北师大版-数学-八年级上册-《平方根(第1课时)》教学设计

合集下载

北师大版八年级上册数学 第1课时 算术平方根精选 优质教案

北师大版八年级上册数学  第1课时 算术平方根精选 优质教案

上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组2.2 平方根第1课时算术平方根第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我的小正方形,通过剪一剪,1们做过的:由两个边长为a的大的正方形,那么有拼一拼,得到一个边长为2aa是无理数.在2是有理数,,,2?a2aaxx 叫的平方,叫前面我们学过若,则反过来ax?的什么呢?本节课我们一起来学习.方法二:问题导入前面我们学习了勾股定理,请大家根据勾股定理,结内容:合图形完成填空:222,,,?z?x?y2?w.让学生体会到学习算目的:方法一和二都是带着问题进入到这节课的学习,术平方根的必要性.2222,但不能求得,,;能求得效果:能表示,4z?5w?2?x3?y2?z wx ,,的值.y方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前说明:启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组第二环节:初步探究1:情境引出新概念内容2222x,你能求出来,,已知幂和指数,求底数,,4z?5?2w?x3y?吗?让学生体验概念形成过程,感受到概念引入的必要性.目的:wx之间的数但无是2到效果:学生可以估算出之间的数,,是1到23y wx,从而激发学生继续往下学习的兴趣,进而引入新的运算——,,法表示y开方.都是激发学生继续往下学习说明:无论是用方法一引入,还是方法二引入,x ,你能求出来吗?”的兴趣,都可以提出同样的问题“已知幂和指数,求底数2:在上面思考的基础上,明晰概念:内容2axxa就叫做,那么这个正数,如果一个正数一般地,即的平方等于ax?a的算术平方.特别地,我们规定的算术平方根,记为“”,读作“根号0”a0?0 ,即0.根是目的:对算术平方根概念的认识.知道平方运算和求正数的算术平方根是互逆效果:了解算术平方根的概念,的.巩固概念3:简单运用内容求下列各数的算术平方根:1 例49 (4) 14.;(3) ;(1) 900;(2) 1 64利用平方运算求一个正数的算体验求一个正数的算术平方根的过程,目的:有的正数的算让学生明白有的正数的算术平方根可以开出来,术平方根的方法,的算术平方根是.术平方根只能用根号表示,如1414效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个,负数没有算术平方根.0的算术平方根是0正数的算术平方根是正数,上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组2,即30;答案:解:(1)因为,所以900的算术平方根是30900?90030?2 1;,即(2)因为,所以1的算术平方根是11?11?4977494972?()即;的算术平方根是,所以因为(3) ,?648648864 的算术平方根是.(4)1414内容4:回解课堂引入问题2222x?,,,,.,那么5w?5?2w?x3?y3y?第三环节:深入探究t)(与下落时间自由下落物体的高度(米)秒例内容1:2h2米高的建筑物上自由下落,的关系为19.6.有一铁球从t94h?.到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.2t94.h?进行变形,再效果:学生多能利用等式的性质将用求算术平方根的方法求得题目的解.224?4.9tt?h,所以正数解:将,得代入公式6h.?192??t4 .(秒) 即铁球到达地面需要2秒.t是正数,用的是算术平方根,此题是为得出下面的结说明:强调实际问题论作铺垫的.观察我们刚才求出的算术平方根有什么特点.内容2:aa是一个非负让学生认识到算术平方根定义中的两层含义:中的目的:aa也是一个非负数,负数没有算术平方根.这也是算术平的算术平方根数,方根的性质——双重非负性.上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组明确只有非负数才有算术平方再一次深入地认识算术平方根的概念,效果:根.第四环节:反馈练习一、填空题:;1.若一个数的算术平方根是,那么这个数是7;2 .的算术平方根是922)(;的算术平方根是3.32.4,则.若2?2?m??2)(m二、求下列各数的算术平方根:121504?)(,,.36 ,,0.64,15,102251446向地面拉三、如图,从帐篷支撑竿AB的顶部A米,地固定帐篷.若绳子的长度为AC5.5一根绳子则米,4.5C到帐篷支撑竿底部B的距离是面固定点帐篷支撑竿的高是多少米?23;二、4;.答案:一、17;2..3;.163112?151510.;;6;1;;0.8;12△ABC米,∠4.5ABC=90°,在Rt米,三、解:由题意得AC=5.5BC=2222.所以帐篷支撑竿(中,由勾股定理得米)10?5.5?4.5?BC?ABAC?10 的高是米.以便根据学生目的:旨在检测学生对算术平方根的概念和性质的掌握情况,.情况调整教学进程一步步加深对算术平方根的概练习注意了问题的梯度性,效果:由浅入深,.念以及性质的认识对学生的回答,教师要给予评价和点评.上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组第五环节:学习小结是为以后的学习做铺垫内容:这节课学习的算术平方根是本章的基本概念,的.通过这节课的学习,我们要掌握以下的内容:,二是≥0.0算术平方根的概念,式子中的双重非负性:一是a≥(1) a a(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根2ax ax,那的本质特征就是定义中指出的:“如果一个正数,即的平方等于xax”,即被开方数是正的,由的算术平方根,”的“正数么这个正数就叫做a也是正数,因此算术平方根也必须是正的.当然零的算术平方根平方的意义,是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的不是直接写出算也包括书写格式的训练,如在求正数的算术平方根时,质和量,上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组非平方数的算术平方根只能用根而是通过平方运算来求算术平方根,术平方根,. 号来表示组“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”.成题组,在教学的不同阶段按由浅入深的原则加以使用.发展思维、适度拓展2在教学中,根据学生的实际情况,在学有余力的情况下,可以对的双重a非负性的知识进行适当的拓展.。

北师大数学八年级上册--第二章 平方根(第1课时)

北师大数学八年级上册--第二章  平方根(第1课时)
(3)因为( 3 )2=32 ,所以32的算术平方根是 ___3__, 即 32 = __3___.
课堂检测
能力提升题
2.2 平方根/
用大小完全相同的240块正方形地板砖,铺一间面积为60 m2
的会议室的地面,每块地板砖的边长是多少? 解:设每块地板砖的边长为x m.由题意得 240x2=60, x2=14
得 t2 =4,所以t =2(秒). 即铁球到达地面需要2秒.
巩固练习
2.2 平方根/
小明房间的面积是10.8 m2 ,房间地面恰由120块相同
的正方形地砖铺成,每块地砖的边长是多少?
解:设每块地砖的边长为x m.由题意得
120x2= 10.8, x2= 0.09 x = 0.09 x = 0.3
(2)
25 196
=154;
(3) 0.09 =0.3;
(4) - 64 =-8.
探究新知
2.2 平方根/
知识点 2 算术平方根的应用 例 自由下落物体的高度h(米)与下落时间t(秒)的关 系为h=4.9 t2.有一铁球从19.6米高的建筑物上自由下落, 到达地面需要多长时间?
解:将h=19.6代入公式 h=4.9 t2,
(1)若|a+3|=0 , 则a= -3 ;
2.2 平方根/
(2)若 (m-7)2=0 ,则m= 7 ;
(3)若 a−5=0 ,则a= 5 ;
(4)若|a-3|+ b+4=0,则代数式(a+b)2019 =_-_1_.
连接中考
2.2 平方根/
1. 化简 42的结果是( B )
A.-4
B.4 C.±4
3. 了解开方与乘方互为逆运算,会用平方运算求 某些非负数的算术平方根.

北师大版数学八年级上册《算术平方根》说课稿1

北师大版数学八年级上册《算术平方根》说课稿1

北师大版数学八年级上册《算术平方根》说课稿1一. 教材分析北师大版数学八年级上册《算术平方根》是学生在学习了有理数的乘方、平方根的基础上,进一步研究算术平方根的概念和性质。

本节课的内容包括算术平方根的定义、性质和求法,以及算术平方根在实际问题中的应用。

通过本节课的学习,学生能够理解算术平方根的概念,掌握求算术平方根的方法,并能应用于解决实际问题。

二. 学情分析学生在七年级时已经学习了平方根的概念和性质,对平方根有一定的了解。

但算术平方根与平方根有所不同,需要学生进一步理解和掌握。

另外,学生在之前的学习中,已经接触过一些实际问题的解决方法,但对于一些复杂的实际问题,还需要进一步的学习和实践。

三. 说教学目标1.知识与技能目标:学生能够理解算术平方根的概念,掌握求算术平方根的方法,并能应用于解决实际问题。

2.过程与方法目标:学生通过自主学习、合作交流的方式,培养观察、思考、表达和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学习的兴趣和自信心。

四. 说教学重难点1.教学重点:算术平方根的概念和性质,求算术平方根的方法。

2.教学难点:理解算术平方根与平方根的区别,以及在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法,让学生在探究中学习,培养观察、思考、表达和解决问题的能力。

2.教学手段:利用多媒体课件、实物模型等辅助教学,帮助学生直观地理解算术平方根的概念和性质。

六. 说教学过程1.导入:通过回顾平方根的概念和性质,引导学生思考算术平方根的含义,激发学生的学习兴趣。

2.新课导入:介绍算术平方根的概念,引导学生通过观察、思考,总结算术平方根的性质。

3.实例讲解:通过具体的例子,讲解求算术平方根的方法,让学生在实践中掌握求解技巧。

4.课堂练习:设计一些练习题,让学生巩固所学知识,提高解决问题的能力。

5.应用拓展:结合实际问题,引导学生运用算术平方根的知识解决问题,提高学生的应用能力。

平方根(第1课时) 教学设计

平方根(第1课时) 教学设计

平方根(第1课时) 教学设计教材分析:平方根是北师大数学教材八年级上册内容,它与乘方互为逆运算,它的引入,从而导出了无理数,使的数的范围扩大到实数,并且它为后面二次根式打下基础,在整个教材中占有很重要的地位。

学情分析:学生对乘方知识的学习不错,开方是乘方的逆运算,学生不难理解,在此基础上老师细心引导,使学生学习更加有兴趣,为学习实数和根式打好基础。

教学目标:1,了解开平方、平方根和算术平方根的意义及其表示方法.2,理解平方运算与开平方运算是互逆运算的关系.3,会用平方运算求非负数的平方根与算术平方根。

教学重点:平方根与算术平方根的定义与运算教学难点:平方根与算术平方根的定义教具准备:多媒体课件教学流程:1、情境导入:教师利用多媒体播放幻灯片1(如图16-1-1所示).问题:要剪出一块面积为25c扩的正方形纸片,纸片的边长应是多少?你能用方程表示这个问题吗?试试看.如果正方形的面积是21c扩,那么它的边长又是多少呢?2.课前热身根据上述提出的间题,请同学们作如下讨论:(1)这种运算(=25)是已知什么?求什么?(2)这种运算与平方运算之间存有怎样的关系?3、合作探究(1)整体感知数学来源于社会生活,并为社会生活服务,为了解决课本开始提出的问题,这节课我们开始学习一种新的运算---开平方运算。

(2)四边互动互动1:师:教师利用多媒体演示幻灯片2.先填空,再观察两种运算的结构特点,回答问题。

平方运算是已知,求;后面的运算是已知,这节课我们开始学习一种新的运算是。

生:先动手操作尝试,再在相互交流的基础上逐个举手回答提出的问题,持续补充完善,达成共识。

师:逐个点击空格,显示答案,验证学生回答的结果。

明确:已知平方的结果,求底数的运算叫做开平方运算,开平方的结果叫做平方根。

若=a(a≥0),则把求x 的运算叫做开平方运算,开平方运算用符号“”表示(读作“二次根号”或“根号”),其运算结果我们用符号“”表示(读作“正负根号a”),叫做a的平方根,其中非负数平方根“”简记为,叫做a的算术平方根。

北师大版八年级平方根的说课稿

北师大版八年级平方根的说课稿

北师大版八年级平方根的说课稿北师大版八年级平方根的说课稿【篇1】一、说教材《算术平方根》是人教版七年级数学第六章实数的第一节内容。

本节课学习第一个课时----算术平方根,是学习实数的准备知识,为学习二次根式作铺垫,提供知识积累。

二、说教学目标结合着七年级学生的认知结构及其心理特征,我制定了以下的教学目标:1.让学生理解算术平方根的概念,正确的读写有关算术平方根的式子,会用平方运算求完全平方数的算术平方根。

2.让学生经历从实际例子归纳出算术平方根概念的过程,理解概念的本质。

三、说教学的重难点教学重点:算术平方根的概念教学难点:掌握算术平方根的概念和性质、能正确求出完全平方数的算术平方根及利用双重非负性解决问题四、说学情1、学生现有基础:学生在上学期时已学过了乘方的运算,有助于本节的学习活动。

2、学习的现状:此阶段的学生对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。

五、说教法与学法教法:以前学生虽然学过乘方运算,但由于间隔时间过长,他们会有不同程度的遗忘,甚至有些概念已没了印象,同时也为了实现新旧教学方式和学习方式的接轨,结合本课特点,我采取以下教学方法:(1)情境教学法:(2)对比教学法:把二次方与算术平方根的概念,计算过程等对比起来进行教学,降低了学生的学习难度。

学法:小组交流合作法和自主学习法,把过程还给学生,让过程与结果并重。

六、教学程序:本节课的主要流程为:预习新知、激趣引入→新知探究、合作交流→巩固练习、强化认识(一)、预习新知、激趣引入由画布问题引出算术平方根的概念:如果一个正数的平方等于a,即2=a,那么这个正数x就叫做a的算术平方根。

这样的设计,其目的是通过表格填空,与正数的平方比较引出算术平方根的概念,沟通二者之间的关系,培养学生的逆向思维能力。

(二)、新知探究合作交流这一环节是整节课的`重点环节,引导学生对算术平方根的概念和性质进行了探究,在此基础上掌握a的算术平方根的表示方法及被开方数a的限制。

北师大版数学八年级上册2.2平方根(第一课时)教学设计

北师大版数学八年级上册2.2平方根(第一课时)教学设计
8.教学评价,促进教学相长
教师应及时对学生的学习情况进行评价,关注他们在知识掌握、思维能力和情感态度等方面的表现。根据评价结果,调整教学策略,以提高教学效果。
四、教学内容与过程
(一)导入新课,500字
1.复习导入:让学生回顾乘方的概念及性质,提出问题:“乘方是解决什么问题的运算?乘方的逆运算是什么?”引导学生思考乘方与平方根的关系。
针对不同学生的学习能力,设计不同难度的题目,使每个学生都能在课堂上得到锻炼和提升。关注学困生,给予他们更多的关注和指导,提高他们的学习兴趣和自信心。
7.创设互动环节,提高课堂氛围
在教学过程中,教师应注重与学生的互动,鼓励学生提问和发表观点,营造积极向上的课堂氛围。通过提问、讨论等方式,激发学生的思维,提高他们的课堂参与度。
2.自主探究,理解概念
让学生自主探究平方根的定义,引导他们从乘方的角度去理解平方根,并学会用符号表示平方根。在此过程中,关注学生对概念的理解,及时解答学生的疑问。
3.案例分析,掌握方法
通过讲解典型例题,让学生掌握求简单数的平方根的方法,如:完全平方数、近似计算等。强调平方根符号的正确书写,培养学生严谨的学术态度。
1.在自主探究平方根的定义和性质的过程中,培养学生的逻辑思维能力。
2.在求解实际问题的过程中,培养学生将数学知识应用于实际情境的能力。
3.在合作交流中,培养学生倾听他人意见、表达自己观点的能力。
(三)情感态度与价值观
1.培养学生积极探究数学知识的精神,激发学生对数学的好奇心和求知欲。
2.鼓励学生面对数学问题时,保持积极的态度,相信自己能够解决问题。
(二)讲授新知,500字
1.讲解平方根的定义,用符号表示平方根,强调平方根符号的正确书写。

2.2平方根(第一课时)教学设计-2022-2023学年北师大版八年级上册数学

2.2平方根(第一课时)教学设计-2022-2023学年北师大版八年级上册数学

2.2平方根(第一课时)教学设计-2022-2023学年北师大版八年级上册数学本文档是针对北师大版八年级上册数学课程中2.2平方根(第一课时)的教学设计。

本课程主要介绍平方根的概念、性质及其应用。

通过本课教学,学生将能够理解平方根的定义和计算方法,掌握平方根的性质,能够灵活应用平方根解决实际问题。

一、教学目标1.知识目标:–了解平方根的定义和符号表示;–掌握平方根的计算方法;–理解平方根的性质和应用。

2.能力目标:–能够准确地计算简单的平方根;–能够应用平方根解决实际问题;–能够分析和解决与平方根相关的数学问题。

3.情感目标:–培养学生对数学的兴趣和好奇心;–提高学生的思维能力和问题解决能力;–培养学生的合作意识和团队合作能力。

二、教学重点和难点教学重点:•平方根的定义和计算方法;•平方根的性质和应用。

教学难点:•应用平方根解决实际问题;•分析和解决与平方根相关的数学问题。

三、教学过程1. 导入新知识•在黑板上展示一个平方根的符号,并引导学生猜测其含义。

•以一个简单的例子引出平方根的概念,并让学生思考其定义。

•引导学生思考如何计算一个数的平方根。

2. 讲解平方根的定义和计算方法•通过幻灯片或板书等方式,给学生讲解平方根的定义和计算方法。

•讲解平方根的符号表示方法,并指导学生如何进行平方根的计算。

•给学生提供一些简单的示例,让学生通过计算来巩固平方根的计算方法。

3. 引导学生发现平方根的性质•设计一些简单的问题,引导学生发现平方根的性质,如平方根的两个性质:非负性和反函数性质。

•引导学生通过数学推理和实际计算来验证这些性质。

4. 应用平方根解决实际问题•提供一些实际问题,让学生应用平方根解决问题。

•引导学生分析问题,提取关键信息,然后运用平方根的知识解决问题。

5. 练习与巩固•给学生一些练习题,让他们巩固平方根的计算方法和应用技巧。

•引导学生独立完成练习题,并及时给予反馈和指导。

6. 小结与反思•对本节课的内容进行小结,强调平方根的重要性和应用价值。

北师大版数学八年级上册《算术平方根》教案1

北师大版数学八年级上册《算术平方根》教案1

北师大版数学八年级上册《算术平方根》教案1一. 教材分析《算术平方根》是北师大版数学八年级上册的一章内容。

本章主要介绍了算术平方根的概念、性质和运算方法。

通过学习本章,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够运用算术平方根解决实际问题。

二. 学情分析学生在学习本章之前,已经掌握了实数的概念和运算方法,具备了一定的数学基础。

但是,对于算术平方根的概念和运算方法可能较为陌生,需要通过实例和练习来加深理解和掌握。

三. 教学目标1.知识与技能:学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够运用算术平方根解决实际问题。

2.过程与方法:学生能够通过观察、操作、思考、交流等方式,培养解决问题的能力。

3.情感态度与价值观:学生能够对数学产生兴趣,培养积极的学习态度,增强自信心。

四. 教学重难点1.重点:算术平方根的定义和求法。

2.难点:算术平方根在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生的兴趣和思考,培养解决问题的能力。

2.启发式教学法:通过提问和引导,激发学生的思维,引导学生主动探索和发现。

3.合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学素材:准备相关的实例和实际问题,用于引发学生的兴趣和思考。

2.教学工具:准备黑板、粉笔等教学工具,用于展示和讲解。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量物体长度、计算土地面积等,引发学生的兴趣和思考,引出算术平方根的概念。

2.呈现(15分钟)教师通过讲解和展示,介绍算术平方根的定义和性质,让学生初步了解和认识算术平方根。

3.操练(15分钟)教师给出一些算术平方根的题目,学生独立完成,教师进行个别指导和讲解。

通过反复练习,让学生掌握求算术平方根的方法。

4.巩固(10分钟)教师给出一些实际问题,学生运用算术平方根的知识解决。

通过解决实际问题,巩固学生对算术平方根的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章实数
2. 平方根(第1课时)
一、学生起点分析
学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.
学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.
二、教学任务分析
本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:
①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.
②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.
③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.
三、教学过程设计
本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:

一环节:问题情境
方法一:问题导入
内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22
=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.
方法二:问题导入
内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空: =2x ,=2y ,=2z ,=2w .
目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.
效果:能表示22=x ,32
=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.
说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.
第二环节:初步探究
内容1:情境引出新概念
22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗? 目的:让学生体验概念形成过程,感受到概念引入的必要性.
效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.
说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”
内容2:在上面思考的基础上,明晰概念:
一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.
目的:对算术平方根概念的认识.
效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用 巩固概念
例1 求下列各数的算术平方根:
(1) 900; (2) 1; (3) 64
49; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.
效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.
答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;
(2)因为112=,所以1的算术平方根是1,即11=;
(3)因为6449)87
(2=,所以 6449的算术平方根是87, 即8
76449=; (4)14的算术平方根是14.
内容4:回解课堂引入问题
22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .
第三环节:深入探究 内容1:例 2 自由下落物体的高度h (m)与下落时间t (s)的关系为
29.4t h =.有一铁球从19.6m 高的建筑物上自由下落,到达地面需要多长
时间?
目的:用算术平方根的知识解决实际问题.
效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平
方根的方法求得题目的解.
解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (s).
即铁球到达地面需要2s .
说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.
内容2:观察我们刚才求出的算术平方根有什么特点.
目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.
效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.
第四环节:反馈练习
一、填空题:
1.若一个数的算术平方根是7,那么这个数是 ;
2.9的算术平方根是 ;
3.2
)32(的算术平方根是 ;
4.若22=+m ,则=+2)2(m . 二、求下列各数的算术平方根:
36,144121,15,0.64,410-,225,0)6
5(.
三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为8m ,地面固定点C 到帐篷支撑竿底部B 的距离是6.4m ,则帐篷支撑竿的高是多少米?
答案:
一、1.7;2.3;3.3
2;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =8m ,BC =6.4m ,∠ABC =90°,在R t △ABC 中,由勾股定理
得 4.8AB =(m).所以帐篷支撑竿的高是4.8m .
目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.
效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.
第五环节:学习小结
内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:
(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.
(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.
(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.
目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.
第六环节:作业布置
习题2.3
四、教学设计反思
1.细讲概念、强化训练
要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概
念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.
“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x 2
,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.
“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.
“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.
2.发展思维、适度拓展 在教学中,根据学生的实际情况,在学有余力的情况下,可以对a 的双重非负性的知识进行适当的拓展.。

相关文档
最新文档