 根号2C. 0.33333(无限循环)D. 1/32. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是:A. 1B. 2C. 3D. 43. 已知等差数列的首项为5,公差为3,第10项的值是:A. 40B. 43C. 45D. 484. 圆的半径为5,圆心到直线的距离为3,则直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切5. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B的结果是:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}6. 以下哪个不等式是正确的?A. |-3| > -3B. |-3| < -3C. |-3| = -3D. |-3| ≤ -37. 已知三角形的两边长分别为3和4,第三边的长a满足的条件是:A. 1 < a < 7B. 0 < a < 7C. 1 ≤ a ≤ 7D. 0 ≤ a ≤ 78. 函数y = sin(x)的周期是:A. πB. 2πC. 4πD. 8π9. 以下哪个是二项式定理的展开式?A. (x+1)^2 = x^2 + 2x + 1B. (x-1)^2 = x^2 - 2x + 1C. (x+1)^3 = x^3 + 3x^2 + 3x + 1D. 以上都是10. 已知向量a=(3, 4),b=(-1, 2),向量a与b的点积是:A. 10B. 8C. 6D. 2二、填空题(每题4分,共20分)11. 已知等比数列的首项为2,公比为2,第5项的值是______。
12. 函数f(x) = x^3 - 3x^2 + 2的极小值点是x = ______。
13. 已知三角形ABC,AB=5,AC=7,BC=6,根据余弦定理,角A的余弦值为______。
职业高中高二下学期期末数学试题卷3(含答案)

职业高中下学期期末考试高二《数学》试题一、选择题(每小题3分,共30分)1、已知,235sin )(παπα<<=13-,则sin()4πα-等于 ( )A.726 B. 7226 C. 7226- D. 726-2、若,则( )A.B.1C.-1D.23、函数函数的最大值是 ( )A. -2B.C.2D.14、到点与点距离之和为10的点的轨迹方程为( )A. B.C.D.5、顶点为原点,准线为的抛物线的标准方程为 ( )A. B. C. D.6、双曲线的渐近线方程为 ( ) A.B.C.D.7、将5个小球放入4个盒子里,不同的方法种数为 ( )A. B. C. D.8、1名教师与4名学生随机的站成一排,教师恰好站在中间位置的概率为( )A. B. C. D.9、事件A 在一次试验中发生的概率为,求在3次独立重复试验中,事件A 恰好发生2次的概率为 ( )A. B. C. D.10、在,A , ( )A.B.C.D.专业 班级 姓名 学籍号 考场 座号二、填空题(每题3分,共24分)11、sin19512、将函数的图像向平移个单位可以得到函数的图像。
13、在14、椭圆的焦点坐标为,长轴长为,短轴长为15、抛物线的的准线方程为16、双曲线的焦距为17、用0、1、2、3、4、这5个数字,可以组成没有重复数字的三位数的个数为18、在的展开式中,第4项的二项式系数为,第4项的系数为三、解答题(共46分)19、当x分别取何值时,函数取得最大值及最小值,最大值与最小值各是多少?(6分)20、已知在中.(8分)21、已知双曲线经过点P(3,6),且双曲线的一条渐近线方程为,求双曲线的标准方程。
(8分)22、求顶点在原点,对称抽为坐标轴,且经过点(-6,-4)的抛物线的标准方程。
(6分)23、停车场有12个车位,有8辆车停放,(6分)(1)共有多少种不同的停车方法?(2)若要求4个空车位要连在一起,那么有多少种不同的停车方法?24、从含有2件次品的5件产品中,(6分)(1)任取2件,求恰有1件次品的概率P1;(2)每次取1件,取后不放回,连续取2次,求恰好有1件次品的概率P2;(3)每次取1件,取后放回,连续取2次,求恰好有1件次品的概率P3. 25、指出正弦函数的图像经过如何变化可以得到正弦型函数的图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
… … … … … … …
… … … … :… 号… 考…
… …
线
… …
… … … … … :… 名 姓订
… … … … … …
… … … …
装
…
…
:
… …
级
… …
班… …
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
盱眙中等专业学校对口高考部 2016-2017 学年第二学期
3 月——第二次测试(月考) 高二年级数学学科试卷 (命题人:杨飞 )
一、选择题:
题号 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
线 线
答案
二、填空题:
x2 y2
19.( 10 分)双曲线
64
36
1 的左、右焦点分别是
F1、 F2 ,
(1) ( 5 分) AB 是左支上过点 F1 的弦,且 |AB|=5,求 △ABF 2 的周长
(2) ( 5 分)点 P 在双曲线上,若 PF1 PF2 ,求 △PF1F2 的面积
b
b
)
A. y2 8x B. y 2 4x C. x2 8y D. x2 4 y
x2 6.若方程
y 2 1表示双曲线,则实数 k 的取值范围是( )
k3 k3
A. { k |-3 <k<3} B.{ k |0<k<3} C.{ k | -3 <k<0} D.{ k |k<-3 或 k>3}
7.
椭圆
x2 a2
本试卷分第 I 卷(客观题)和第 II 卷(主观题)两部分。试卷满分 150 分。考试时间
120 分钟。
第 I 卷(共 40 分) 一、选择题 (本大题共 10 小题,每小题 4 分, 共 40 分)
1. 设全集 U R . 若集合 A {1,2,3,4} , B { x | 2 x 3} ,则 A I B ( )
y2 a2 9
1 的焦点坐标是(
)
A. (0,3 ) B. (0,a ) C. ( a,0 ) D. ( 3,0 )
8. 已知 f ( x) 是定义在 R上的奇函数,当 x 0 时, f (x)
x2
x ,那么
f
(
1 )
的值是(
)
2
1
A.
4
1
B.
4
3
C.
4
3
D.
4
9. 已知抛物线
2
y
16x 上的一点 P 到抛物线焦点的距离为
号
订⒒
⒓
⒔
学
⒕
⒖
装
三、解答题: [ 本大题共 8 题,共 90 分 ]
过 16.( 8 分)求函数 y
1
的定义域 .
log 1 (2 x 3)
2
超
名
订 能
ur
r
20.( 12 分) ABC 的内角 A, B,C 所对的边分别为 a, b,c ,向量 m (a, 3b) 与 n (cos A,sin B ) 平行 .
则 PF1F2 面积为
.
江苏省 盱眙中等专业学校对口高考部考试卷 1
盱眙中等专业学校对口高考部 2016-2017 学年第二学期
2 月——第二次测试(月考) 高二年级数学学科答题纸 ( 命题人:杨飞 )
x2 y2
18.( 10 分)求与双曲线
1 有公共的渐近线,且经过点
9 16
。
( 3,2 3) 的双曲线标准方程
3,则 P 到直线 x
3 距离为(
)
A.3
B. 4
C. 2
D.1
10. 已知点 M( 4,2 ), F 为抛物线 x2 8y 的焦点,点 P 在抛物线上移动,则 | PM | | PF | 的最小值
为( ) A.5
B. 6
C. 4
D. 3
第 II 卷(共 110 分)
二、填空题 (本大题共 5 小题,每小题 4 分,共 20 分.把答案填在题中横线上 ) 11. 抛物线 y=ax2 的准线方程是 y=1,则 a 的值为
12. 如果椭圆 x2 4
y2 a2
1与双曲线 x2 a
y2 2
1的焦点相同,实数 a =
.
13. 已知 a,b 为正数,且 a+b=1, 则 2 3 的最小值为
.
ab
14. 若双曲线的渐近线方程为 y 3x ,则其离心率为
.
15. 设椭圆 x2 y2 1 的两个焦点分别为 F1, F2 , P 为椭圆上一点,并且 PF1 PF2, 45 20
姓
不 17.( 10 分)设二次函数 f ( x)
1 x2 m 图象的顶点为 C ,与 x 轴的交点分别为 A, B .若△ ABC 的 2
(1) (6 分)求 A ; (2) (6 分)若 a 7, b 2 ,求 ABC 的面积 .
面积为 8 2 .
题
(1)( 6 分)求 m 的值;(2)( 4 分)求函数 f ( x) 在区间 [ 1,2] 上的最大值和最小值.
A. 1
B.5
C.
5
D.3
4. 已知 a 0 , 1 b 0 ,那么 a , a , a 从小到大排列为(
)
b
b
A. a , a , a
bb
B. a , a , a
b
b
C. a , a , a ,
b
b
5. 顶点在原点,焦点是圆 ( x 2)2 y2 4 的圆心的抛物线方程是(
D. a , a , a
A. {2} B . {1,3, 4} C. { x x 2或x 3} D. { x 1 x 2或3 x 4}
2. 抛物线 x2 4y 的焦点坐标是( )
A.
1 ( ,0)
B.
1 (0, )
C.
( 0,1 )
D.
(1,0 )
16
16
3. 若复数 z 满足 z 1 2i 为虚数单位),则 | z | ( )
级
答
班
装
江苏省 盱眙中等专业学校对口高考部考试卷 2
装
21.( 12 分)一个袋中装有四个形状大小完全相同的球,球的编号分别为
1, 2, 3, 4.
(1)( 6 分)从袋中一次随机抽取两个球,求取出的球的编号之和不大于
4 的概率;
(2)( 6 分)先从袋中随机取一个球,该球的编号为
m ,将球放回袋中,然后再从袋中随机取一个球,该球的
22. ( 14 分)设双曲线 x2 y2 1,直线 y kx 1, (1) (6 分)若直线与双曲线有两个公共点,求 4
k 的取值范围
1
(2) 若直线 l 的斜率为 , l 与双曲线交于 A,B 两点,①( 4 分)求 AB 的中点 D 坐标
3
②( 4 分)求弦长 |AB|
江苏省 盱眙中等专业学校对口高考部考试卷 3
编号为 n ,求 n m 2 的概率 .
23. ( 14 分)已知椭圆 E: x2 a2
y2 b2
1 (a b 0) 的离心率 e
6 ,右焦点 F (2 2,0) ,(1)( 4 分)求椭圆 E
3
的标准方程; ( 2)( 10 分)直线 l : y=kx+1 与椭圆 E 交于 A,B 两点,以 AB 为直径的圆经过点 P(3,1),求直线 l 方程