5种无桥PFC
无桥PFC电路说明

无桥P F C电路说明文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-氮化镓 (GaN)技术由于其出色的开关特性和不断提升的品质,近期逐渐得到了电力转换应用的青睐。
具有低寄生电容和零反向恢复的安全GaN可实现更高的开关频率和效率,从而为全新应用和拓扑选项打开了大门。
连续传导模式 (CCM)图腾柱PFC就是一个得益于GaN优点的拓扑。
与通常使用的双升压无桥PFC拓扑相比,CCM图腾柱无桥PFC能够使半导体开关和升压电感器的数量减半,同时又能将峰值效率推升到95%以上。
本文分析了AC交叉区域内出现电流尖峰的根本原因,并给出了相应的解决方案。
一个750W图腾柱PFC原型机被构造成具有集成栅极驱动器的安全GaN,并且展示出性能方面的提升。
关键字—GaN;PFC;图腾柱;数字控制I.?简介当按下智能手机上的一个按钮时,这个手机会触发一个巨大的通信网络,并且连接到数千英里之外的数据中心。
承载通信数据时的功耗是不可见的,而又大大超过了人们的想象。
世界信息通信技术 (ICT) 生态系统的总体功耗正在接近全球发电量的10% [1]。
单单一个数据中心,比如说位于北卡罗来纳州的脸谱公司的数据中心,耗电量即达到40MW。
另外还有两个位于美国内华达州和中国重庆的200MW数据中心正在建设当中。
随着数据存储和通信网络的快速增长,持续运行电力系统的效率变得越来越重要。
现在比以前任何时候都需要对效率进行空前的改进与提升。
几乎所有ICT生态系统的能耗都转换自AC。
AC输入首先被整流,然后被升压至一个预稳压电平。
下游的DC/DC转换器将电压转换为一个隔离式48V或24V电压,作为电信无线系统的电源,以及存储器和处理器的内核电压。
随着MOSFET技术的兴起和发展,电力转换效率在过去三十年间得到大幅提升。
自2007年生效以来,Energy Star(能源之星)80 PLUS效率评价技术规范 [2] 将针对AC/DC整流器的效率等级从黄金级增加到更高的白金级,并且不断提高到钛金级。
无桥PFC

(PFC)电路成为人们注意的焦点。
设计人员去掉了转换器输入端的常规桥式整流电路,可以减少开关损耗,进一步提高效率。
在这样的电路中,不存在由于导通损耗而降低效率的问题,且设计比较简单,需要的元件数量较少。
1没有使用桥式整流电路的电路2 OCC PFC控制电路3 常规电路和无桥式整流的电路的效率PFC电路有一些难点。
如图所示,电路的输入端没有二极管组成的桥式整流电路,而是在交流输入边有个升压电感器。
在这个电路中,输出和输入并无直接的连接,于是就存在输入电压的感测、电流的感测和电磁干扰噪音等问题。
特别是,由于升压电感器放在交流输入这边,因此很难感测作为输入的电网交流电压和电感器上的电流。
1所示的没有使用桥式电路的整流器的工作原理。
升压电感器分成两半,形成升压电路。
输出电路由个晶体管和个二极管组成。
在交流电网电压的每一个半周中,其中一个起有源开关的作用,而另一个就起二极管的简单作用。
在这对晶体管中,处于工作状态的那个晶体管,与一个二极管和输入电感器一起,组成升压转换器。
输入电流由升压转换器来控制,随着输入电压而变化。
(OCC)方法PFC电路,最常用的是平均电流控制和峰值电流控制,它们都是使用模拟乘法器的技术。
最近,设计人员开始探讨其他的技术,其中包括单周控制的方法,如图所示。
OCC控制方法就很有优势。
使用输出电压和电感器中的电流峰值来计算前后衔接的每个周期的占空比,所以,在使用方法时,需要的所有信息是从直流母线电压和电流那里得到的,不需要感测交流电网的电压,从而最大限度地提高了功率因数。
而且,占空比控制着升压电路输入和输出之间的关系,电感器中的电流峰值可以自动地跟随输入电压的波形,这样就实现了功率因数校正的功能。
由于所有必要的信息都是从电感器中的电流峰值和电压输出那里得到的,因此不需要感测输入电压。
(EMI)的特性一般与功率级的结构有关。
对于常规的,输出的地总是通过桥式整流器与输入电网相连,引起共模噪音的唯一寄生电容是晶体管的漏极与地之间的寄生电容。
无桥PFC电路说明

氮化镓 (GaN)技术由于其出色的开关特性和不断提升的品质,近期逐渐得到了电力转换应用的青睐。
具有低寄生电容和零反向恢复的安全GaN可实现更高的开关频率和效率,从而为全新应用和拓扑选项打开了大门。
连续传导模式 (CCM)图腾柱PFC就是一个得益于GaN优点的拓扑。
与通常使用的双升压无桥PFC拓扑相比,CCM图腾柱无桥PFC能够使半导体开关和升压电感器的数量减半,同时又能将峰值效率推升到95%以上。
本文分析了AC 交叉区域内出现电流尖峰的根本原因,并给出了相应的解决方案。
一个750W图腾柱PFC原型机被构造成具有集成栅极驱动器的安全GaN,并且展示出性能方面的提升。
关键字—GaN;PFC;图腾柱;数字控制I. 简介当按下智能手机上的一个按钮时,这个手机会触发一个巨大的通信网络,并且连接到数千英里之外的数据中心。
承载通信数据时的功耗是不可见的,而又大大超过了人们的想象。
世界信息通信技术 (ICT) 生态系统的总体功耗正在接近全球发电量的10% [1]。
单单一个数据中心,比如说位于北卡罗来纳州的脸谱公司的数据中心,耗电量即达到40MW。
另外还有两个位于美国内华达州和中国重庆的200MW数据中心正在建设当中。
随着数据存储和通信网络的快速增长,持续运行电力系统的效率变得越来越重要。
现在比以前任何时候都需要对效率进行空前的改进与提升。
几乎所有ICT生态系统的能耗都转换自AC。
AC输入首先被整流,然后被升压至一个预稳压电平。
下游的DC/DC 转换器将电压转换为一个隔离式48V或24V电压,作为电信无线系统的电源,以及存储器和处理器的内核电压。
随着MOSFET技术的兴起和发展,电力转换效率在过去三十年间得到大幅提升。
自2007年生效以来,Energy Star(能源之星)80 PLUS效率评价技术规范 [2] 将针对AC/DC整流器的效率等级从黄金级增加到更高的白金级,并且不断提高到钛金级。
然而,由于MOSFET的性能限制,以及与钛金级效率要求有关的重大设计挑战,效率的改进与提升正在变慢。
无桥PFC方案原理及实例实用

0 2500
Preliminary EMI results (low line, 600W)
Still working on EMI improvement on HF range
Output Power (W)
Efficiency at high‐line input
99.5
200
99
180
98.5
160
98
140
97.5
120
eff
97
100
Ploss
96.5
80
96
60
95.5
40
95
20
94.5 0
500 1000 1500 2000 Output Power (W)
将Transphorm公司的无 桥PFC板及LLC的演示板 整合起来就得到97.5%以 上效率的电源
Eff. (%)
POUT (W)
采用氮公镓方案的1000W 无桥 PFC电源的效率 99.2%
采用氮化镓的LLC电源效率 1000W 98.8%
2.4kW Totem Pole PFC using Tranphorm’s TPH3205WS(63mΩ) in TO247
Totem pole
99.1% 98.97% 98.84% 98.7% 98.57%
Totem pole with EMI filter and current sense
98.9% 98.77% 98.64% 98.5% 98.37%
频率越高体积越小
采用氮化镓实现全电源97.5%效率(AC‐DC 1000W)
产品的应用:氮化镓的无桥PFC
图腾PFC是一种最高效的无桥PFC,周边器件少。
无桥pfc恒流工作

无桥pfc恒流工作
PFC(功率因数校正)是一种用于改善电气设备的功率因数的技术。
无桥PFC(无桥整流功率因数校正)是一种特定的PFC技术,
它通过使用无桥整流电路来实现功率因数校正。
无桥PFC通常应用
于交流-直流变换器中,以提高系统的功率因数和效率。
无桥PFC工作的原理是利用电容器和电感器来调整电流和电压
的相位,以使电路中的功率因数接近1。
这样可以减少电网对于设
备的负载,减少能耗浪费,并且有助于减少对电网的干扰。
在无桥PFC中,电流的控制是通过调整开关管的导通角度来实
现的。
通过精确控制开关管的导通时间,可以实现对电流波形的调整,从而实现功率因数校正。
无桥PFC技术的优点包括提高系统的功率因数,减少谐波干扰,提高电网利用率,降低能耗成本,延长设备寿命等。
然而,无桥
PFC技术也面临着成本较高、设计复杂、对元器件要求高等挑战。
总的来说,无桥PFC技术是一种重要的功率因数校正技术,通
过调整电流和电压的相位来改善电气设备的功率因数,从而提高系
统的效率和稳定性。
通过合理的设计和应用,可以实现节能减排、提高设备性能的目的。
无桥PFC方案原理及实例实用

无桥PFC电路原理及应用实例PFC + LLC 原理图 效率99.4% Totem-pole PFC, bridgeless PFC Totem pole PFC, Totem pole boostTPH3006PS TPH3206PS TPH3002PS TPH3202PS TPH3205WS TPH3206LD TPH3202LD产品的应用:氮化镓的无桥PFC /Totem Pole PFC用FET代替整流桥同时实现高效PFC功能• • 传统用的无桥需要2MOSFET,2电感,2碳 化硅二极管(D1,D2)才能实现高效率 采用氮化镓的图腾无桥PFC只要一个电 感,2个氮化镓MOS,另D1,D2可以用二极 管也可以从等同内阻的硅MOSFET以实现 更高效率 就现阶段氮化镓无桥的方案已比传统的 低了(传统的会用上两个高碳货硅二极 管及多用一个电感) 同时因氮化镓适合高频。
采用氮化镓高 频化的无桥PFC后,体积大大变小,综合 成本更有优势/效率依然很高传统Dual‐boost无桥PFCPFC••氮化镓的图腾无桥 PFC此设计是利用氮化镓体内二 极管超低的反向恢复特性来 实现高效低成本。
产品的应用:氮化镓的无桥PFC图腾PFC是一种最高效的无桥PFC,周边器件少。
将高频开关的Q1,Q2换成氮化镓FET以实现高效的 CCM操作 1000W的氮化镓无桥PFC 效率达99.2%以 上230V:400V boost Totem pole Totem pole with EMI filter and current sense50kHz 100kHz 150kHz 200kHz 250kHz99.16% 99.03%99.1% 98.97% 98.84% 98.7% 98.57%98.9% 98.77% 98.64% 98.5% 98.37%频率越高体积越小采用氮化镓实现全电源97.5%效率(AC‐DC 1000W)将Transphorm公司的无 桥PFC板及LLC的演示板 整合起来就得到97.5%以 上效率的电源Eff. (%)POUT (W) 采用氮公镓方案的1000W 无桥 PFC电源的效率 99.2%采用氮化镓的LLC电源效率 1000W 98.8%2.4kW Totem Pole PFC using Tranphorm’s TPH3205WS(63mΩ) in TO247Cost-effective 5mΩ resistor for current sensing and control 100KHz switching frequency, with peak eff of 98.8% at high line inputEfficiency at low‐line input99.5 99 98.5 98Efficiency(%)eff PlossEfficiency at high‐line input200 180 160 140Efficiency(%)99.5 99 98.5 98 97.5 97 96.5 96 95.5 95 94.5 0 500 1000 1500 Output Power (W) 2000Ploss200 180 160 140effLoss(W)97 96.5 96 95.5 95 94.5 0 200100 80 60 40 20 0 400 600 800 1000 1200 1400 Output Power (W)100 80 60 40 20 0 2500Loss(W)97.5120120Preliminary EMI results (low line, 600W)Still working on EMI improvement on HF range。
无桥BoostPFC电路的主要参数设计

的电容就能满足。当负载发生变化时,直流电压也发
生波动, 要使在整流器的惯性环节延迟时间内将直
流电压维持在限定范围内,要并接大的电容,同时电
容值还与负载的大小、输出纹波电压和维持时间 Δt
等因数有关。 一般取 Δt=15~50ms。 即
C0=
2PoΔt
22
Vo-Vo(min)
=
2×400×24×10-3 4002-3002
关键词: 无桥;PFC 电路;单周期控制
中 图 分 类 号 :TM13
文 献 标 识 码 :A
文 章 编 号 :1673-4823(2009)01-0111-05
PFC(Power Factor Corrector)电 路[1]的 作 用 是 有 效降低电源的电流谐波, 改善输入电流的波形与相 角, 在系统输入端产生与输入电压同相位的近似正 弦波电流,达到提高功率因数,减少开关电源对外部 电网干扰的目的。
(7)计算可得,即
V = sense(max)
VREF×(1-K) GDC
=
7×(1-0.699) 2.5
=0.8428V
(7)
其中直流增益 GDC=2.5,VREF=7V
I =I + L(PK)max i(pk)max
ΔIL 2
=7+
1.4 2
=7.7A
(8)
由式(2)、(3)可知 Ii(pk)max=7A,ΔIL=1.4A
在实际应用中,PFC 电路一般采用 Boost 结构, 与二极管桥式整流电路组成传统的有源功率因数校 正电路, 通过调节电流信号的平均幅度来控制输出 电压。它由四个慢速恢复二极管构成的输入整流桥, 当大功率 PFC 低电 压 输 入 的 时 候 , 输 入 电 流 非 常 大,这些二极管的功率损耗也相当大。 因此,在这基 础上引申出所谓的无桥 PFC 电路[2]。 它由两只电感、 两只功率 MOSFET、两只快恢复二极管组成,分别工 作在各 50%的半周期,由两个 MOSFET 替换原来的 两个二极管作为升压开关,从而提高效率。 但是,无 桥 PFC 电路的干扰较难处理,需要单独设置电流检 测变压器;同时,输入和输出没有共地点,给输入电 压的检测带来麻烦。针对这些要求,近年来新推出的 单周期控制技术的芯片,如英飞凌的 ICE2PCS01、IR 的 IR1150S 芯片等, 不需要输入电压的 检 测 环 节 , 非常适合用作无桥 PFC 电路的控制芯片。
无桥pfc电路工作原理详解

无桥pfc电路工作原理详解
嘿!今天咱们来好好聊聊无桥PFC 电路工作原理这个超级重要的话题呀!
哎呀呀,你知道吗?无桥PFC 电路在电力电子领域那可是有着相当关键的地位呢!它能大大提高电能的利用效率,让咱们的电器设备运行得更稳定、更节能!
那这无桥PFC 电路到底是怎么工作的呢?哇!其实呀,它通过一系列巧妙的电子元件组合和控制策略来实现功率因数校正的哟!
在传统的PFC 电路中,存在着一些能量损耗的问题,而无桥PFC 电路可就厉害了呀!它巧妙地减少了导通路径上的二极管数量,从而降低了导通损耗呢!
比如说,在正半周时,电流会按照特定的路径流动,嘿,这时候一些关键的元件就开始发挥作用啦!而到了负半周,又会有不同的元件参与进来,共同保证电路的高效运行呀!
你可能会问,那它具体是怎么控制电流和电压的呢?哎呀呀,这就涉及到复杂的控制算法和反馈机制啦!通过对输入电流和电压的实时监测,然后快速调整电路中的开关状态,从而达到理想的功率因数校正效果呢!
无桥PFC 电路的优点可不止降低损耗这么简单哟!它还能减少电磁干扰,提高整个系统的可靠性哇!
总之呢,无桥PFC 电路工作原理真的是超级复杂又超级厉害呀!它的出现为电力电子技术的发展带来了巨大的推动作用呢!怎么样,
是不是对它有了更深的了解啦?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这里有六种无桥PFC,分别是:
标准无桥PFC
这种PFC在正负半周的时候, 两个管子一个续流一个充当高频开关
这种拓扑的优点是使用功率元件比较少, 两个管子可以一起驱动, 这简化了驱动电路的设计, 同时让直接使用传统APFC的控制芯片成为可能.
但它同时存在几个问题, 电流流向复杂而且不共地, 电流采样困难, 有较大的共模干扰因此输入滤波器要仔细设计
针对头一个问题, ST公司和IR公司的一些应用文档中已经比较详细的介绍了两种比较可行的采用互感器的方法
双Boost无桥PFC
这种拓扑由标准无桥PFC改良而来, 增加了D3和D4作为低频电流的回路, S1和S2只作为高频开关而不参与低频续流
同标准无桥PFC, S1和S2能同时驱动, 而在两个低频二极管D3和D4之后插入取样电阻又可以像普通PFC简单地传感电流
同时这种拓扑具有更低的工模电流
但是这种拓扑必须使用两个电感, 电流流向有不确定性, 低频二极管和mos的体二极管可能同时导通, 增加了不稳定因素
双向开关无桥PFC
S1和S2组成了双向开关, 他们可以同时驱动, 采用电流互感器可以很容易的检测电流, D1和D3为超快恢复二极管, D2和D4可以采用低频二极管
缺点在于整个电路的电势相对于大地都在剧烈变化, 会产生比标准无桥PFC更严重的EMC问题, 输出电压无法直接采样, 需要隔离采样(使用光耦, 但是会增加复杂度)
图腾柱PFC
由标准无桥PFC演化而来, 但是原理稍微改变
D1和D2为低频二极管, S1和S2的体二极管提供高频整流开关作用
这种电路具有较低的EMI, 使用元件较少, 设计可以很紧凑
但是S1和S2需要使用不同的驱动信号, 工频周期不同信号也不一样, 增加了控制的复杂性, S2不容易驱动(可以尝试IR2110等自举驱动芯片)
S1和S2如果采用mos, mos的体二极管恢复较慢(通常数百ns)会产生较大的电流倒灌脉冲, 引起很大的损耗, 足以抵消无桥低损耗的优势
S1和S2如果采用IGBT, 虽然其体二极管的性能没问题, 但是其导通压降比较大, 也会产生很高的损耗, 尤其是在低电压输入的情况下
现在有一些国外公司在研制GaN和SiC高性能开关管, 开关速度极快, 没有体二极管反向恢复问题, 这些技术尚在研发中, 现在是在市场上见不到这些产品的. 如果未来这些高性能器件能大规模普及,图腾柱PFC将有机会成为最流行最高效
的PFC拓扑
假图腾柱PFC
在图腾柱PFC基础上演化而来D2和D4代替了原来S1和S2内部的体二极管的续流作用
控制方式和图腾柱PFC完全相同
这种拓扑需要两个电感, 利用率不高, 体积较大, S2极难驱动
这种拓扑只能算在高性能开关器件诞生前的一种这种方案
介绍了这六种PFC, 每一时刻电流只通过两个功率开关器件, 比传统PFC的三个少, 在不使用软开关和交错技术的情况下, 理论上这些拓扑的损耗几乎相差无几, 都比传统PFC高
剩下的主要就从EMC和易于实现的角度考虑了。