高考数列专题讲解(含答案)

合集下载

高考等差数列专题及答案百度文库

高考等差数列专题及答案百度文库

一、等差数列选择题1.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .1032.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161B .155C .141D .1393.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14C .15D .164.定义12nn p p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n ,又2n n a b =,则1223910111b b b b b b +++=( ) A .817 B .1021C .1123 D .9195.设数列{}n a 的前n 项和21n S n =+. 则8a 的值为( ).A .65B .16C .15D .146.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列D .S 2,S 4+S 2,S 6+S 4必成等差数列7.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160B .180C .200D .2208.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个B .3个C .2个D .1个9.题目文件丢失!10.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29B .38C .40D .5811.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .412.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .713.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-14.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .4515.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .5516.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .2217.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .518.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+B .212n n -+C .221n n -+D .222n n -+19.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩20.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( )A .89B .910C .1011D .1112二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 22.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列23.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >24.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .225.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S > D .若67S S >则56S S >.26.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列27.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--28.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列29.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列30.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列,所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =.又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =. 故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,(2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =. 2.B 【分析】画出图形分析即可列出式子求解. 【详解】所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:由图可得:3612107y x y -=⎧⎨-=⎩ ,解得15548x y =⎧⎨=⎩.故选:B. 3.A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 4.D 【分析】由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n=,则:22n S n =,当1n =时,112a S ==,当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-, 故212nn a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:12239101111111111233517191.21891919b b b b b b +++⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=⨯= 故选:D 5.C 【分析】利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】由21n S n =+得,12a =,()2111n S n -=-+,所以()221121n n n a S S n n n -=-=--=-,所以2,121,2n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.故选:C. 【点睛】本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 6.D 【分析】根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误.7.B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B 8.B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由100n n a a +≥⎧⎨≤⎩求得.9.无10.A根据等差中项的性质,求出414a =,再求10a ; 【详解】因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 11.B 【分析】 由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,得221114n n a a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列, 所以2114(1)43n n n a =+-=-, 因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14nb ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 13.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 14.D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺. 故选:D 15.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =,所以()1111161111552a a S a +===.故选:D. 16.B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1nn a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d ,由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=, 所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 17.A 【分析】由2219a a =,可得14a d =-,从而得2922n d d S n n =-,然后利用二次函数的性质求其最值即可 【详解】解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-, 对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A 18.D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】 解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (111)123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈, 又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+. 故选:D. 【点睛】易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 19.B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题. 20.C 【分析】首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C二、多选题21.ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案.【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 22.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 23.BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n na n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解; (2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.24.AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误, 故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题. 25.BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 26.ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD 27.AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC 28.AD 【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题 29.BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立;D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题. 30.ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1n a 在1,6n n N上单调递增,1na 在7nn N ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6n n N上单调递增,1na 在7n n N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.。

2021年高考数学专题复习:数列(含答案解析)

2021年高考数学专题复习:数列(含答案解析)
已知等差数列{an}的前n项和为Sn,满足a3=6,____.
(1)求{an}的通项公式;
(2)设bn=2 an,求{bn}的前n项和Tn.
3.已知等比数列{an}的各项均为正数,且a1+16a3=1,a1a5=16a42.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{ }的前n项和Tn.
(1)求数列{an}的通项公式;
(2)证明: .
13.设数列{an}满足a1=2,an+1=an+2n.
(1)求数列{an}的通项公式;
(2)设bn=log2(a1•a2…an),求数列{ }的前n项和Sn.
14.已知等比数列{an}的各项都为正数,Sn为其前n项和,a3=8,S3=14.
(1)求数列{an}的通项公式;
(2)记Tn ,求使得Tn 成立的正整数n的最小值.
15.设数列{an}的前n项和为Sn(n∈N*),且满足an+Sn=2n+1.
(1)证明数列{an﹣2}是等比数列,并求数列{an}的通项公式;
(2)若bn=n(2﹣an),求数列{bn}的前n项和Tn.
16.已知{an}是等差数列,{bn}是等比数列,b1=a5,b2=3,b5=﹣81.
(1)求数列{an},{bn}的通项公式;
(2)设cn an,数列{cn}的前n项和为Tn,若不等式 1 恒成立,求λ的取值范围.
18.已知递增的等比数列{an}的前n项和为Sn,S3 ,a3a4=a5.
(1)求数列{an}的通项公式;
(2)若4an=3Sn,求正整数n的值.
19.已知等差数列{an}中,a2=3,a4=7.等比数列{bn}满足b1=a1,b4=a14.

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

【高中数学】数学高考《数列》试题含答案一、选择题1.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.2.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.6.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.【点睛】本题考查周期数列求和,属于中档题.7.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.8.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.11.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.16.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.17.已知数列{}n a 的前n 项和()2*23n S n n n N =+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C【解析】【分析】 首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可.【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立,所以41n a n =+,故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.18.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >S 时,n的最大值为49所以当1300n故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。

高考数学经典例题集锦:数列(含答案)

高考数学经典例题集锦:数列(含答案)

数列题目精选精编【典型例题】(一)研究等差等比数列的有关性质 1. 研究通项的性质例题1. 已知数列}{n a 满足1111,3(2)n n n a a a n --==+≥. (1)求32,a a ;(2)证明:312n n a -=. 解:(1)21231,314,3413a a a =∴=+==+=.(2)证明:由已知113--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---1213133312n n n a ---+=++++=, 所以证得312n n a -=.例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥(Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥,两式相减得:112,3(2)n n n n n a a a a a n ++-==≥,又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列∴13n n a -=(Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===,由题意可得2(51)(59)(53)d d -+++=+,解得122,10d d ==∵等差数列{}n b 的各项为正,∴0d > ∴2d =∴2(1)3222n n n T n n n -=+⨯=+例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++128n n a n -+=对任意的*N n ∈都成立,数列{}n n b b -+1是等差数列.⑴求数列{}n a 与{}n b 的通项公式;⑵是否存在N k *∈,使得(0,1)k k b a -∈,请说明理由.点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求na 的方法,当2n ≥时,1n n n S S a --=.(2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.解:(1)已知212322a a a +++ (1)2n n a -+8n =(n ∈*N )①2n ≥时,212322a a a +++ (2)128(1)n n a n --+=-(n ∈*N )②①-②得,128n n a -=,求得42n n a -=,在①中令1n =,可得得41182a -==,所以42nn a -=(n ∈N*). 由题意18b =,24b =,32b =,所以214b b -=-,322b b -=-,∴数列}{1n n b b -+的公差为2)4(2=---, ∴1n nb b +-=2)1(4⨯-+-n 26n =-,121321()()()n n n b b b b b b b b -=+-+-++-(4)(2)(28)n =-+-++-2714n n =-+(n ∈*N ).(2)k k b a -=2714k k -+-42k-,当4k ≥时,277()()24f k k =-+-42k-单调递增,且(4)1f =, 所以4k ≥时,2()714f k k k =-+-421k-≥, 又(1)(2)(3)0f f f ===,所以,不存在k ∈*N ,使得(0,1)k k b a -∈.例题4. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项a n ,b n 解: 依题意得:2b n+1 = a n+1 + a n+2 ① a 2n+1 = b n b n+1 ②∵ a n 、b n 为正数, 由②得21211,+++++==n n n n n n b b a b b a , 代入①并同除以1+n b 得:212+++=n n n b b b , ∴}{n b 为等差数列∵ b 1 = 2 , a 2 = 3 ,29,22122==b b b a 则 ,∴ 2)1(),1(22)229)(1(22+=∴+=--+=n b n n b n n ,∴当n ≥2时,2)1(1+==-n n b b a n n n , 又a 1 = 1,当n = 1时成立, ∴2)1(+=n n a n2. 研究前n 项和的性质例题5. 已知等比数列}{n a 的前n 项和为2nn S a b =⋅+,且13a =. (1)求a 、b 的值及数列}{n a 的通项公式;(2)设n n nb a =,求数列}{n b 的前n 项和n T .解:(1)2≥n 时,a S S a n n n n ⋅=-=--112.而}{n a 为等比数列,得a a a =⋅=-1112,又31=a ,得3=a ,从而123-⋅=n n a .又123,3a a b b =+=∴=-.(2)132n n n n n b a -==⋅, 21123(1)3222n n nT -=++++231111231(2322222n n n n n T --=+++++) ,得2111111(1)232222nn n n T -=++++-,111(1)2412[](1)13232212n n n n n n n T +⋅-=-=---.例题6. 数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k=+++*()N k ∈, (1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '. 解:(1)由题意:410nn a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,∴12(1)lg lg lg 32k k k a a a k -+++=-,∴1(1)7[3]22n n n nb n n --=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==.(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,∴当7n ≤时,212731132()244n n n S b b b n n n -+'=+++==-+当7n >时,12789n n S b b b b b b '=+++----27121132()2144n S b b b n n =-+++=-+∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩.例题7. 已知递增的等比数列{n a }满足23428a a a ++=,且32a +是2a ,4a 的等差中项. (1)求{n a }的通项公式n a ;(2)若12log n n nb a a =,12n n S b b b =+++求使1230n n S n ++⋅>成立的n 的最小值.解:(1)设等比数列的公比为q (q >1),由a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),得:a 1=2,q =2或a 1=32,q =12(舍)∴a n =2·2(n -1)=2n(2) ∵12log 2nn n n b a a n ==-⋅,∴S n =-(1·2+2·22+3·23+…+n ·2n ) ∴2S n =-(1·22+2·23+…+n ·2n +1),∴S n =2+22+23+…+2n -n ·2n +1=-(n -1)·2n +1-2, 若S n +n ·2n +1>30成立,则2n +1>32,故n >4,∴n 的最小值为5.例题8. 已知数列}{n a 的前n 项和为S n ,且11,,n n S a +-成等差数列,*1,1N n a ∈=. 函数3()log f x x =.(I )求数列}{n a 的通项公式; (II )设数列{}n b 满足1(3)[()2]n n b n f a =++,记数列{}n b 的前n 项和为T n ,试比较52512312n n T +-与的大小. 解:(I )11,,n n S a +-成等差数列,121n n S a +∴=-① 当2n ≥时,121n n S a -=-②. ①-②得:112()n n n n S S a a -+-=-,13+=∴n n a a ,13.n na a +∴=当n =1时,由①得112221S a a ∴==-, 又11,a =2213,3,a a a ∴=∴={}n a ∴是以1为首项3为公比的等比数列,13.n n a -∴=(II )∵()x log x f 3=,133()log log 31n n n f a a n -∴===-,11111()(3)[()2](1)(3)213n n b n f a n n n n ===-++++++,1111111111111()224354657213n T n n n n ∴=-+-+-+-++-+-+++11111()22323n n =+--++525,122(2)(3)n n n +=-++比较52512312n n T +-与的大小,只需比较2(2)(3)n n ++与312 的大小即可. 222(2)(3)3122(56156)2(5150)n n n n n n ++-=++-=+-又2(15)(10)n n =+-∵*,N n ∈∴当*19N n n ≤≤∈且时,5252(2)(3)312,;12312n n n n T +++<<-即 当10n =时,5252(2)(3)312,;12312n n n n T +++==-即 当*10N n n >∈且时,5252(2)(3)312,12312n n n n T +++>>-即.3. 研究生成数列的性质例题9. (I ) 已知数列{}n c ,其中nn n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;(II ) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)], 即[(2-p )2n +(3-p )3n ]2=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -1],整理得61(2-p )(3-p )·2n ·3n =0,解得p =2或p =3. (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n .为证{c n }不是等比数列只需证22c ≠c 1·c 3.事实上,22c =(a 1p +b 1q )2=21a p 2+21b q 2+2a 1b 1pq ,c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)= 21a p 2+21b q 2+a 1b 1(p 2+q 2).由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此≠22c c 1·c 3,故{c n }不是等比数列.例题10. n 2( n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知a 24=1,163,814342==a a 求S=a 11 + a 22 + a 33 + … + a nn解: 设数列{1k a }的公差为d , 数列{ik a }(i=1,2,3,…,n )的公比为q则1k a = a 11 + (k -1)d , a kk = [a 11 + (k -1)d]q k -1依题意得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==+==+=163)2(81)(1)3(31143311421124q d a a q d a a q d a a ,解得:a 11 = d = q = ±21 又n 2个数都是正数,∴a 11 = d = q = 21 , ∴a kk = kk2n n S 212132122132⨯++⨯+⨯+=,1432212132122121+⨯++⨯+⨯+=n n S ,两式相减得:n n nS 22121--=-例题11. 已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*3,.f n n a n N =∈ (1)求数列}{n a 的通项公式;(2)设n n n nn b b b T a b +++==21,2,若)(Z m m T n ∈<,求m 的最小值;(3)求使不等式12)11()11)(11(21+≥+++n p a a a n对一切*N n ∈均成立的最大实数p .解:(1)由题意得⎩⎨⎧=+=+2)5(log 1)2(log 33b a b a ,解得⎩⎨⎧-==12b a ,)12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==-(2)由(1)得n n n b 212-=, n n n n n T 2122322523211321-+-++++=∴- ① 1132212232252232121+--+-+-+++=n n n n n n n T ② ①-②得)21212121(2121n 22222222221T 211n 2n 2111n n 1n 321n --+-+++++=--+++++= 1n 1n 1n 21n 2212321n 2+-+---=--.n n 2n n 23n 2321n 2213T +-=---=∴-, 设*,232)(N n n n f n ∈+=,则由 1512132121)32(252232252)()1(1<+≤++=++=++=++n n n n n n f n f n n 得*,232)(Nn n n f n ∈+=随n 的增大而减小+∞→∴n 当时,3→n T 又)(Z m m T n ∈<恒成立,3min =∴m(3)由题意得*21)11()11)(11(121N n a a a n p n ∈++++≤对 恒成立记)11()11)(11(121)(21n a a a n n F ++++=,则 ()()11n 21n 2)1n ()1n (4)1n (2)3n 2)(1n 2(2n 2)a 11()a 11)(a 11(1n 21)a 11)(a 11()a 11)(a 11(3n 21)n (F )1n (F 2n 211n n 21=++>+-++=+++=+++++++++=++)(),()1(,0)(n F n F n F n F 即>+∴> 是随n 的增大而增大)(n F 的最小值为332)1(=F ,332≤∴p ,即332max =p .(二)证明等差与等比数列 1. 转化为等差等比数列.例题12. 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122,*N n ∈.⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;⑶设n b =1(12)n n a -**12(),()N N n n n T b b b n ∈=+++∈,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d , 由题意得2832d d =+⇒=-,82(1)102n a n n ∴=--=-.(2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤ 时21281029,2n na a a n n n +-=+++=⨯=-6n ≥时,n n a a a a a a S ---+++= 765212555()2940n n S S S S S n n =--=-=-+故⎪⎩⎪⎨⎧+--=40n 9n n n 9S 22n 56n n ≤≥ (3)11111()(12)2(1)21n n b n a n n n n ===--++, ∴n T 1111111111[(1)()()()()]22233411n n n n =-+-+-++-+--+.2(1)n n =+ 若32n m T >对任意*N n ∈成立,即116n m n >+对任意*N n ∈成立, *()1N n n n ∈+的最小值是21,1,162m ∴<m ∴的最大整数值是7.即存在最大整数,7=m 使对任意*N n ∈,均有.32n m T >例题13. 已知等比数列{}n b 与数列{}n a 满足3,n an b n =∈N *. (1)判断{}n a 是何种数列,并给出证明;(2)若8131220,a a m b b b +=求.解:(1)设{}n b 的公比为q ,∵3n an b =,∴()q log 1n a a 3q 331n a 1n a n 1-+=⇒=⋅-。

高考数学复习考点题型专题讲解10 数列的递推关系与通项

高考数学复习考点题型专题讲解10 数列的递推关系与通项

高考数学复习考点题型专题讲解专题10 数列的递推关系与通项1.求数列的通项公式是高考的重点内容,等差、等比数列可直接利用其通项公式求解,但有些数列是以递推关系给出的,需要构造新数列转为等差或等比数列,再利用公式求解.2.利用数列的递推关系求数列的通项,常见的方法有:(1)累加法,(2)累乘法,(3)构造法(包括辅助数列法,取倒数法,取对数法等).类型一利用a n与S n的关系求通项1.已知S n求a n的步骤(1)先利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,若符合,则数列的通项公式合写;若不符合,则应该分n=1与n≥2两段来写.2.S n与a n关系问题的求解思路(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.例1 (1)已知数列{a n}为正项数列,且4S1a1+2+4S2a2+2+…+4S nan+2=S n,求数列{a n}的通项公式;(2)已知数列{a n}的各项均为正数,且S n=12⎝⎛⎭⎪⎫an+1an,求数列{a n}的通项公式.解(1)由题知4S1a1+2+4S2a2+2+…+4S nan+2=S n,①则4S1a1+2+4S2a2+2+…+4S n-1an-1+2=S n-1(n≥2,n∈N*),②由①-②可得4S nan+2=a n,即4S n=a2n+2a n,n≥2,n∈N*,在已知等式中令n=1,得4S1a1+2=S1,则4S1=a1(a1+2),③满足上式,所以4S n=a2n+2a n,④则4S n-1=a2n-1+2a n-1(n≥2),⑤④-⑤可得4a n=a2n+2a n-a2n-1-2a n-1⇔2(a n+a n-1)=a2n-a2n-1. 因为a2n-a2n-1=(a n+a n-1)(a n-a n-1),a n>0,所以a n-a n-1=2,所以{a n}为公差是2的等差数列,由③可解得a1=2,所以a n=2+(n-1)×2=2n(n∈N*).(2)由S n=12⎝⎛⎭⎪⎫an+1an,得当n ≥2时,S n =12⎝ ⎛⎭⎪⎫S n -S n -1+1S n -S n -1,所以2S n =S n -S n -1+1S n -S n -1,即S n +S n -1=1S n -S n -1,所以S 2n -S 2n -1=1,所以{S 2n }为公差是1的等差数列,所以S 2n =S 21+(n -1).在S n =12⎝ ⎛⎭⎪⎫a n +1a n 中,令n =1可得S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,解得a 1=1,所以S 2n =n ,所以S n =n ,所以a n =⎩⎨⎧S n -S n -1,n ≥2,S 1,n =1=⎩⎨⎧n -n -1,n ≥2,1,n =1,所以a n =n -n -1(n ∈N *).训练1 已知正项数列{a n +2n -1}的前n 项和为S n ,且4S n =a 2n +(2n +2)a n +4n -1+2n -3.求数列{a n }的通项公式.解 由题知4S n =a 2n +(2n +2)a n +4n -1+2n -3=(a n +2n -1)2+2(a n +2n -1)-3, 令b n =a n +2n -1, 则4S n =b 2n +2b n -3,①当n ≥2时,4S n -1=b 2n -1+2b n -1-3,②由①-②,得4b n =b 2n -b 2n -1+2b n -2b n -1, 整理得(b n -b n -1-2)(b n +b n -1)=0. 因为b n >0,所以b n -b n -1=2(n ≥2). 又4S 1=b 21+2b 1-3, 即b 21-2b 1-3=0,解得b 1=3或b 1=-1(舍去),所以数列{b n }是以3为首项,2为公差的等差数列, 则b n =2n +1,所以a n =b n -2n -1=2n +1-2n -1(n ∈N *). 类型二 构造辅助数列求通项(1)形如a n =pa n -1+q (p ≠1,q ≠0)的形式,通常可构造出等比数列a n +q p -1=p ⎝⎛⎭⎪⎫a n -1+q p -1,进而求出通项公式. (2)形如a n =pa n -1+q n ,此类问题可先处理q n ,两边同时除以q n ,得a nq n =pa n -1q n+1,进而构造成a n q n =p q ·a n -1q n -1+1,设b n =a n q n ,从而变成b n =pqb n -1+1,从而将问题转化为第(1)个问题.(3)形如qa n -1-pa n =a n a n -1,可以考虑两边同时除以a n a n -1,转化为q a n -pa n -1=1的形式,进而可设b n =1a n,递推公式变为qb n -pb n -1=1,从而转变为上面第(1)个问题.(4)形如a n =ma n -1k (a n -1+b )(其中n ≥2,mkb ≠0)取倒数,得到1a n =k m ·⎝ ⎛⎭⎪⎫1+b a n -1⇔1a n=kb m ·1a n -1+km,转化为(1)中的类型. (5)形如a n =pa r n -1(n ≥2,a n ,p >0)两边取常用对数,得lg a n =r lg a n -1+lg p ,转化为(1)中的类型. 考向1 构造法求通项例2 (1)在数列{a n }中,a 1=12,a n =2a n +1-⎝ ⎛⎭⎪⎫12n(n ∈N *),求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,且a 1=1,S n +1-2S n =1,n ∈N *,求数列{a n }的通项公式. 解 (1)由a n =2a n +1-⎝ ⎛⎭⎪⎫12n,得2n a n =2n +1a n +1-1,所以数列{2n a n }是首项和公差均为1的等差数列, 于是2n a n =1+(n -1)×1=n , 所以a n =n2n (n ∈N *).(2)因为S n +1-2S n =1, 所以S n +1+1=2(S n +1),n ∈N *. 因为a 1=S 1=1, 所以可推出S n +1>0,故S n +1+1S n +1=2, 即{S n +1}为等比数列. 因为S 1+1=2,公比为2, 所以S n +1=2n , 即S n =2n -1.因为S n -1=2n -1-1(n ≥2),所以当n ≥2时,a n =S n -S n -1=2n -1, 又a 1=1也满足此式, 所以a n =2n -1(n ∈N *). 考向2 取倒数法求通项 例3 已知数列{a n }满足a n +1=a n a n +3,a 1=2,求数列{a n }的通项公式.解 对a n +1=a na n +3两边取倒数,可得1a n +1=3a n+1,由1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12. ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +12是首项为1,公比为3的等比数列,∴1a n +12=3n -1, 则a n =22·3n -1-1(n ∈N *). 考向3 取对数法求通项例4 设正项数列{a n }满足a 1=1,a n =2a 2n -1(n ≥2).求数列{a n }的通项公式. 解 对a n =2a 2n -1两边取对数得log 2a n =1+2log 2a n -1, ∴log 2a n +1=2(log 2a n -1+1), 设b n =log 2a n +1,则{b n }是以2为公比,1为首项的等比数列,所以b n =2n -1, 即log 2a n +1=2n -1, 故a n =22n -1-1(n ∈N *).训练2 (1)若数列{a n }中,a 1=3,且a n +1=a 2n ,则a n =________. (2)已知数列{a n }中,a 1=1,a n =a n -12a n -1+1,则a n =________.答案 (1)32n -1(n ∈N *) (2)12n -1(n ∈N *) 解析 (1)易知a n >0,由a n +1=a 2n 得lg a n +1=2lg a n , 故{lg a n }是以lg 3为首项,以2为公比的等比数列, 则lg a n =lg a 1·2n -1=lg 32n -1, 即a n =32n -1(n ∈N *). (2)由a n =a n -12a n -1+1,取倒数得1a n =2+1a n -1,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以2为公差,1为首项的等差数列,所以1a n=1+2(n -1)=2n -1,即a n =12n -1(n ∈N *).(3)在数列{a n }中,a 1=1,a n +1=12a n +1,求数列{a n }的通项公式.解 因为a n +1=12a n +1,所以a n +1-2=12(a n -2),所以数列{a n -2}是以-1为首项,12为公比的等比数列,所以a n -2=-1×⎝ ⎛⎭⎪⎫12n -1,所以a n =2-⎝ ⎛⎭⎪⎫12n -1,n ∈N *.一、基本技能练1.(2022·湖北新高考协作体联考)已知数列{a n }的首项a 1=2,其前n 项和为S n ,若S n +1=2S n +1,则a 7=________. 答案 96解析 因为S n +1=2S n +1, 所以S n =2S n -1+1(n ≥2), 两式相减得a n +1=2a n (n ≥2),又因为a 1=2,S 2=a 1+a 2=2a 1+1,得a 2=3, 所以数列{a n }从第二项开始成等比数列, 因此其通项公式为a n =⎩⎨⎧2,n =1,3·2n -2,n ≥2, 所以a 7=3×25=96.2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案a n =2n (n +1)(n ∈N *)解析 由S n =n 2a n 可得, 当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1,即(n2-1)a n=(n-1)2a n-1,故anan-1=n-1n+1,所以a n=anan-1·an-1an-2·an-2an-3·…·a3a2·a2a1·a1=n-1n+1·n-2n·n-3n-1·…·24×13×1=2n(n+1).当n=1时,a1=1满足a n=2n(n+1).故数列{a n}的通项公式为a n=2n(n+1),n∈N*.3.已知正项数列{a n}满足a1=2,a n+1=a n,则a n=________.答案221-n(n∈N*)解析将a n+1=a n两边取以2为底的对数得log2a n+1=12log2an,∴数列{log2an}是以1为首项,12为公比的等比数列,故log2an=1×⎝⎛⎭⎪⎫12n-1=21-n,即a n=221-n(n∈N*).4.数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N*),令b n=log3(a n+1),则b n=________. 答案n(n∈N*)解析由a n+1=3a n+2(n∈N*)可知a n+1+1=3(a n+1),又a1=2,知a n+1≠0,所以数列{a n+1}是以3为首项,3为公比的等比数列,因此a n+1=3·3n-1=3n,故b n =log 3(a n +1)=n .5.(2022·南京调研)在数列{b n }中,b 1=-1,b n +1=b n 3b n +2,n ∈N *,则通项公式b n =________.答案 12n -3(n ∈N *)解析 由b n +1=b n 3b n +2,且b 1=-1.易知b n ≠0,得1b n +1=2b n+3.因此1b n +1+3=2⎝ ⎛⎭⎪⎫1b n +3,1b 1+3=2, 故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n +3是以2为首项,2为公比的等比数列,于是1b n+3=2·2n -1,可得b n =12n-3,n ∈N *. 6.在数列{a n }中,a 1=1,a n =2a n -1+ln 3(n ≥2),则数列{a n }的通项a n =________. 答案 (1+ln 3)·2n -1-ln 3(n ∈N *)解析 由a n =2a n -1+ln 3得a n +ln 3=2(a n -1+ln 3), 则{a n +ln 3}是以1+ln 3为首项,2为公比的等比数列, 所以a n +ln 3=(1+ln 3)·2n -1, 因此a n =(1+ln 3)·2n -1-ln 3(n ∈N *).7.已知数列{a n }满足:a 1=1,a 2=3,a n +2=a n +1+2a n .某同学已经证明了数列 {a n +1-2a n }和数列{a n +1+a n }都是等比数列,则数列{a n }的通项公式是a n =________. 答案 2n +1-(-1)n -13(n ∈N *)解析因为a n+2=a n+1+2a n,所以当n=1时,a3=a2+2a1=5.令b n=a n+1-2a n,则{b n}为等比数列. 又b1=a2-2a1=1,b2=a3-2a2=-1,所以等比数列{b n}的公比q=b2b1=-1,所以b n=(-1)n-1,即a n+1-2a n=(-1)n-1.①令c n=a n+1+a n,则{c n}为等比数列,c1=a2+a1=4,c2=a3+a2=8,所以等比数列{c n}的公比q1=c2c1=2,所以c n=4×2n-1=2n+1,即a n+1+a n=2n+1.②联立①②,解得a n=2n+1-(-1)n-13.8.(2022·青岛二模)已知数列{a n},{b n}满足a1=12,a n+b n=1,b n+1=bn1-a2n,则b2 023=________.答案2 023 2 024解析因为a n+b n=1,b n+1=bn1-a2n,所以1-a n+1=1-a n(1-a n)(1+a n),a n +1=1-11+a n =a n1+a n ,所以1a n +1=1a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,其公差为1,首项为1a 1=2,所以1a n=2+(n -1)×1=n +1,所以a n =1n +1, 所以b n =n n +1,所以b 2 023=2 0232 024.9.已知数列{a n }的前n 项和S n 满足2S n -na n =3n (n ∈N *),且S 3=15,则S 10=________. 答案 120解析 当n =1时,2S 1-a 1=3, 解得a 1=3. 又2S n -na n =3n ,①当n ≥2时,2S n -1-(n -1)a n -1=3(n -1),② 所以①-②得(n -1)a n -1-(n -2)a n =3,③ 当n ≥3时,(n -2)a n -2-(n -3)a n -1=3,④ 所以④-③得(n -1)·a n -1-(n -2)a n =(n -2)a n -2-(n -3)a n -1, 可得2a n -1=a n +a n -2,所以数列{a n }为等差数列,设其公差为d .因为a 1=3,S 3=3a 1+3d =9+3d =15, 解得d =2, 故S 10=10×3+10×92×2=120. 10.已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,则数列{a n }的通项公式为________.答案a n =2n +n (n ∈N *) 解析∵a n +1=2a n -n +1, ∴a n +1-(n +1)=2(a n -n ), ∴a n +1-(n +1)a n -n=2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n , ∴a n =2n +n (n ∈N *).11.数列{a n }满足a n +1=3a n +2n +1,a 1=-1,则数列{a n }的前n 项和S n =________. 答案3n +12-2n +2+52(n ∈N *)解析∵a n +1=3a n +2n +1, ∴a n +12n +1=32·a n2n+1, ∴a n +12n +1+2=32⎝ ⎛⎭⎪⎫a n 2n +2, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +2是以a 12+2=32为首项,32为公比的等比数列,∴a n 2n +2=32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n,∴a n =3n -2n +1,∴S n =(31+32+…+3n )-(22+23+…+2n +1)=3-3n +11-3-4-2n +21-2=3n +12-2n +2+52(n ∈N *).12.已知在数列{a n }中,a 1=1,a 2=2,a n +1=2a n +3a n -1,则{a n }的通项公式为________. 答案a n =3n -(-1)n4(n ∈N *)解析∵a n +1=2a n +3a n -1, ∴a n +1+a n =3(a n +a n -1),∴{a n +1+a n }是以a 2+a 1=3为首项,3为公比的等比数列, ∴a n +1+a n =3×3n -1=3n .① 又a n +1-3a n =-(a n -3a n -1),∴{a n +1-3a n }是以a 2-3a 1=-1为首项,-1为公比的等比数列, ∴a n +1-3a n =(-1)×(-1)n -1=(-1)n ,② 由①-②得4a n =3n -(-1)n , ∴a n =3n -(-1)n4(n ∈N *).二、创新拓展练13.(2022·金丽衢12校联考)已知数列{a n }满足a 1=1,且T n =a 1a 2…a n ,若T n +1=a n T na 2n +1,n ∈N *,则( )A.a 50∈⎝ ⎛⎭⎪⎫112,111B.a 50∈⎝ ⎛⎭⎪⎫111,110C.a 10∈⎝ ⎛⎭⎪⎫18,17D.a 10∈⎝ ⎛⎭⎪⎫16,15答案 B解析 因为T n =a 1a 2…a n , 所以a n +1=T n +1T n. 因为T n +1=a n T na 2n +1, 所以a n +1=a n a 2n +1,所以1a n +1=a n +1a n.因为a 1=1>0,所以1a n +1>1a n >0,a 2=12, 所以0<a n +1<a n ≤1, 所以1a 2n +1=a 2n +1a 2n+2,所以a 2n +2=1a 2n +1-1a 2n ∈⎝ ⎛⎦⎥⎤2,94,n ≥2.由累加法可得1a 210-1a 22∈(16,18),所以1a 10∈(20,22),所以a 10∈⎝ ⎛⎭⎪⎫2222,510,同理可得a 50∈⎝⎛⎭⎪⎫1121,110=⎝ ⎛⎭⎪⎫111,110,故选B. 14.(多选)(2022·武汉调研)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n(n ∈N *),则下列结论正确的是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3为等比数列 B.{a n }的通项公式为a n =12n +1-3C.{a n }为递增数列D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =2n +2-3n -4答案 ABD 解析 因为1a n +1=2+3a na n =2a n+3, 所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 又1a 1+3=4≠0,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3是以4为首项,2为公比的等比数列,所以1a n+3=4×2n -1,则a n =12n +1-3, 所以{a n }为递减数列,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=22+23+…+2n +1-3n =4(1-2n )1-2-3n =2n +2-3n -4,故ABD 正确.15.(多选)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,……,设各层球数构成一个数列{a n },则( )A.a 4=12B.a n +1=a n +n +1C.a 100=5 050D.2a n +1=a n ·a n +2答案 BC解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n , 故a n =n (n +1)2,∴a 4=4×(4+1)2=10,故A 错误;a n +1=a n +n +1,故B 正确; a 100=100×(100+1)2=5 050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n (n +1)(n +2)(n +3)4,显然2a n +1≠a n ·a n +2,故D 错误.16.(多选)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依次类推,第n 项记为a n ,数列{a n }的前n 项和为S n ,则( ) A.a 60=16 B.S 18=128 C.a k 2+k 2=2k -1D.S k 2+k 2=2k -k -1答案 AC解析 由题意可将数列分组: 第一组为20, 第二组为20,21, 第三组为20,21,22, ……,则前k 组一共有1+2+…+k =k (1+k )2个数.第k 组第k 个数为2k -1, 故a k 2+k 2=2k -1,所以C 正确.因为10×(10+1)2=55,所以a 55=29,又11×(11+1)2=66,则a 60为第11组第5个数,第11组为20,21,22,23,24,25,26,27,28,29,210, 故a 60=24=16,所以A 正确.每一组数的和为20+21+…+2k -1=2k -12-1=2k -1,故前k 组数之和为21+22+ (2)-k =2(2k -1)2-1-k =2k +1-2-k ,S k 2+k 2=2k +1-k -2,所以D 错误.S 15=26-5-2=57,S 18=S 15+20+21+22 =26-5-2+7=64,所以B 错误.故选AC. 17.已知数列{a n }满足a 1=3,a n +1=7a n -2a n +4,则该数列的通项公式a n =________. 答案4·6n -1-5n -12·6n -1-5n -1(n ∈N *)解析 由a n +1-1a n +1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n -1a n -2,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -1a n -2是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2×⎝ ⎛⎭⎪⎫65n -1,解得a n =12×⎝ ⎛⎭⎪⎫65n -1-1+2=4·6n -1-5n -12·6n -1-5n -1,n ∈N *.18.(2022·徐州考前卷)设各项均为正数的数列{a n }的前n 项和为S n ,写出一个满足S n =⎝ ⎛⎭⎪⎫2-12n -1a n 的通项公式:a n =________.答案 2n (答案不唯一)解析 当a n =2n时,S n =2(1-2n )1-2=2n +1-2,⎝ ⎛⎭⎪⎫2-12n -1a n =⎝⎛⎭⎪⎫2-22n 2n=2n +1-2=S n ,∴a n =2n 满足条件.。

高考数学总复习考点知识与题型专题讲解41 数列中的构造问题

高考数学总复习考点知识与题型专题讲解41 数列中的构造问题

高考数学总复习考点知识与题型专题讲解§6.4 数列中的构造问题数列中的构造问题是历年高考的一个热点内容,主、客观题均可出现,一般通过构造新的数列求数列的通项公式.题型一 形如a n +1=pa n +f (n )型命题点1 a n +1=pa n +q (p ≠0,1,q ≠0)例1(1)数列{a n }满足a n =4a n -1+3(n ≥2)且a 1=0,则a 2 024等于( )A .22 023-1B .42 023-1C .22 023+1D .42 023+1 答案 B解析 ∵a n =4a n -1+3(n ≥2),∴a n +1=4(a n -1+1)(n ≥2),∴{a n +1}是以1为首项,4为公比的等比数列,则a n +1=4n -1.∴a n =4n -1-1,∴a 2 024=42 023-1.(2)已知数列{a n }的首项a 1=1,且1a n +1=3a n+2,则数列{a n }的通项公式为__________. 答案 a n =12·3n -1-1解析 ∵1a n +1=3a n +2,等式两边同时加1整理得1a n +1+1=3⎝ ⎛⎭⎪⎫1a n +1,又∵a 1=1,∴1a 1+1=2,∴⎩⎨⎧⎭⎬⎫1a n +1是首项为2,公比为3的等比数列.∴1a n +1=2·3n -1,∴a n =12·3n -1-1.命题点2 a n +1=pa n +qn +c (p ≠0,1,q ≠0)例2已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,求数列{a n }的通项公式. 解 ∵a n +1=2a n -n +1,∴a n +1-(n +1)=2(a n -n ),∴a n +1-(n +1)a n -n =2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n ,∴a n =2n +n .命题点3 a n +1=pa n +q n (p ≠0,1,q ≠0,1)例3(1)已知数列{a n }中,a 1=3,a n +1=3a n +2·3n +1,n ∈N *.则数列{a n }的通项公式为() A .a n =(2n +1)·3n B .a n =(n -1)·2nC .a n =(2n -1)·3nD .a n =(n +1)·2n答案 C解析 由a n +1=3a n +2·3n +1得a n +13n +1=a n 3n +2·3n +13n +1,∴a n +13n +1-a n 3n =2,即数列⎩⎨⎧⎭⎬⎫a n 3n 是首项为1,公差为2的等差数列, ∴a n3n =2n -1,故a n =(2n -1)·3n .(2)在数列{a n }中,a 1=1,且满足a n +1=6a n +3n ,则a n =________.答案 6n 3-3n -1解析 将已知a n +1=6a n +3n 的两边同乘13n +1,得a n +13n +1=2·a n 3n +13, 令b n =a n 3n ,则b n +1=2b n +13,利用命题点1的方法知b n =2n 3-13,则a n =6n 3-3n -1. 思维升华跟踪训练1(1)在数列{a n }中,a 1=1,a n +1=2a n +2n .则数列{a n }的通项公式a n 等于( )A .n ·2n -1B .n ·2nC .(n -1)·2nD .(n +1)·2n 答案 A解析 由a n +1=2a n +2n 得a n +12n =a n 2n -1+1,设b n =a n 2n -1,则b n +1=b n +1, 又b 1=1,∴{b n }是首项为1,公差为1的等差数列.∴b n =n ,∴a n =n ·2n -1.(2)(2023·黄山模拟)已知数列{a n }满足a 1=1,(2+a n )·(1-a n +1)=2,设⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,则a 2 023(S 2 023+2 023)的值为( )A.22 023-2 B.22 023-1 C.2 D.1 答案 C解析(2+a n)(1-a n+1)=2,则a n+1=a na n+2,即1a n+1=2a n+1,得1a n+1+1=2⎝⎛⎭⎪⎫1a n+1,故⎩⎨⎧⎭⎬⎫1a n+1是以2为首项,2为公比的等比数列,1a n+1=2n,1a n=2n-1,a n=12n-1,S2 023+2 023=2+22+…+22 023=22 024-2,∴a2 023(S2 023+2 023)=2.(3)已知数列{a n}满足a n+1=2a n+n,a1=2,则a n=________. 答案2n+1-n-1解析令a n+1+x(n+1)+y=2(a n+xn+y),即a n+1=2a n+xn+y-x,与原等式比较得,x=y=1,所以a n+1+(n+1)+1a n+n+1=2,所以数列{a n+n+1}是以a1+1+1=4为首项,2为公比的等比数列,所以a n+n+1=4×2n-1,即a n=2n+1-n-1.题型二相邻项的差为特殊数列(形如a n+1=pa n+qa n-1)例4(1)已知数列{a n}满足:a1=a2=2,a n=3a n-1+4a n-2(n≥3),则a9+a10等于() A.47 B.48C.49 D.410答案 C解析由题意得a1+a2=4,由a n=3a n-1+4a n-2(n≥3),得a n+a n-1=4(a n-1+a n-2),即a n +a n -1a n -1+a n -2=4(n ≥3), 所以数列{a n +a n +1}是首项为4,公比为4的等比数列,所以a 9+a 10=49.(2)已知数列{a n }满足a 1=1,a 2=2,且a n +1=2a n +3a n -1(n ≥2,n ∈N *).则数列{a n }的通项公式为a n =________.答案 3n -(-1)n 4解析 方法一 因为a n +1=2a n +3a n -1(n ≥2,n ∈N *), 设b n =a n +1+a n ,所以b n b n -1=a n +1+a n a n +a n -1=3(a n +a n -1)a n +a n -1=3, 又因为b 1=a 2+a 1=3,所以{b n }是以首项为3,公比为3的等比数列.所以b n =a n +1+a n =3×3n -1=3n ,从而a n +13n +1+13·a n 3n =13, 不妨令c n =a n 3n ,即c n +1+13c n =13,故c n +1-14=-13⎝ ⎛⎭⎪⎫c n -14,即c n +1-14c n -14=-13,又因为c 1-14=a 13-14=112,所以数列⎩⎨⎧⎭⎬⎫c n -14是首项为112,公比为-13的等比数列, 故c n -14=112×⎝ ⎛⎭⎪⎫-13n -1=a n 3n -14,从而a n =3n -(-1)n 4. 方法二 因为方程x 2=2x +3的两根为-1,3,可设a n =c 1·(-1)n -1+c 2·3n -1,由a 1=1,a 2=2,解得c 1=14,c 2=34,所以a n =3n -(-1)n 4. 思维升华可以化为a n +1-x 1a n =x 2(a n -x 1a n -1),其中x 1,x 2是方程x 2-px -q =0的两个根,若1是方程的根,则直接构造数列{a n -a n -1},若1不是方程的根,则需要构造两个数列,采取消元的方法求数列{a n }.跟踪训练2若x =1是函数f (x )=a n +1x 4-a n x 3-a n +2x +1(n ∈N *)的极值点,数列{a n }满足a 1=1,a 2=3,则数列{a n }的通项公式a n =________.答案 3n -1解析 f ′(x )=4a n +1x 3-3a n x 2-a n +2,∴f ′(1)=4a n +1-3a n -a n +2=0, 即a n +2-a n +1=3(a n +1-a n ),∴数列{a n +1-a n }是首项为2,公比为3的等比数列, ∴a n +1-a n =2×3n -1,则a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1=2×3n -2+…+2×30+1=3n -1.题型三 倒数为特殊数列⎝⎛⎭⎪⎫形如a n +1=pa n ra n +s 型 例5(1)已知数列{a n }满足a 1=1,a n +1=a n 4a n +1(n ∈N *),则满足a n >137的n 的最大取值为( )A .7B .8C .9D .10答案 C解析 因为a n +1=a n 4a n +1,所以1a n +1=4+1a n ,所以1a n +1-1a n =4,又1a 1=1, 所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,4为公差的等差数列. 所以1a n =1+4(n -1)=4n -3,所以a n =14n -3,由a n >137,即14n -3>137,即0<4n -3<37,解得34<n <10,因为n 为正整数,所以n 的最大取值为9.(2)(多选)数列{a n }满足a n +1=a n 1+2a n(n ∈N *),a 1=1,则下列结论正确的是( ) A.2a 10=1a 3+1a 17B.1{2}n a 是等比数列 C .(2n -1)a n =1 D .3a 5a 17=a 49答案 ABC解析 由a n +1=a n 1+2a n, 可得1a n +1=1+2a n a n =1a n +2,所以1a n +1-1a n =2,且1a 1=1, 所以数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且该数列的首项为1,公差为2, 所以1a n=1+2(n -1)=2n -1,则(2n -1)a n =1,其中n ∈N *,故C 对; 1111112=22n n n n a a a a ++-=22=4,所以数列1{2}na 是等比数列,故B 对; 由等差中项的性质可得2a 10=1a 3+1a 17,故A 对; 由上可知a n =12n -1,则3a 5a 17=3×12×5-1×12×17-1=199,a 49=12×49-1=197,所以3a 5a 17≠a 49,故D 错.思维升华两边同时取倒数转化为1a n +1=s p ·1a n +r p 的形式,化归为b n +1=pb n +q 型,求出1a n 的表达式,再求a n .跟踪训练3已知函数f (x )=x 3x +1,数列{a n }满足a 1=1,a n +1=f (a n )(n ∈N *),则数列{a n }的通项公式为____________.答案 a n =13n -2(n ∈N *) 解析 由已知得,a n +1=a n 3a n +1, ∴1a n +1=1a n +3,即1a n +1-1a n=3, ∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为d =3的等差数列,∴1a n =1+(n -1)×3=3n -2. 故a n =13n -2(n ∈N *). 课时精练1.已知数列{a n }满足a 1=2,a n +1=2a n +1,则a 4的值为( )A .15B .23C .32D .42答案 B解析 因为a n +1=2a n +1,所以a n +1+1=2(a n +1),所以{a n +1}是以3为首项,2为公比的等比数列, 所以a n +1=3·2n -1,所以a n =3·2n -1-1,a 4=23.2.在数列{a n }中,a 1=5,且满足a n +12n -5-2=a n 2n -7,则数列{a n }的通项公式为( ) A .2n -3 B .2n -7C .(2n -3)(2n -7)D .2n -5答案 C解析 因为a n +12n -5-2=a n 2n -7,所以a n +12n -5-a n 2n -7=2, 又a 12-7=-1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -7是以-1为首项,公差为2的等差数列, 所以a n 2n -7=-1+2(n -1)=2n -3, 所以a n =(2n -3)(2n -7).3.已知数列{a n }满足:a 1=1,且a n +1-2a n =n -1,其中n ∈N *,则数列{a n }的通项公式为( )A .a n =2n -nB .a n =2n +nC .a n =3n -1D .a n =3n +1答案 A解析 由题设,a n +1+(n +1)=2(a n +n ),而a 1+1=2, ∴{a n +n }是首项、公比均为2的等比数列, 故a n +n =2n ,即a n =2n -n .4.已知数列{a n }满足a 2=14,a n -a n +1=3a n a n +1,则数列的通项公式a n 等于( )A.13n -2B.13n +2C .3n -2D .3n +2 答案 A解析 ∵a n -a n +1=3a n a n +1,a 2=14,∴a 1-a 2=3a 1a 2,即a 1-14=34a 1,解得a 1=1.由题意知a n ≠0,由a n -a n +1=3a n a n +1得1a n +1-1a n=3, 又1a 1=1, ∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,3为公差的等差数列, ∴1a n=1+3(n -1)=3n -2, 则a n =13n -2. 5.在数列{a n }中,若a 1=3,a n +1=a 2n ,则a n 等于( )A .2n -1B.3n -1C .132n -D .123n - 答案 D解析 由a 1=3,a n +1=a 2n 知a n >0,对a n +1=a 2n 两边取以3为底的对数得,log 3a n +1=2log 3a n ,则数列{log 3a n }是以log 3a 1=1为首项,2为公比的等比数列, 则log 3a n =1·2n -1=2n -1,即a n =123n -.6.设数列{a n }满足a 1=1,a n =-a n -1+2n (n ≥2),则数列的通项公式a n 等于( )A.13·2n +13B.13·2n +13·(-1)nC.2n +13+13D.2n +13+13·(-1)n答案 D解析 ∵a n -1+a n =2n ,两边同时除以2n 得,a n 2n +12·a n -12n -1=1.令c n =a n 2n ,则c n =-12c n -1+1.两边同时加上-23得c n -23=-12·⎝ ⎛⎭⎪⎫c n -1-23.∴数列⎩⎨⎧⎭⎬⎫c n -23是以c 1-23为首项,-12为公比的等比数列,∴c n -23=⎝ ⎛⎭⎪⎫c 1-23·⎝ ⎛⎭⎪⎫-12n -1=13·⎝ ⎛⎭⎪⎫-12n ,∴c n =23+13·⎝ ⎛⎭⎪⎫-12n ,∴a n =2n ·c n =2n +13+13·(-1)n .7.(多选)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n (n ∈N *),则下列结论正确的是() A.⎩⎨⎧⎭⎬⎫1a n +3为等差数列B .{a n }的通项公式为a n =12n -1-3C .{a n }为递减数列D.⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =2n +2-3n -4 答案 CD解析 因为a n +1=a n 2+3a n, 所以1a n +1=2+3a n a n =2a n +3, 所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 且1a 1+3=4≠0, 所以⎩⎨⎧⎭⎬⎫1a n +3是以4为首项,2为公比的等比数列,即1a n+3=4×2n -1, 所以1a n=2n +1-3, 可得a n =12n +1-3, 故选项A ,B 错误;因为1a n=2n +1-3单调递增, 所以a n =12n +1-3单调递减, 即{a n }为递减数列,故选项C 正确;⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=(22+23+…+2n +1)-3n=22×1-2n1-2-3n =2n +2-3n -4, 故选项D 正确.8.将一些数排成如图所示的倒三角形,其中第一行各数依次为1,2,3,…,2 023,从第二行起,每一个数都等于它“肩上”的两个数之和,最后一行只有一个数M ,则M 等于( )A .2 023×22 020B .2 024×22 021C .2 023×22 021D .2 024×22 022答案 B解析 记第n 行的第一个数为a n ,则a 1=1,a 2=3=2a 1+1,a 3=8=2a 2+2,a 4=20=2a 3+4,…,a n =2a n -1+2n -2,∴a n 2n -2=a n -12n -3+1,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -2是以a 12-1=2为首项,1为公差的等差数列. ∴a n 2n -2=2+(n -1)×1=n +1,∴a n =(n +1)×2n -2. 又每行比上一行的数字少1个,∴最后一行为第2 023行,∴M =a 2 023=2 024×22 021.9.已知数列{a n }满足a 1=32,a n +1=3a n a n +3,若c n =3na n,则c n =____________. 答案 (n +1)3n -1解析 因为a 1=32,a n +1=3a n a n +3, 所以1a n +1=a n +33a n =13+1a n , 即1a n +1-1a n =13,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=23,公差为13的等差数列, 所以1a n=23+13(n -1)=n +13, 则c n =3na n=(n +1)3n -1. 10.已知数列{a n }满足a n +1=3a n -2a n -1(n ≥2,n ∈N *),且a 1=0,a 6=124,则a 2=________.答案 4解析 由a n +1=3a n -2a n -1(n ≥2,n ∈N *)可得a n +1-a n =2(a n -a n -1),若a n -a n -1=0,则a 6=a 5=…=a 1,与题中条件矛盾,故a n -a n -1≠0,所以a n +1-a n a n -a n -1=2,即数列{a n +1-a n }是以a 2-a 1为首项,2为公比的等比数列, 所以a n +1-a n =a 2·2n -1,所以a 6-a 1=a 2-a 1+a 3-a 2+a 4-a 3+a 5-a 4+a 6-a 5=a 2·20+a 2·21+a 2·22+a 2·23+a 2·24=31a 2=124,所以a 2=4.11.在数列{a n }中,a 1=1,且满足a n +1=3a n +2n ,则a n =________.答案 52·3n -1-n -12解析 ∵a n +1=3a n +2n ①,∴a n =3a n -1+2(n -1)(n ≥2),两式相减得,a n +1-a n =3(a n -a n -1)+2,令b n =a n +1-a n ,则b n =3b n -1+2(n ≥2),利用求a n +1=pa n +q 的方法知,b n =5·3n -1-1,即a n +1-a n =5·3n -1-1②,再利用累加法知,a n =52·3n -1-n -12⎝ ⎛⎭⎪⎫或联立①②解出a n =52·3n -1-n -12. 12.英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列{x n }满足x n +1=x n -f (x n )f ′(x n ),则称数列{x n }为牛顿数列.如果函数f (x )=2x 2-8,数列{x n }为牛顿数列,设a n =ln x n +2x n -2,且a 1=1,x n >2.数列{a n }的前n 项和为S n ,则S n =________.答案 2n -1解析 ∵f (x )=2x 2-8,∴f ′(x )=4x ,又∵x n +1=x n -f (x n )f ′(x n )=x n -2x 2n -84x n =x 2n +42x n, ∴x n +1+2=(x n +2)22x n ,x n +1-2=(x n -2)22x n, ∴x n +1+2x n +1-2=⎝ ⎛⎭⎪⎫x n +2x n -22, 又x n >2,∴ln x n +1+2x n +1-2=ln ⎝ ⎛⎭⎪⎫x n +2x n -22=2ln x n +2x n -2, 又a n =ln x n +2x n -2,且a 1=1, ∴a n +1=2a n ,∴数列{a n }是首项为1,公比为2的等比数列,∴{a n }的前n 项和S n =1×(1-2n )1-2=2n -1.。

人教版高考数学一轮专项复习:数列题型11种(含解析)

人教版高考数学一轮专项复习:数列题型11种(含解析)

数列题型11种(方法+例题+答案)1.作差法求通项公式2.累乘法求通项公式3.累加法求通项公式4.构造法求通项公式(一)5.构造法求通项公式(二)6.取倒法求通项公式7.分组求和法求前n项和8.错位相减法求前n项和9.裂项相消法求前n项和10.数列归纳法与数列不等式问题11.放缩法与数列不等式问题1、作差法求数列通项公式已知n S (12()n a a a f n +++= )求n a ,{11,(1),(2)n n n S n a S S n -==-≥注意:分两步,当2≥n 时和1=n 时一、例题讲解1、(2015∙湛江)已知数列{}n a 的前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,n *∈N ),且12a =,23a =. ()1求数列{}n a 的通项公式2、(2015∙茂名)已知数列}{n a 的前n 项和为n S ,11=a ,且)1()1(221+=+-+n n S n nS n n ,)(*∈N n ,数列}{n b 满足,0212=+-++n n n b b b )(*∈N n ,53=b ,其前9项和为63(1)求数列}{n a 和}{n b 的通项公式3、(2015∙中山)设等差数列}{n a 的前n 项和为n S ,且,40,842==S a 数列}{n b 的前n 项和为n T ,且,032=+-n n b T *∈N n 。

(1)求数列}{n a ,}{n b 的通项公式4、(2015∙揭阳)已知n S 为数列}{n a 的前n 项和,)1(3--=n n na S n n ,(*∈N n ),且,112=a (1)求1a 的值;(2)求数列}{n a 的通项公式5、(2014∙汕头)数列{}n a 中,11=a ,n S 是{}n a 前n 项和,且)2(11≥+=-n S S n n(1)求数列{}n a 的通项公式6、(2014∙肇庆)已知数列}{n a 的前n 项和为n S ,且满足,21=a )1(1++=+n n S na n n (1)求数列}{n a 的通项公式7、(2014∙江门)已知数列}{n a 的前n 项和122-=n S n ,求数列}{n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列
题型一、数列的综合问题
【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且
S 3+a 3,S 5+a 5,S 4+a 4成等差数列.
(1)求数列{a n }的通项公式;
(2)设T n =S n -1S n
(n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q ,
因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,
所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,
于是q 2=a 5a 3
=14. 又{a n }不是递减数列且a 1=32,所以q =-12.
故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭
⎪⎫-12n -1 =(-1)n -1·32n .
(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n ,n 为偶数,
当n 为奇数时,S n 随n 的增大而减小,
所以1<S n ≤S 1=32,
故0<S n -1S n ≤S 1-1S 1
=32-23=56. 当n 为偶数时,S n 随n 的增大而增大,
所以34=S 2≤S n <1,
故0>S n -1S n ≥S 2-1S 2
=34-43=-712.
综上,对于n ∈N *,总有-712≤S n -1S n
≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.
【分析】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.
【即时应用】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项.
(1)求数列{a n },{b n }的通项公式;
(2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k 成立?若存在,求出k 的值;若不存在,请说明理由.
解 (1)设等差数列{a n }的公差为d (d ≠0),
∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),
解得a 1=3,d =2,∴a n =2n +1.
∵b 1=a 1=3,b 2=a 4=9,
∴等比数列{b n }的公比q =3,∴b n =3n .
(2)不存在.理由如下:
∵1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭
⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦
⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭
⎪⎫13-12n +3, ∴1-2T k =23+12k +3
(k ∈N *), 易知数列⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k
=13k ∈⎝ ⎛⎦⎥⎤0,13,
∴不存在k ∈N *,使得等式1-2T k =1b k
成立. 题型二、数列的通项、求和
求和要善于分析通项的结构特征,选择合适的求和方法.常用求和方法有:错位相减法、裂项相消法、分组求和法等.
【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.
(1)求数列{a n },{b n }的通项公式;
(2)当d >1时,记c n =a n b n
,求数列{c n }的前n 项和T n . (1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1
d =2, 即⎩⎨⎧2a 1+9d =20,a 1d =2,
解得⎩⎨⎧a 1=1,d =2或⎩
⎪⎨⎪⎧a 1=9,d =29. 故⎩⎨⎧a n =2n -1,b n =2n -
1或⎩⎪⎨⎪⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1. (2)解 由d >1,知a n =2n -1,b n =2n -1,
故c n =2n -12
n -1, 于是T n =1+32+522+723+924+…+2n -12
n -1,① 12T n =12+322+523+724+9
25+…+2n -12n .②
①-②可得
12T n =2+12+122+…+12
n -2-2n -12n =3-2n +32n ,
故T n =6-2n +32
n -1. 【分析】用错位相减法解决数列求和的模板
第一步:(判断结构)
若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q )的对应项之积构成的,则可用此法求和.
第二步:(乘公比)
设{a n ·b n }的前n 项和为T n ,然后两边同乘以q .
第三步:(错位相减)
乘以公比q 后,向后错开一位,使含有q k (k ∈N *)的项对应,然后两边同时作差. 第四步:(求和)
将作差后的结果求和,从而表示出T n .
【即时应用】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.
(1)证明:a n +2=3a n ;
(2)求S 2n .
(1)证明 由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3,
因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3.
两式相减,得a n +2-a n +1=3a n -a n +1,
即a n +2=3a n ,n ≥2.又a 1=1,a 2=2,
所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1,
故对一切n ∈N *,a n +2=3a n .
(2)解 由(1)知,a n ≠0,所以a n +2a n
=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.
因此a 2n -1=3n -1,a 2n =2×3n -1.
于是S 2n =a 1+a 2+…+a 2n
=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )
=(1+3+…+3n -1)+2(1+3+…+3n -1)
=3(1+3+…+3n -1)=32(3n -1).
题型三、数列的综合应用
3.1 数列与函数的综合问题
【例3】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).
(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;
(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-
1ln 2
,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n . 解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7,
有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.
所以,S n =na 1+n (n -1)2
d =-2n +n (n -1)=n 2-3n . (2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),
它在x 轴上的截距为a 2-1ln 2.
由题意知,a 2-1ln 2=2-1ln 2,
解得a 2=2.
所以,d =a 2-a 1=1.从而a n =n ,b n =2n ,
所以T n =12+222+323+…+n -12
n -1+n 2n , 2T n =11+22+322+…+n 2
n -1 因此,2T n -T n =1+12+122+…+12
n -1-n 2n =2-1
2n -1-n 2n =2n +1-n -22n . 所以,T n =2n +1-n -22n
. 热点3.2 数列与不等式的综合问题
【例4】 在等差数列{a n }中,a 2=6,a 3+a 6=27.
(1)求数列{a n }的通项公式;
(2)记数列{a n }的前n 项和为S n ,且T n =S n 3·2n -1
,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.
解 (1)设公差为d ,由题意得:
⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=
3,
d
=3,∴a n =3n .
(2)∵S n =3(1+2+3+…+n )=32n (n +1),
∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)
2n +1,
∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)
2n
=(n +1)(2-n )
2n +1,
∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,
∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。

相关文档
最新文档