4piqpsk调制解调
QPSK的调制与解调课程设计

注意事项: a. 信号的相位要保持稳定 b. 接收信号的强度要足够大 c. 解调过程中要避免干扰信号的影响
实验结果分析
实验目的:验证QPSK调制与解调的原理和性能
实验设备:信号源、调制器、解调器、示波器等
实验步骤:设置参数、调制信号、解调信号、观察波形等
实验结果:调制信号的频谱、解调信号的波形、误码率等
03
QPSK信号的生成
信号调制:将信息比特转换为QPSK信号
信号生成:通过I/Q调制器生成QPSK信号
信号频率:QPSK信号的频率为载波频率的4倍
信号相位:QPSK信号的相位有4种可能,对应4种信息比特
QPSK信号的解调
解调原理:利用相位差进行解调
解调方法:采用相位检测器进行解调
解调过程:首先进行相位检测,然后进行信号恢复
QPSK调制与解调在遥感系统中的应用
添加标题
添加标题
添加标题
添加标题
QPSK调制:将遥感数据调制到载波上,提高传输效率
遥感系统:通过卫星、飞机等平台获取地球表面信息
QPSK解调:接收端对载波进行解调,恢复遥感数据
应用优势:抗干扰能力强,传输距离远,数据传输速率高
QPSK调制与解调在其他领域的应用
添加标题
实验过程:包括信号产生、调制、解调、接收等步骤
添加标题
实验不足:在实验过程中遇到了一些困难,如信号干扰、设备故障等
QPSK调制与解调的应用
05
QPSK调制与解调在通信系统中的应用
提高传输速率:QPSK调制可以提高传输速率,满足高速数据传输的需求。
提高抗干扰能力:QPSK调制可以提高系统的抗干扰能力,保证通信质量。
QPSK调制信号的波形
每个相位对应一个比特,0度对应0,180度对应1
QPSK调制解调

QPSK 即4PSK ,正交相移调制。
在看QPSK 之前,先看一下通信系统的调制解调的过程为了方便分析,先假设这里是理想信道,没有噪声,接收端已经载波同步,位同步。
调制后的信号数学模型为:cos()c A w t φ+ 上述的x(t)被调制到了A,ϕ上。
如果调制信息在A 上,就是调幅,如果调制信息在φ上,就是调相。
QPSK 正是通过调整φ的变化,来传输信息。
φ分别取45135225,315︒︒︒︒,,4个相位表示00,01,10,11表示4个信息,调制后的信号表达式为:cos(45),00cos(135),01()cos(225),10cos(315),11c c c c A w t x A w t x s t A w t x A w t x ︒︒︒︒⎧+=⎪+=⎪=⎨+=⎪⎪+=⎩ (cos cos 45sin sin 45),00(cos cos135sin sin135),01()(cos cos 225sin sin 225),10(cos cos315sin sin 315),11c c c c c c c c A w t w t x A w t w t x s t A w t w t x A w t w t x ︒︒︒︒︒︒︒︒⎧-=⎪-=⎪=⎨-=⎪⎪-=⎩sin ),00cos sin ),01()cos sin ),10sin ),11c c c c c c c c w t w t x w t w t x s t w t w t x w t w t x -=-+==--=+= 这样的话,我们调制任何一个信号,都可以转化为调制在同一时刻的两路上的幅度调制后再相加合并为一路输出,而调制模型cos()c A w t φ+中任意的A 和φ,根据正交分解的原理,又可以分解到两个相互正交个坐标轴上,这就是星座映射、IQ 分路的本质原理。
又由于cos()sin()c jw t c c e w t j w t =+,所有我们又经常把需要IQ 分路的调制用c jw t e 这样的复数来表示,也经常说IQ 分别是实部,虚部。
通信原理实验五

实验五π/4DQPSK调制及解调实验一、实验目的了解π/4DQPSK调制解调的原理及特性。
二、实验器材1、主控&信号源模块、10号、11号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图π/4DQPSK调制框图11# 软件无线电解调π/4DQPSK解调四、实验步骤实验项目一π/4DQPSK调制1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【π/4DQPSK数字调制解调】→【星座图观测及“硬调制”】。
3、此时系统初始状态为:PN序列输出频率16KHz,载频为10.7MHz。
4、实验操作及波形观测。
(1)示波器探头CH1接10号模块TP8(NRZ-I),CH2接10号模块TP9(NRZ-Q),观测基带信号经过串并变换后输出的两路波形。
(2)示波器探头CH1接10号模块TP8(NRZ-I),CH2接10号模块TH7(I-Out),对比观测路信号成形前后的波形。
(3)示波器探头CH1接10号模块TP9(NRZ-Q),CH2接10号模块TH9(Q-Out),对比观测Q路信号成形前后的波形。
(4)示波器探头CH1接10号模块TH7(I-Out),CH2接10号模块TH9(Q-Out),调节示波器为XY模式,观察π/4DQPSK星座图。
(5)示波器探头CH1接10号模块TH7(I-Out),CH2接10号模块TP3(I),对比观测I路成形波形的载波调制前后的波形。
(6)示波器探头CH1接10号模块TH9(Q-Out),CH2接10号模块TP4(Q),对比观测Q 路成形波形的载波调制前后的波形。
(7)示波器探头CH1接10模块的TP1,观测I路和Q路加载频后的叠加信号。
实验项目二π/4DQPSK非相干解调1、关电,保持实验项目一中的连线不变,继续按表格所示进行以下连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【π/4DQPSK数字调制解调】→【星座图观测及“硬调制”】。
(完整word版)PI4-QPSK信号的调制与解调

大学生本科毕业设计(论文)题目:PI/4—QPSK信号的调制与解调专业电子与通信工程类别计算机模拟日期05年5月摘要在以前的数字蜂窝系统中,往往采用FSK、ASK、PSK等调制方式.随着数字蜂窝系统的发展,对调制和数字蜂窝系统的技术要求越来越高,许多优秀的调制技术应运而生,其中PI/4—QPSK 技术是无线通信中比较突出的一种二进制调制方法。
本文首先介绍了数字相位调制的一般原理;然后对PI/4—QPSK的调制原理进行了阐述,并对影响调制性能的滤波器进行了分析与研究;最后重点研究了PI/4—QPSK的三种解调方法并通过用Matlab对这一过程进行编程,得出信号在不同信噪比下模拟传输的时域图、频域图及功率谱密度曲线等,并在相同信道条件下通过眼图和误码率曲线图对PI/4—QPSK的三种解调方法进行了性能比较,得出了基带差分解调性能最差、中频差分解调性能次之、鉴频器解调性能最优的结论。
关键词PI/4—QPSK;同相信道;正交信道;调制;差分解调(完整word版)PI4-QPSK信号的调制与解调AbstractPrevious digital honeycomb system often adopt modulation way of FSK, ASK,PSK etc. Along with development of digital honeycomb system the tec- hnical criterion of modulation and demodulation will be adjusted to meet hig—her requirement. A lot of excellent modulation technology has emerged as the times require, the PI/4—QPSK is one of the most outstanding technology in radio communication。
π/4-QPSK调制技术实现方法设计及其性能分析

文 章 编 号 :1009—2552(2016)01—0079—04 DOI:10.13274/j.cnki.hdzj.2016.01.021
7r/4一QPSK调 制 技 术 实 现 方 法 设 计 及 其 性 能 分 析
高建 辉
(楚 雄 师 范 学 院 ,云 南 楚 雄 675000)
principles of,rr/4一QPSK modulation technology,f rom the theory puts forward the concrete implementation
method of this technology. And using the method it analyzes and simulates the spectrum characteristics and bit error rate characteristics of two kinds of modulation technology. At last,it shows through a band limited or nonlinear channel, signal spectrum characteristics and bit error rate characteristics of ,rr/4一
个人 数 字蜂 窝 系 统 、TETRA 数 字 集 群 通 信 系 统 等 。 量 ,使 得载 波 的包 络 为 零 ,信 号 功 率谱 发 生 扩 展 ,这
它 与 QPSK相 比,由于没 有 1T相位 突变 引 起 的包 络 样会 导致信 号 发生带 限失 真 J。
QPSK are superior to that of QPSK signa1. Key words:w/4一QPSK;modulation techniques;realization method
实验三π-4DQPSK调制解调实验

实验三 π/4DQPSK 调制解调实验一、实验目的1、掌握π/4-DQPSK 调制解调原理。
2、理解π/4-DQPSK 的优缺点。
二、实验内容1、观察π/4-DQPSK 调制过程各信号波形。
2、观察π/4-DQPSK 解调过程各信号波形。
三、实验仪器1、移动通信实验原理实验箱 一台2、20M 双踪示波器一台四、实验原理1、π/4-DQPSK 调制原理π/4-DQPSK 是对QPSK 信号特性的进行改进的一种调制方式。
改进之一是将QPSK 的最大相位跳变±π,降为±3π/4,从而改善了π/4-DQPSK 的频谱特性,改进之二是解调方式,QPSK 只能用于相干解调,而π/4-DQPSK 既可以用相干解调也可以采用非相干解调。
π/4-DQPSK 已用于美国的IS-136数字蜂窝系统,日本的(个人)数字蜂窝系统(PDC )和美国的个人接入通信系统(PACS )。
设π/4-DQPSK 信号为:())(k c k t t S ϕω+=cos 式中,k ϕ为kTs t Ts k ≤≤-)1(之间的附加相位。
上式可展开成:()k c k c k t t t S ϕωϕωsin sin cos cos -=当前码元的附加相位k ϕ是前一码元附加相位1-k ϕ与当前码元相位跳变量k ϕ∆之和, 即:k k k ϕϕϕ∆+=-1k k k k k k k k U ϕϕϕϕϕϕϕ∆-∆=∆+==---sin sin cos cos )cos(cos 111 k k k k k k k k V ϕϕϕϕϕϕϕ∆+∆=∆+==---sin cos cos sin )sin(sin 111其中,1111sin ,cos ----==k k k k V U ϕϕ,上面两式可改写为:k k k k k V U U ϕϕ∆-∆=--sin cos 11k k k k k U V V ϕϕ∆+∆=--sin cos 11这是π/4-DQPSK 的一个基本关系式。
QPSK调制与解调原理(精编文档).doc

【最新整理,下载后即可编辑】QPSK调制:四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。
QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,315°,调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。
每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。
QPSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。
解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。
图2-1 QPSK 相位图以π/4 QPSK 信号来分析,由相位图可以看出:当输入的数字信息为“11”码元时,输出已调载波⎪⎭⎫ ⎝⎛+4ππ2cos c t f A (2-1)当输入的数字信息为“01”码元时,输出已调载波⎪⎭⎫ ⎝⎛+43ππ2cos c t f A (2-2)当输入的数字信息为“00”码元时,输出已调载波⎪⎭⎫ ⎝⎛+45ππ2cos c t f A (2-3)当输入的数字信息为“10”码元时,输出已调载波⎪⎭⎫ ⎝⎛+47ππ2cos c t f A (2-4)QPSK 调制框图如下:图2-2 QPSK 调制框图其中串并转换模块是将码元序列进行I/Q 分离,转换规则可以设定为奇数位为I ,偶数位为Q 。
例:1011001001:I 路:11010;Q 路:01001电平转换模块是将1转换成幅度为A 的电平,0转换成幅度为-A 的电平。
如此,输入00则)452cos(2)2sin()2cos(ππππ+=+-=t f A t f A t f A QPSK c c c ,输入11,则)42cos(2)2sin()2cos(ππππ+=-=t f A t f A t f A QPSK c c c ,等等。
qpsk调制解调

qpsk调制解调QPSK(Quadrature Phase Shift Keying)是一种数字调制技术,常用于无线通信中对数据进行调制与解调。
它利用信号的相位来携带信息,将每个信号符号映射到特定的相位角度上。
在QPSK调制中,使用两个正交的载波信号进行调制,分别称为I (In-phase)和Q(Quadrature)信号。
这两个信号的相位差为90度,在时钟周期中,可以将一个符号期划分为四个相位,每个相位代表不同的数据。
QPSK调制的实现步骤如下:1. 将原始数据分为两个数据流,分别称为I路和Q路。
可以通过多种方式将原始数据分为两个流,如交织、分组等。
2. 将每个数据流转换为数字信号,通常情况下为二进制(1或0)。
对于I路和Q路,每个二进制位代表不同的相位。
3. 将每个二进制位映射到对应的相位上。
通常情况下,可以使用星座图来代表每个相位的位置。
在QPSK调制中,星座图有四个点,每个点代表一个相位。
4. 将映射之后的信号与I和Q信号进行叠加,得到最终的QPSK调制信号。
调制信号可以通过将I和Q信号分别乘以正弦和余弦函数得到。
QPSK调制的解调步骤如下:1. 接收到QPSK调制的信号,将信号与正弦和余弦函数进行乘法运算,得到I路和Q路信号。
2. 对I路和Q路信号进行采样,获取每个符号周期内的采样值。
通常情况下,采样点与信号的相位有关。
3. 根据采样点的位置,将每个符号周期内的信号归类到相应的区域。
可以使用星座图来辅助识别相位。
4. 将每个区域映射为二进制数据,并重新组合为解调后的原始数据流。
QPSK调制具有以下优点:1. 高效性:QPSK调制可以在每个符号周期内携带两个比特的信息,与BPSK相比,传输效率提高了一倍。
2. 低复杂度:QPSK调制相对于其他高阶调制技术(如16-QAM、64-QAM)来说,实现起来更简单。
它仅需要两个正交的载波来进行调制,降低了硬件的复杂性。
3. 抗噪性好:由于QPSK调制的相位差为90度,使得它对于噪声的干扰具有较好的抵抗能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 调制
信号波形 1 0.5
0
-0.5
信源信号(40): [0,0,0,1,1,0,1,0,0,0, 0,1,1,0,0,1,1,1,1,1,1, 0,1,1,0,1,0,1,1,0,0,1, 1,0,0,1,0,1,0,0]
3 3.5 4 4.5 x 10 5
-5
-1 0 0.5 1 1.5 2 2.5 时间t 信号星座图 1 0.5
调制原理框图
01
1.5
10
信号波形
10
10
1
fb=100e3; fc=200e3; 信源信号 =[0,1,1,0,1,0,1,0,0,0....]
Ik 0 0 1 Qk 0 1 0 1 Δθ 5π/4 3π/4 7π/4 π/4
0.5
0
-0.5
-1
1
-1.5 0 0.5 1 1.5 2 2.5 时间t 3 3.5 4 4.5 x 10 5
������∕4−������������������������相位改变只 能是 或
1、基本概念
QPSK中载波相位代表相邻的2比特数据,具有四相调制特征,而π /4-QPSK中 的载波相位对应着相邻2比特码元的相位偏差。
QPSK与π /4-QPSK相比,前者载波相位会发生180°突变,会使载波信号功率 谱扩展,从而造成信号带限失真。而后者载波相位的突变为±π /4与 ±3π /4,因此在通过带限或非线性信道时频谱扩散不严重。 QPSK和π /4-QPSK两种调制方式下,功率谱密度分布相似,具有同样的带宽。 π /4-QPSK信号包络起伏较小,其功率谱旁瓣衰减的要比QPSK快,π /4-QPSK 调制比QPSK具有更优的频谱特性和效率。
仿真条件: fs=8e7; fb=100e3; fc=2e6; SNR=10dB
正交分量
0 -0.5 -1 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
同相分量
解调 差分检测
鉴频器检测 基带差分检测 中频差分检测
相干检测
在静态接收时,相干检测的性能比差分检测好,但相干检测中要求的相 干载波在实际移动信道中很难取得,因而在移动接收时,其接收性能反而 不及差分检测。
中频差分解调
• 延迟差分解调
i路 信 号 1.5 1 0.5
0
-0.5
-1
-1.5 0 2000 4000 6000 8000 10000 12000 14000 16000
q路 信 号 1.5
1
0.5
0
-0.5
-1
-1.5 0 2000 4000 6000 8000 10000 12000 14000 16000
低 通 滤 波 后 的 i路 信 号
0
-0.5
-1 0 100 200 300 400 500 600 700 800
低 通 滤 波 后 的 q路 信 号 1
0.5
0
-0.5
-1 0 100 200 300 400 500 600 700 800
0,1,0,0,0,1,0,1,1,1,0,1,1,1,0,1,0,1,1
-7ank you!
• 低通滤波
低 通 滤 波 后 的 i路 信 号 1 0.5
0
-0.5
-1 0 100 200 300 400 500 600 700 800
低 通 滤 波 后 的 q路 信 号 1
0.5
0
-0.5
-1 0 100 200 300 400 500 600 700 800
• 判决
1 0.5
0,0,1,1,0,0,1,0,1,1,1,1,0,0,1,0,1,0,0
• 解调输出
经过串并转换后的输出: [0,0,0,1,1,0,1,0,0,0,0,1,1,0,0,1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0] 信源信号: [0,0,0,1,1,0,1,0,0,0,0,1,1,0,0,1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
误码率曲线
clear all
10
-1
pi/4-qpsk 信 号 误 码 率 曲 线
(500)
Bit Error Rate
fs=8e7; fb=100e3; fc=2e6; c=exp(j*2*pi*fc*t); origin=round(rand(1,500));
10
-2
10
-3
-10
-9
-8
������∕4−������������������������ 正交相移键控 调制解调的实现
目录:
基本概念 调制
中频差分解调
误码率
1、基本概念 (QPSK)
1、基本概念(π/4QPSK)
������∕4−������������������������已调信号对 应的星座点集合由两个 位移������∕4的星座点子集 组成,每个星座点子集 含有4个星座点。������∕4− ������������������������ 在两个星座点子 集中交替选取星座点。