传热学第五章答案
大连理工大学843传热学考研历年真题汇总分类——简答题05

答:略去了主流方向温度 t 和速度 u 的二阶导数,使方程由原来的椭圆形变成了抛物线型;
利用边界层理论,使原来需整场求解的问题,转化为可分区(主流区和边界层区)求解
的问题,边界层区用边界层微分方程求解,而主流区则按理想流体看待;
由(u, υ, t, p)四个变量数简化为(u, υ, t)三个变量数,方程组仍然封闭。此时压力 p 不再是
=
������∞。
������
大连理工大学
843 传热学简答题 05
答:由外掠平板流动的动量微分方程u
∂u ∂x
+
������
������������ ������������
=
������
���������������2������2���,
由于u~������∞,
������~������,
������~������,而连续性方程∂u
h
的大小。
12.画出流体流过平壁时,速度边界层曲线和对流换热系数沿平壁长度的变化曲线。
答:
13.利用数量级分析的方法,对流体外掠平板的流动,从动量微分方程导出边界层厚度的如
下变化关系式������
������
~
√������������������������。其中������������������
2.为什么 22℃气温时,人在室内感到很舒适,而若跳入 22℃的水中就感到很冷?
答:人对冷暖感觉的衡量标准是散热量的大小而不是温度的高低。
在其他条件相同时,水的自然对流强度要远大于空气。
因此,人在水中的换热量要远高于空气中,所以人在相同温度的水中会感觉寒冷,而在
室内却感到舒适。
3.为什么电厂发电机用氢气冷却比空气冷却效果好?为什么用水冷比用氢气冷却效果好?
第四版传热学第五、六,七 八 章习题解答

第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学第五章答案

第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学第五版[完整版]答案解析
![传热学第五版[完整版]答案解析](https://img.taocdn.com/s3/m/10bebe0610661ed9ad51f3c4.png)
1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的?答:冰雹融化所需热量主要由三种途径得到:a、地面向冰雹导热所得热量;b、冰雹与周围的空气对流换热所得到的热量;c、冰雹周围的物体对冰雹辐射所得的热量。
2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的?答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。
白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。
4.现在冬季室内供暖可以采用多种方法。
就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。
答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体冷暖两用空调机(供热时):加热风对流换热和辐射人体太阳照射:阳光辐射人体5.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式?答:加热:用炭火对锅进行加热——辐射换热冷却:烙铁在水中冷却——对流换热和辐射换热凝固:冬天湖水结冰——对流换热和辐射换热沸腾:水在容器中沸腾——对流换热和辐射换热升华:结冰的衣物变干——对流换热和辐射换热冷凝:制冷剂在冷凝器中冷凝——对流换热和导热融熔:冰在空气中熔化——对流换热和辐射换热5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。
传热学第五版部分习题解答(5-7章)

《传热学》第五版部分习题解答第五章5-13 解:本题应指出是何种流体外掠平板,设是水外掠平板。
由60=m t ℃,查附录3 饱和水的热物理性质表得:610478.0-⨯=v m 2/s ,99.2=r p561082.210478.015.09.0Re ⨯=⨯⨯=⋅=-∞v x u x 41.11015.0)1082.2(0.5Re 0.5321521=⨯⨯⨯⨯==---x xδ mm98.099.241.13131=⨯==--rt p δδ mm5-18 解:55230802=+=+=wf m t t t ℃ 由附录2 ,查得空气的热物性参数为:210865.2-⨯=λW/(m.K) 61046.18-⨯=v m 2/s , 697.0=r p5561051033.41046.188.010Re ⨯<⨯=⨯⨯=⋅=-∞v l u c 所以,此流动换热为层流换热。
923.0101046.18105Re 65=⨯⨯⨯=⋅=-∞u v x c c m46.6)697.0()105(923.010865.2332.0332.03121523121Re =⨯⨯⨯⨯⨯==-r c x h p c c λW/(m 2.K)94.6)697.0()1033.4(8.010865.2332.0332.03121523121Re=⨯⨯⨯⨯⨯==-r lh p l λW/(m 2.K)88.1364.922=⨯==l h h W/(m 2.K)2.555)3080(18.088.13=-⨯⨯⨯=∆=Φt hA W5-23 解: (注意:本题可不做)参考课本p126页(15)到(5-33)式。
2t a by cy =-+;0,w y t t ==;220wd t dy ⎛⎫= ⎪⎝⎭;,t f y t t δ==得到w f w f tt t yt t θθδ-==-,代入速度场和该温度场于能量积分方程()0tf wd t u t t dy a dx y δ⎛⎫∂-= ⎪∂⎝⎭⎰,并且设t δςδ=,略去ς的高阶项,可以得到ς的表达式,进而得到t δ的表达式。
传热学第五章_对流换热原理-6

2-2)管内流体平均温度
t f
c p tudf
f
c pudf
2 R 2um
R
turdr
0
f
其中,tf为根据焓值计算的截断面平均温度。
由热平衡方程
dQ hx (tw t f )x * 2R * dx cpumR2dt f
和
dQ q * 2R * dx
可得
dt f 2q 2hx (tw t f ) x
t
( tw t r tw t f
)rR
( r )rR tw t f
const
而同时又有
q
(
t r
)
r
R
h(t w
tf
)
于是,得
(
t r
)
r
R
h
const
tw t f
上式又表明,常物性流体在热充分发展段的一个特点是 换热系数保持不变。
另外,如果边界层在管 中心处汇合时流体流动 仍然保持层流,那么进 入充分发展区后也就继 续保持层流流动状态, 从而构成流体管内层流 流动过程。
若 Pr<1, 则意味着流动进口段长于热进口段; 1-3)管内流动充分发展段的流态判断
Re 2300 2300 Re 10 4 Re 10 4
层流 过渡流 旺盛湍流
2)管内流体平均速度与平均温度
2-1)管内流体运动平均速度
um
f udf 0f
2
R 2
R rudr V
0
f
其中,V-体积流量;f-管的截断面积;u-局部流速
dx c pum R
c pum R
积分上式可得全管长流体的平均温度。
由于热边界存在有均匀壁温和均匀热流两种典型情
第四版传热学第五、六,七 八 章习题解答

第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
《传热学》资料第五章传热过程与传热器

《传热学》资料第五章传热过程与传热器一、名词解释1.传热过程:热量从高温流体通过壁面传向低温流体的总过程.2.复合传热:对流传热与辐射传热同时存在的传热过程.3.污垢系数:单位面积的污垢热阻.4.肋化系数: 肋侧表面面积与光壁侧表面积之比.5.顺流:两种流体平行流动且方向相同6.逆流: 两种流体平行流动且方向相反7.效能:换热器实际传热的热流量与最大可能传热的热流量之比.8.传热单元数:传热温差为1K时的热流量与热容量小的流体温度变化1K所吸收或放出的热流量之比.它反映了换热器的初投资和运行费用,是一个换热器的综合经济技术指标.9.临界热绝缘直径:对应于最小总热阻(或最大传热量)的保温层外径.二、填空题1.与的综合过程称为复合传热。
(对流传热,辐射传热)2.某燃煤电站过热器中,烟气向管壁传热的辐射传热系数为20 W/(m2.K),对流传热系数为40 W/(m2.K),其复合传热系数为。
(60W/(m2.K))3.肋化系数是指与之比。
(加肋后的总换热面积,未加肋时的换热面积)4.一传热过程的热流密度q=1.8kW/m2,冷、热流体间的温差为30℃,则传热系数为,单位面积的总传热热阻为。
(60W/(m2.K),0.017(m2.K)/W)5.一传热过程的温压为20℃,热流量为lkW,则其热阻为。
(0.02K/W)6.已知一厚为30mm的平壁,热流体侧的传热系数为100 W/(m2.K),冷流体侧的传热系数为250W/(m2.K),平壁材料的导热系数为0.2W/(m·K),则该平壁传热过程的传热系数为。
(6.1W/(m2.K))7.在一维稳态传热过程中,每个传热环节的热阻分别是0.01K/W、0.35K/W和0.009lK /W,在热阻为的传热环节上采取强化传热措施效果最好。
(0.35K/W)8.某一厚20mm的平壁传热过程的传热系数为45W/(m2.K),热流体侧的传热系数为70W/(m2K),冷流体侧的传热系数为200W/(m2.K),则该平壁的导热系数为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此 薄层之外,流体的温度梯度几乎为零, 固体表面附近流体温度发生剧烈变化的这一薄层称为 温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率 适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2 —17)有什么区另一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把 牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流 体的流动起什么作用? 答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关, 流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法 求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件 包括,(1)初始条件 (2 )边界条件 (速度、压力及温度)建立对流换热问题的数字描述 目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量, 能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度解:对于流体外标平板的流动,其动量方程为:第五章2 / 2A / X ,因此仅h答:(5— 4)(丄)h(t wt f )h(2—11)式(5—4)中的 h 是未知量,而式(2 —17)中的h 是作为已知的边界条件给出, 此外(2 —17)中的为固体导热系数而此式为流体导热系数,式(5— 4)将用来导出的如下变化关系式:xU丄4 丄^ vj x y dx xy根据数量级的关系,主流方的数量级为1,y方线的数量级为则有从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v必须是2量级。
x 从量级看为1级fU x量级1两量的数量级相同,所以x与J忒成比例5-2、对于油、空气及液态金属,分别有P r1 P r 1 P r1,试就外标等温平板的层流流动,画出三种流体边界层中速度分布和温度分布的大致图象(要能显示出与x 的相对大小)。
解:如下图:Hr ml5-3、已知:如图,流体在两平行平板间作层流充分发展对流换热。
求:画出下列三种情形下充分发展区域截面上的流体温度分布曲线: (1 ) qw1qw2 ;(2) q w1 2q w2 ; ( 3) q w1 0。
解:如下图形:St,5-5、已知:输送大电流的导线称为母线,一种母线的截面形状如图所示,内管为导体,其中通以大电流,外管起保护导体的作用。
设母线水平走向,内外管间充满空气。
的图像。
5-4、已知:某一电子器件的外壳可以简化成如图所示形状。
t h t c 。
求:定性地画出空腔截面上空气流动的图像。
求: 分析内管中所产生的热量是怎样散失到周围环境的。
并定性地画出截面上空气流动解: 散热方式:(1)环形空间中的空气自然对流(2)内环与外环表面间的辐射换热。
、、\'i f/ W ] \Z 丿门I \ / /,/ z5-6、已知:如图,高速飞行部件中广泛采用的钝体是一个轴对称的物体。
求:画出钝体表面上沿 x 方向的局部表面传热系数的大致图像, 并分析滞止点s 附近边界层流动的状态。
(层流或湍流)。
解:在外掠钝体的对流换热中, 滞止点处的换热强度是很高的。
该处的流动几乎总处层 流状态,对流换热的强烈程度随离开滞止点距离的增加而下降。
5-7.温度为80 C 的平板置于来流温度为20 C 的气流中.假设平板表面中某点在垂直于壁面方向的温度梯度为40 °C /mm ,试确定该处的热流密度.F J / ■* J(6 2边界层概念及分析5-8、已知:介质为 25C 的空气、水及14号润滑油,外掠平板边界层的流动由层流转5-9、已知:20C 的水以2m/s 的流速平行地流过一块平板,边界层内的流速为三次多项式分布。
求:计算离开平板前缘10cm 及20cm 处的流动边界层厚度及两截面上边界层内流体的质量流量(以垂直于流动方向的单位宽度计)* ---- f 64.64]F 4.64f .006 10O.。
21.47变为湍流的灵界雷诺数Rec5 105 u 1m/s, 。
求:以上三种介质达到 Rec 时所需的平板长度。
解:(1)25C 的空气v =15.53 10 6 m 2 /s(2) 25C 的水(3) 14号润滑油= 15.53 10v 0.9055 v 313.7 105x=7.765m106 m 2 /s 10 6m 2/sx=0.45275mx=156.85m解: 20C 的水v 1.00610 6m 2/s2m/s (1) x=10cm=0.1mRe x2 0.0161.00 10 =19880.72小于过渡雷诺数Rex(5—22)4.64vxJ u 4.64>06 106 O.11.0406 10 3mU ye)3ud yud yuu 07d y [3(—f ]d y[41 y 4产]8]=998.2=1.2982kg /(2) x=20cm=0.2mRe x2 0.021.006 10 =39761.43(为尽流)10 3(1)5muxdy 998-2281.834kg/m 25-10、已知:如图,两无限大平板之间的流体,由于上板运动而引起的层流粘性流动称 为库埃流。
不计流体中由于粘性而引起的机械能向热能的转换。
求:流体的速度与温度分布。
求:沿y 方向作积分(从y=0到y)导出边界层的动量积分方程。
2dy v — dy y 0 y由连续行方程可得—dy —dy; v0 y 0 y解:(1)动量方程式简化为dp dxd 2u dy 2,y=0, u=0, y=H, u y为上板dp 速度。
平行平板间的流动 dx。
积分两次并代入边界条件得 _y_H 。
(2)不计及由于粘性而引起机械能向热能的转换,能量方程为:t c u —2t,对于所研究的情形,因而得d y 2d 2ty=0,t tw1,y=H,tt t w2,由此得w1_ytw2tw15-11、已知:如图,外掠平板的边界层的动量方程式为:u u —— u v ——2u—2y 。
解:任一截面做y=0到y的积分u , uu ——dy v 0 x根据边界层概念y> ,u u故在该处 x2u—2yu-^dy 则有0 xv-^dy 0 y vjdy0 yv-^dy其中0 yu-^dy0 yv-^dy所以0 y2uV —^dy 又因为0 y0332鬻 施38 105o.695 112.6Wm2 K比拟理论5-13 •来流温度为20 C 、速度为4m/s 空气沿着平板流动,在距离前沿点为 2m 处的局部切应力为多大?如果平板温度为50 C ,该处的对流传热表面传热系数是多少?5-14 .实验测得一置于水中的平板某点的切应力为 15C 与60C ,试计算当地的局部热流密度.5-15 .温度为160C 、流速为4m/s 的空气流过温度为 30C 的平板.在离开前沿点为2mu-^dyxu v ——(1) (2)代入(3)Zy 0 Xu . -dy xdy A uu x dx 0u dy一 u udx 故边界层的动量积分方程为 Qx 0dy5-12、已知:1.013 105Pa 、100 C 的空气以v=100m/s 的速度流过一块平板,平板温度为30C 。
求:离开平板前缘3cm 及6cm 处边界层上的法向速度、流动边界层及热边界层厚度、部切应力和局部表面传热系数、平均阻力系数和平均表面传热系数。
解:定性温度tm100 3065C0.0293W/ mPr 0.695,19.5 10 6m 2/s31,045kg/ m 。
(1)x 3cm 处,Re xx 0^^ 106 1.538 10519.5v 1000.87/1.538 1051120.2218m/s动量边界层厚度4.64 0.03 5121.538 105 '0.355mmtPr 130.695 130.3550.398mm0.323O.323似5 10028.61kg/ms 2J1.538 105h x 0.332 —Re?2Pr 1'31.5Pa .如果水温与平板温度分别为5-20 .在一热处理工程中将一块尺寸为70cm 70cm 平板置于30C 的空气气流中,空处测得局部表面传热系数为149W/ m 2/。
.试计算该处的Re x , Nu X , St x , j ,Cf之值.5-16、已知:将一块尺寸为0.2m 0.2m 的薄平板平行地置于由风洞造成的均匀气体流场中。
在气流速度u40m/s 的情况下用测力仪测得, 要使平板维持在气流中需对它施加0.075N 的力。
此时气流温度 t 20C,平板两平面的温度tw 120Co 气体压力为1.013 103Pa 。
求:试据比拟理论确定平板两个表面的对流换热量。
0.075/20.9375N /m 2 0.9375Pa0.2 0.2,边界层中空气定性温度为70 C,物性:这说明Chilto n-Colburn 比拟对层流运动也是适用的,即适用于平均值也适用于局部 值。
工程应用5-17 .一飞机在10000m 高空飞行,时速为 600km/h .该处温度为-40 C.把机翼当成一 块平板,试确定离开机翼前沿点多远的位置上,空气的流动为充分发展的湍流?空气当作干 空气处理.5-18 .将一条长度为原型1/4的潜水艇模型放在一闭式风洞中进行阻力试验. 下的最大航速为16m/s ,风洞内气体的压力为 6 105Pa ,模型长3m,使确定试验时最大的风速应为多少?潜水艇在水下工作,风洞中的阻力试验结果能否用于水下工作的潜水艇?的制冷负荷.解:利用 1.029kg / m 3, C p 1009J / kg / KChilto n-Colburn比拟:C f StPr 2/3C f 1 22 u /2C fu C p Pr 2/35.69 10 423.6 1.276 230.1W/ m K 2hA t w t2 3.01 0.2220.02 1 0.9375 2 1.029 402/21.029 40 1009106m 2/s , Pr5.69 0.694120 20 240.9Wo0.69410 4, j h 2/3C fh _ 2/3--- Pr u C p潜水艇水5-19 . 一火车以25m/s 的速度前进,受到 140N 的切应力.它由1节机车及11节客车车 厢组成.将每节车厢都看成是由四个平板所组成, 车厢的尺寸为9(长)3m 2.5m (宽).不计各节车厢间的间隙,车外空气温度为35 C, 车厢外表面温度为 20 C .试估算该火车所需气流速为1.2m/s .作用在平板一侧的切应力为0.14N .试估计当该金属板的温度为200C时平板的散热量.小论文题目5-21 .夏天,常常将饮料容器置于冰水中来冷却饮料.为了加速冷却,一个专利(见有人提出了这样附图):将饮料壳体(例如易拉罐)绕其轴线在冰水中做转动.如果能实现饮料瓶或易拉罐绕其轴线的纯转动,试从对流传热基本方程出发,分析这样的方法能否加速饮料的冷却?。