用相似三角形解决问题

合集下载

三角形的相似性质如何利用相似三角形的性质求解问题

三角形的相似性质如何利用相似三角形的性质求解问题

三角形的相似性质如何利用相似三角形的性质求解问题三角形是初中数学中的重要内容,而其中的相似三角形更是一个重要的概念。

相似三角形是指具有相同形状但大小不同的两个或多个三角形。

相似三角形的性质可以帮助我们在解决问题时更加简便和高效。

本文将探讨相似三角形的性质以及如何利用这些性质来解决实际问题。

一、相似三角形的性质1. 比例关系相似三角形的边长比例相等,即如果两个三角形的对应边的长度之比相等,那么它们就是相似三角形。

例如,如果ΔABC 与ΔA'B'C' 是相似三角形,那么有如下的比例关系:AB/A'B' = BC/B'C' = AC/A'C'2. 角度关系相似三角形的对应角度相等,即两个相似三角形对应角的度数相等。

例如,如果ΔABC 与ΔA'B'C' 是相似三角形,那么相应的角度关系如下:∠A = ∠A'∠B = ∠B'∠C = ∠C'二、利用相似三角形的性质求解问题利用相似三角形的性质,我们可以在解决实际问题时采用以下方法:1. 比例推导根据相似三角形的比例关系,可以利用已知信息求解未知信息。

例如,已知两个三角形相似且知道一个三角形的边长和另一个三角形的边长比例,可以通过设立等式求解未知边长。

2. 定理运用利用相似三角形的角度关系,可以应用相应的定理求解问题。

例如,可以应用“等角定理”、“角平分线定理”等来解决与相似三角形有关的问题。

3. 测量实际问题当我们面对实际问题时,可以利用相似三角形的性质进行测量。

例如,当我们需要测量高楼的高度时,可以利用相似三角形的原理,通过测量阴影的长度和角度来计算出高楼的高度。

综上所述,相似三角形的性质在数学解题中是非常重要的。

通过学习和应用相似三角形的性质,我们可以更加高效地解决各类与三角形有关的问题。

使用相似三角形的性质,我们可以推导比例关系、运用定理以及进行实际测量,从而准确地求解问题。

相似三角形的应用

相似三角形的应用

相似三角形的应用相似三角形是指具有相同形状但大小不同的两个或多个三角形。

相似三角形之间存在一种特殊的比例关系,通过这种比例关系,我们可以运用相似三角形解决各种实际问题。

本文将重点介绍相似三角形的应用领域及其在数学和几何中的具体运用。

一、相似三角形在实际问题中的应用1. 测量高度和距离:相似三角形的应用在测量高度和距离方面非常常见。

例如,在无法直接测量建筑物或树木的高度时,可以通过相似三角形的比例关系,利用已知的高度和距离来计算未知的高度。

类似地,当无法直接测量两个物体之间的距离时,可以利用相似三角形的比例关系来推算出距离。

2. 图像的放大和缩小:在艺术和设计领域中,相似三角形的应用非常重要。

当我们需要将一幅图像进行放大或缩小时,可以利用相似三角形的性质来确定新图像与原图像的比例关系,从而实现图像的变形。

3. 建筑设计与规划:在建筑设计与规划中,相似三角形的应用也非常普遍。

通过相似三角形可以计算出建筑物的高度、宽度、长度等尺寸信息,从而帮助设计师进行准确的规划和设计。

二、相似三角形在数学中的应用1. 比例和比值的计算:相似三角形的比例关系可以用来计算不同长度之间的比例和比值。

通过相似三角形的性质,我们可以建立起各种数学关系式,进行比例和比值的计算,从而解决许多实际和抽象的问题。

2. 三角函数的定义和性质:在三角函数的定义和性质中,相似三角形也扮演着重要角色。

例如,在定义正弦、余弦和正切函数时,就需要利用相似三角形的性质来推导出它们的数学表示式。

相似三角形的运用使得三角函数的计算和应用更加简便和灵活。

3. 几何图形的相似性判定:相似三角形的性质在判定几何图形的相似性方面起着至关重要的作用。

根据相似三角形的比例关系,我们可以通过对角、边长比较等方法来判断两个图形是否相似,并进一步推导出它们之间的其他性质。

总结:相似三角形在实际问题、数学和几何中都有着广泛的应用。

通过运用相似三角形的比例关系,我们可以解决测量、计算和设计等问题,在数学和几何中推导出各种定理和性质。

九下 图形的相似 6.7 用相似三角形解决问题(2) 含答案

九下 图形的相似 6.7 用相似三角形解决问题(2) 含答案

6.7 用相似三角形解决问题(2)学习目标:1.掌握中心投影的概念,对比、总结平行投影与中心投影的区别;2.运用相似三角形的知识,建构中心投影的数学模型,辅助解决实际问题;3.感受相似三角形的运用价值,深化对核心数学知识的理解,培养学习兴趣,增强合作意识. 学习重点:掌握中心投影的相关知识,用相似三角形的知识解决问题. 学习难点:将实际问题抽象、建模,辅助解题. 学习过程: 导学预习:1.如图1是用杠杆撬石头的示意图, C 是支点,当用力压杠杆的A端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬起.现有一块石头,要使其滚动,杠杆的B 端必须上翘起10cm ,己知杠杆的AB =2m ,BC =40cm ,则要这块石头滚动,至少要将杠杆的A 端向下压 cm .2.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是( )A.变长B.变短C.先变长后变短D.先变短后变长3.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )A .路灯的左侧B .路灯的右侧C .路灯的下方D .以上都可以4.如图2,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的( )A.91 B.92 C.31 D.32合作探究:活动一 自主学习 讨论分享阅读阅读教材83页,了解中心投影,说说自己的体会._______________________________________________________称为中心投影。

思考:在点光源的照射下,不同物体的物高与影长成比例吗?结论:一般地,在点光源的照射下,同一个物体在不同的位置,它的高与影长____________. 活动二 尝试交流如图,某人身高CD =1.6m ,在路灯A 照射下影长为DE ,他与灯杆AB 的距离BD =5m . (1)AB =6m ,求DE (精确到0.01m ); (2)DE =2.5m ,求A B .图1E HFG CB A)活动三例题学习如图,河对岸有一灯杆AB,在灯光下,小丽在点D处测得自己的影长DF=3 m,沿BD方向前进到达点F处测得自己的影长FG=4 m.设小丽的身高为1.6 m,求灯杆AB的高度.变式练习1:已知为了测量路灯CD的高度,把一根长1.5m的竹竿AB竖直立在水平地面上.测得竹竿的影子长为1m,然后拿竹竿向远处路灯的方向走了4m.再把竹竿竖直立在地面上,竹竿的影长为1.8m,求路灯的高度.变式练习2:小华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后的影子顶部刚好触到AC的底部,当他向前再步行12m到达Q点时,发现身前的影子的顶端接触到路灯BD的底部.已知小华身高为1.6m,两个路灯的高度都是9.6m.(1)求两个路灯之间的距离.(2)当小华同学走到路灯BD处时,他在路灯AC下的影子长是多少?练一练:1.3根底部在同一直线上的旗杆直立在地面上,第1、第2根旗杆在同一灯光下的影子如图.请在图中画出光源的位置,并画出第3根旗杆在该灯光下的影子(不写画法).ABO 1O 2.如图,某同学身高AB =1.70m ,在灯光下,他从灯杆底部点D 处沿直线前进4m 到达点B 时,测得他的影长PB =2m .求灯杆CD 的高度.3.如图,圆桌正上方的灯泡O (看成一个点)发出的光线照射到桌面后,在地上形成影.设桌面的半径AC =0.8 m ,桌面与地面的距离AB =1m ,灯泡与桌面的距离OA =2m ,求地面上形成的影的面积.小结:课堂作业:课本习题6.7第4、5、6题. 课后练习:1.如图1,A 、B 两点被池塘隔开,在AB 外任选一点C ,连结AC 、 BC 分别取其三等分点M 、N 量得 MN =38m .则AB 的长是 ( )A . 152mB .114mC .76mD .104m2.小明身高为1.6米,他在距路灯5米处的位置发现自己的影长为1米,他在向前走距离路灯为7米时,他的影长将( )A .增长0.4米B .减少0.4米C .增长1.4米D .减少1.4米图43.如图2,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为 .4.如图3,为了测量水塘边A 、B 两点之间的距离,在可以看到的A 、B 的点E 处,取AE 、BE延长线上的C 、D 两点,使得CD ∥AB ,若测得CD =5m ,AD =15m ,ED =3m ,则A 、B 两点间的距离为________.图1图3D FA B C E G 5.如图4,是一盏圆锥形灯罩AOB ,两母线的夹角90AOB ∠=︒,若灯炮O 离地面的高OO 1是2米时,则光束照射到地面的面积是 米6.在6米高的路灯下,身高1.5米的哥哥的影长为1米,身高1.2米的弟弟的影长为2米,那么哥哥和弟弟之间的距离x 的取值范围是 .7.小明、小亮在高为8米的路灯下做游戏,他们发现身高为1.6米的小明在路灯下的影长为1米,身高为1.65米的小亮要想在该路灯下得到一个3.1米长的影子,而且两人的影子要保证在同一直线上,那么两人应该相距 米.8.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点 )20米的A 点,沿OA 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?9.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度.10.如图所示,一段街道的两边缘所在直线分别为AB 、PQ ,并且AB ∥PQ ,建筑物的一端DE 所在的直线MN ⊥AB 于点M ,交PQ 于点N ,小亮从胜利街的A 处,•沿着AB 方向前进,小明一直站在点P 的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在的位置(•用点C 标出); (2)已知:MN =20m ,MD =8m ,PN=24m .求(1)中的点C 到胜利街口的距离CM .P 第8题图参考答案导学预习:1.40cm 2.D 3.C 4.C活动二尝试交流(1)1.82m(2)4.8m活动三例题学习AB=6.4m变式练习1:路灯离地面的高度是9米.变式练习2:解:(1)由对称性可知AP=BQ,设AP=BQ=xm∵MP∥BD∴△APM∽△ABD∴∴∴x=3∴AB=2x+12=2×3+12=18(m)答:两个路灯之间的距离为18米.(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F,则BF即为此时他在路灯AC的影子长,设BF=ym∵BE∥AC∴△EBF∽△CAF∴,即解得y=3.6,经检验y=3.6是分式方程的解.答:当王华同学走到路灯BD处时,他在路灯AC下的影子长是3.6米.练一练:2.5.1m 3.1.44π课后练习:1.B 2.A 3.0.81π 4.20m 5. 解:由题意知,圆锥的正截面是等腰直角三角形,所以光束照射到地面的半径=OO1=2m,那么光束照射到地面的面积=4π≈12.6米2.6.8. 解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5-1.5=3.5米.9. 解:由AB∥CD,得△ABF∽△CDF所以即①由AB∥EF,得△ABG∽△EFG所以即②由①、②得BD=9代入①,得∴AB=6(m)答:路灯杆AB的高度为6m。

相似三角形的应用举例

相似三角形的应用举例

相似三角形的应用举例相似三角形是指在形状相似的两个三角形中,对应的角度相等,而对应的边长成比例关系。

这一性质使得相似三角形在实际生活中有着广泛的应用。

本文将举例介绍相似三角形在地理测量、影视制作和建筑设计等领域的具体应用。

一、地理测量中的相似三角形应用地理测量中常常使用相似三角形原理来测量高处物体的高度以及难以直接测量的距离。

以测量一座建筑物的高度为例,通过在平面上选择两个不同位置,测量出与地平线夹角相同的两个点,再利用三角形相似原理计算出建筑物的高度。

这样的测量方法可以避免测量过程中的误差和测量的困难,提高测量的准确性和效率。

二、影视制作中的相似三角形应用在影视制作中,相似三角形的应用尤为重要。

例如,在电影中要制作一个逼真的远景特写,如果直接拍摄远处的景象,可能会因为远离拍摄现场而导致细节无法清晰展现。

为了解决这个问题,可以利用相似三角形的原理,在近距离拍摄一个类似的模型或者画面,然后通过电脑生成与实景相似的远景效果。

这种利用相似三角形的方法可以在节约成本的同时,制作出逼真的远景特写效果。

三、建筑设计中的相似三角形应用相似三角形在建筑设计中有着广泛的应用,特别是在设计高层建筑时更是如此。

以设计一座摩天大楼为例,建筑师需要保证高楼的结构坚固稳定,同时也要满足美学上的要求。

在设计过程中,利用相似三角形的原理可以根据大楼的比例尺度,在小模型上进行实际尺寸的计算和预测。

这种预测方法不仅可以方便地展示设计方案,还可以在施工前发现和修正设计中的不足之处,提高整体设计质量。

通过上述几个具体例子,我们可以看到相似三角形在地理测量、影视制作和建筑设计中的重要应用。

相似三角形原理的运用,使得我们能够更加准确地进行测量、制作出逼真的特效和设计出稳固美观的建筑物。

这一应用不仅提高了工作效率,还为我们提供了更多实际问题的解决方案。

因此,相似三角形的学习与应用在我们的生活中具有重要的意义。

相似三角形题型

相似三角形题型

相似三角形题型
相似三角形是初中数学中非常重要的一部分,以下是一些常见的相似三角形题型:
1. **利用相似三角形求长度**。

在这种题型中,通常会给出一个或多个相似三角形,并询问某个特定边的长度。

解决此类问题通常需要找出相似三角形的对应边,并利用其比例关系来求解。

2. **利用相似三角形求角度**。

这类问题通常会涉及一个或多个相似三角形的角度。

通过相似三角形的对应角相等这一性质,可以很容易地求解出未知角度。

3. **利用相似三角形求面积**。

根据相似三角形的面积比等于对应边的平方比这一性质,我们可以通过已知的相似三角形面积来求出未知的相似三角形面积。

4. **利用相似三角形设计问题**。

这类问题通常会设计一个实际问题场景,例如建筑设计、机械设计等,然后通过引入相似三角形来解决这个问题。

5. **利用相似三角形解决实际问题**。

例如,在物理学中,可以利用相似三角形来解决一些力学问题;在地理学中,可以利用相似三角形来计算一些地理数据等。

以上只是相似三角形题型的部分例子,实际上,相似三角形的应用非常广泛,可以用来解决很多实际问题。

在解决相似三角形问题时,一定要灵活运用相似三角形的性质和定理,以及相关的数学知识和方法。

相似三角形应用举例

相似三角形应用举例

相似三角形应用举例在我们的日常生活和学习中,相似三角形的应用无处不在。

相似三角形是指对应角相等,对应边成比例的两个三角形。

通过利用相似三角形的性质,我们可以解决许多实际问题,下面就让我们一起来看看一些具体的例子。

一、测量物体的高度假设我们想要测量一棵大树的高度,但又无法直接测量。

这时候,相似三角形就派上用场了。

我们可以在同一时刻,在大树旁边立一根已知长度的杆子,然后分别测量杆子的影子长度和大树的影子长度。

因为在同一时刻,太阳光线的角度是相同的,所以杆子和它的影子以及大树和它的影子分别构成了两个相似三角形。

假设杆子的高度为h1,杆子影子的长度为 s1,大树影子的长度为 s2,大树的高度为 h2。

根据相似三角形的性质,我们可以得到:h1 / s1 = h2 / s2通过已知的 h1、s1 和 s2,就可以计算出大树的高度 h2。

例如,杆子高度为2 米,影子长度为15 米,大树影子长度为9 米。

那么:2 / 15 = h2 / 915h2 = 2 × 915h2 = 18h2 = 12 米所以,这棵大树的高度约为 12 米。

二、计算河的宽度当我们面对一条河流,想要知道它的宽度,但又无法直接跨越测量时,相似三角形同样能帮助我们解决问题。

我们可以在河的一侧选择一个点A,然后在河的对岸选择一个点B,使得 A、B 两点与河岸基本在同一直线上。

接着,在河的这一侧,沿着河岸选定一个点 C,使得 AC 垂直于河岸,并测量出 AC 的长度。

然后,我们再沿着 AC 的方向向前走一段距离,到达点 D,使得点 D、A、B 三点在同一直线上,并且测量出 CD 的长度。

由于三角形 ABC 和三角形 ADC 有一个共同的角∠A,并且∠ACB=∠ACD = 90°,所以这两个三角形相似。

假设河宽为AB =x,AC =a,CD =b。

根据相似三角形的性质,我们有:AC / AB = CD / AC即 a / x = b / a通过已知的 a 和 b,就可以计算出河的宽度 x。

通过相似三角形解决物体的大小比较

通过相似三角形解决物体的大小比较

通过相似三角形解决物体的大小比较相似三角形是初中数学中一个非常重要的概念,它的运用非常广泛。

其中一个典型的应用便是解决物体的大小比较问题。

本文将介绍如何通过相似三角形解决物体的大小比较。

一、相似三角形的定义相似三角形是指具有相同形状但大小不一的三角形。

简单来说,两个三角形的对应角度相等,对应边的比例也相等时,这两个三角形便是相似的。

如下图所示,三角形ABC和三角形DEF是相似的,它们的对应角度相等,对应边的比例也相等。

二、相似三角形比例定理相似三角形的比例定理是指:在两个相似三角形中,对应边的比值相等。

比例定理可以用来解决物体的大小比较问题。

以人的身高为例,假设A和B分别是两个人,A的身高为1.6m,B的身高为1.8m,那么可以通过相似三角形来比较两个人的身高。

如下图所示,设三角形ABC和三角形DEF相似,AB表示A的身高,DE表示B的身高,则有:AB/DE = AC/DF其中,AC表示一个固定长度,可以是人的手臂长度或者一张纸的长度,DF表示B所在的位置到眼睛的距离,这个距离是可以测量得到的。

通过量取AC和DF的长度,就可以算出AB和DE的比例,从而比较出A和B的身高大小关系。

三、实例分析一位小学生想知道他的狗和他的同学的猫哪个更高。

他用一个尺子量了他的狗的高度为20cm,然后让同学量了他们家猫的高度,得到其高度为12cm。

现在他想知道到底是他的狗高还是同学的猫高。

假设小学生的身高为 1.2m,他可以通过相似三角形比例定理来解决这个问题。

如图所示,设三角形ABC和三角形DEF相似,AB表示小学生的身高,BC表示小学生手臂的长度,DE表示猫的高度,EF表示同学的眼睛到猫脚的距离。

则有:AB/DE = BC/EF那么,20/12 = BC/EF,从而可以得到BC比EF大约为1.67。

由于BC表示小学生手臂的长度,这个长度是可以测量得到的,因此可以计算出EF的长度,从而算出猫的高度,从而比较出哪个更高。

相似三角形的应用于实际问题求解

相似三角形的应用于实际问题求解

相似三角形的应用于实际问题求解相似三角形是几何学中一个重要的概念,广泛应用于实际问题的求解中。

在实际应用中,我们经常会遇到一些无法直接测量或计算的物理量,但通过相似三角形的应用,我们可以利用已知的信息来求解未知量。

本文将以几个实际问题为例,介绍相似三角形的应用方法。

问题一:高楼的高度难以直接测量,如何利用相似三角形求解?解决问题一的方法是利用日晷的阴影来推算高楼的高度。

首先,在一个特定的时间,测量日晷的阴影长度与高楼的阴影长度。

假设日晷的高度为h₁,阴影长度为s₁;高楼的高度为h₂,阴影长度为s₂。

由于日晷和高楼处于相似三角形中,可以建立以下比例关系:h₁/s₁ = h₂/s₂通过已知的日晷高度和阴影长度,可以求解出高楼的高度。

问题二:无法直接测量的河宽,如何利用相似三角形求解?解决问题二的方法是利用两个位置的观测角度来推算河宽。

假设我们站在一岸的A点,观测到对岸的B点在岸边的角度为θ₁;然后我们移动到岸边的C点,观测到对岸的B点在岸边的角度为θ₂。

假设岸边的距离为d,河宽为w。

由于三角形ABC和三角形ABD相似,可以建立以下比例关系:w/d = tan(θ₁)w/(d + AC) = tan(θ₂)通过已知的观测角度和岸边距离,可以求解出河宽。

问题三:测量不便的高山高度,如何利用相似三角形求解?解决问题三的方法是利用水平线和山顶的观测角度来推算高山的高度。

假设我们站在水平线上的A点,观测山顶的角度为θ₁;然后我们移动到水平线上的B点,观测山顶的角度为θ₂。

假设两个观测点之间的距离为d,山顶的高度为h。

由于三角形ABC和三角形ABD相似,可以建立以下比例关系:h/d = tan(θ₁)h/(d + AB) = tan(θ₂)通过已知的观测角度和观测点之间的距离,可以求解出高山的高度。

通过以上实际问题的求解,我们可以看出相似三角形的应用是十分灵活的。

它不仅能够用于测量高度、宽度等无法直接测量的物理量,还可以应用于地理测量、地质勘查、建筑设计等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图,某人身高CD=1.6m,在路灯A照射下影 长为DE,他与灯杆AB的距离BD=5m.
(1)AB=6m,求DE(精确到0.01m); (2)DE=2.5吗,求AB.
6.7 用相似三角形解决问题
如图,河对岸有一灯杆AB,在灯光下,小丽在点D 处测得自己的影长DF=3m,沿BD方向前进到达点F处 测得自己的影长FG=4m.设小丽的身高为1.6m,求灯 杆AB的高度.
6.7 用相似三角形解决问题
路灯、台灯、手电筒的光可以看成是 从一个点发出的.如图,在点光源的照射下, 物体所产生的影称为中心投影.
思考: 在点光源的照射下,不同物体 的物高与影长成比例吗?
6.7 用相似三角形解决问题
对照上面的两幅图,说说“平行投影” 与 “中心投影”有何相同和不同之处?
6.7 用相似三角形解决问题
初中数学 九年级(下册)
6.7 用相似三角形解决问题
作者:骆健(连云港市东辛农场中学)
6.7 用相似三角形解决问题
光线在直线传播过程中,遇到不透明的物体, 在这个物体的后面光线不能到达的区域便产生影.
太阳光线可以看成是平行光线.
6.7 用相似三角形解决问题
在平行光线的照射下,物体所产生的影称为 平行投影. 在平行光线的照射下,不同物体的物高与影长成比例.
6.7 用相似三角形解决问题
1.身高为1.5m的小华在打高尔夫球,她在阳光下
的影长为2.1m,此时她身后一棵水杉树的影长为10.5m,
则这棵水杉树高为.7m D.15.75m
6.7 用相似三角形解决问题
夜晚,当人在路灯下行走时,会看到自己的 影子有何变化?
6.7 用相似三角形解决问题
1.3根底部在同一直线上的旗杆直立在地面上,第 1、第2根旗杆在同一灯光下的影子如图.请在图中画出 光源的位置,并画出第3根旗杆在该灯光下的影子(不 写画法).
相关文档
最新文档