用相似三角形解决问题(1)

合集下载

三角形的相似性质如何利用相似三角形的性质求解问题

三角形的相似性质如何利用相似三角形的性质求解问题

三角形的相似性质如何利用相似三角形的性质求解问题三角形是初中数学中的重要内容,而其中的相似三角形更是一个重要的概念。

相似三角形是指具有相同形状但大小不同的两个或多个三角形。

相似三角形的性质可以帮助我们在解决问题时更加简便和高效。

本文将探讨相似三角形的性质以及如何利用这些性质来解决实际问题。

一、相似三角形的性质1. 比例关系相似三角形的边长比例相等,即如果两个三角形的对应边的长度之比相等,那么它们就是相似三角形。

例如,如果ΔABC 与ΔA'B'C' 是相似三角形,那么有如下的比例关系:AB/A'B' = BC/B'C' = AC/A'C'2. 角度关系相似三角形的对应角度相等,即两个相似三角形对应角的度数相等。

例如,如果ΔABC 与ΔA'B'C' 是相似三角形,那么相应的角度关系如下:∠A = ∠A'∠B = ∠B'∠C = ∠C'二、利用相似三角形的性质求解问题利用相似三角形的性质,我们可以在解决实际问题时采用以下方法:1. 比例推导根据相似三角形的比例关系,可以利用已知信息求解未知信息。

例如,已知两个三角形相似且知道一个三角形的边长和另一个三角形的边长比例,可以通过设立等式求解未知边长。

2. 定理运用利用相似三角形的角度关系,可以应用相应的定理求解问题。

例如,可以应用“等角定理”、“角平分线定理”等来解决与相似三角形有关的问题。

3. 测量实际问题当我们面对实际问题时,可以利用相似三角形的性质进行测量。

例如,当我们需要测量高楼的高度时,可以利用相似三角形的原理,通过测量阴影的长度和角度来计算出高楼的高度。

综上所述,相似三角形的性质在数学解题中是非常重要的。

通过学习和应用相似三角形的性质,我们可以更加高效地解决各类与三角形有关的问题。

使用相似三角形的性质,我们可以推导比例关系、运用定理以及进行实际测量,从而准确地求解问题。

史上最全!!!!相似三角形难题精选

史上最全!!!!相似三角形难题精选

相似三角形难题精选模块一:相似三角形中的动点问题如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC 向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm 的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。

用相似三角形解决问题(课件)

用相似三角形解决问题(课件)


A′
B′
02
知识精讲
建模:
如图,人的身高为O’B’=n,影长为A’B’=n,旗杆的影长为AB=m,求旗
杆OB的高度
物高 :参照物高 = 物影 :参照物影
【分析】
物高:物影=参照物高:参照物影
∵平行光,∴∠A=∠A’

∵∠B=∠E=90°,∴△AOB∽△A’O’B’

’’
∴ = ,∴ =
∴AC=32m+115m=147m
02
知识精讲
求不能直接测量的物体的高度,通常用“在平行光的照射下,
在同一时刻,不同物体的物高与影长成比例”的原理解决
结论公式:
物高 :参照物高 = 物影 :参照物影
或物高:物影=参照物高:参照物影
【平行投影——测高度】
知识精讲
例1、已知一直立的电线杆在地面上的影长为20m,同时,高为1.4m的测’’ ’’ ’ Nhomakorabea’




= ,即OB=
O′


a

m
B A′ n B′
02
知识精讲
Q6:古埃及国王曾请一位学者测量金字塔的高度.当这位学者确认在阳光
下他的影长等于他的身高时(如图),要求他的助手同时测出金字塔的影
长 DB 以及金字塔底部正方形的边长,这样他就知道了金字塔的高度.他是
苏科版九年级下册第6章图形的相似
用相似三角形解决问题
Solve problems with similar triangles
教学目标
01
了解平行投影与中心投影的意义,会利用平行投影与中心
投影画图
02
理解在平行光与点光源的照射下,物体的物高与影长的关

相似三角形的应用举例教案

相似三角形的应用举例教案

相似三角形的应用目的:利用相似三角形的性质解决实际问题. 中考基础知识通过证明三角形相似 线段成比例()()⎧⇒⎨⎩方程含有未知数的等式函数求最值等问题备考例题指导例1.如图,P 是△ABC 的BC 边上的一个动点,且四边形ADPE 是平行四边形. (1)求证:△DBP ∽△EPC ; (2)当P 点在什么位置时,S ADPE=12S △ABC ,说明理由. 分析:(1) 证明两个三角形相似,常用方法是证明两个角对应相等,题目中有ADPE ⇒平行线⇒角相等,命题得证.(2)设BP BC =x ,则CPBC=1-x ,ADPE ⇒DP ∥AC , EP ∥AB ,△BDP ∽△BAC △CPE ∽△CBA ∴FPC ABC S S ∆∆=(CP CB )2=(1-x )2,BDP BACS S ∆∆=(BP BC )2=x2 ∴BDP CPE ABCS S S ∆∆∆+=x 2+(1-x )2.∵S ADPE=12S △ABC ,即ADPE ABC SS ∆=12. ∴x 2+(1-x )2=12(转化为含x 的方程) x=12, ∴BP BC =12.即P 应为BC 之中点.例2.已知△ABC中,∠ACB=90°,过点C作CD⊥AB于D,且AD=m,BD=n,AC2:BC2=2:1,又关于x的方程14x2-2(n-1)x+m2-12=0的两个实数根的差的平方小于192,求m,n为整数时,•一次函数y=mx+n的解析式.分析:这是一个几何、代数综合题,由条件发现,建立关于m,n的方程或不等式,•求出m,n 再写出一次函数.抓条件:AC2:BC2=2:1做文章(转化到m,n上).双直角图形⇒有相似形⇒比例式(方程)∠ACB=90°,CD⊥AB Rt△BCD∽Rt△BACBC2=BD·BA,同理有AC2=AD·AB,∴22BCAC=BD BAAD AB⇒=m=2n ①抓条件:x1+x2=8(n-1),x1x2=4(m2-12).由(x1-x2)2<192 配方(x1+x2)2-4x1x2<192. 64(n-1)2-16(m2-12)<192,4n2-m2-8n+4<0.②①代入②⇒n>12.又由△≥0得4(n-1)2-4×14(m2-12)≥0,①代入上式得n≤2.③由n>12,n≤2得12<n≤2.∵n为整数,∴n=1,2.∴m=2,4∴y=2x+1,或y=4x+2.遇根与系数关系题目则用韦达定理,但必须考虑△≥0.备考巩固练习1.如图,在△ABC中,∠A、∠B、∠C的对边分别是a、b、c.关于x•的一元二次方程x2-2b(a+2 2 c b)x+(a+b)2=0的两根之和与两根之积相等,D为AB上一点,DE∥AC•交BC•于E,EF⊥AB,垂足是F.(1)求证:△ABC是直角三角形;(2)若BF=6,FD=4,CE=23CD,求CE的长.2.某生活小区的居民筹集资金1600元,计划在一块上、下底分别为10m,20m的梯形空地上,种植花木如图1(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/m2,当△AMD•地带种满花后,共花了160元,请计算种满△BMC地带所需的费用.(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m2和10元/m2,应选择种哪种花木,刚好用完后筹集的资金?(3)若梯形ABCD为等腰梯形,面积不变(如图2),请你设计一个花坛图案,•即在梯形内找到一点P,使得△APD≌△BPC且S△APD=S△BPC,并说出你的理由.3.(1)如图1,在梯形ABCD中,AB∥CD,AB=b,CD=a,E为AD边上的任意一点,EF∥AB,且EF交于点F,某学生在研究这一问题时,发现如下事实:①当DEAE=1时,有EF=2a b+;②当DEAE=2时,有EF=23a b+;③当DEAE=3时,有EF=34a b+.当DEAE=k时,参照上述研究结论,•请你猜想用k表示DE的一般结论,并给出证明;(2)现有一块直角梯形田地ABCD(如图2所示),其中AB∥CD,AD⊥AB,AB=310m,• DC=120cm,AD=70m,若要将这块分割成两块,由两位农户来承包,要求这两块地均为直角梯形,且它们的面积相等,请你给出具体分割方案.(1) (2)答案:1.(1)由x 1+x 2=x 1x 2得2b (a+22c b)=(a+b )2 2ab+c 2=a 2+b 2+2ab∴△ABC 是直角三角形. ∴c 2=a 2+b 2(2)易证△EFD ∽△EDB ,∴EF 2=DF ·DB=40. 设CE=x ,则CD=32x , ∴DE=(32x )2-x 2=40⇒2.(1)∵四边形ABCD 是梯形(见图). ∴AD ∥BC ,∴∠MAD=∠MCB , ∠MDA=∠MBC , ∴△AMD ∽△CMB ,∴AMDBMCS S ∆∆=(AD BC )2=14.∵种植△AMD 地带花带160元. ∴16080=2(m 2) ∴S △OMB =80(m 2) ∴△BMC 地带的花费为80×8=640(元)(2)设△AMD 的高为h 1,△BMC 的高为h 2,梯形ABCD 的高为h ∵S △AMD =12×10h 2=20 ∴h 1=4 ∵12h h =12∴h 2=8 ∴S 梯形ABCD =12(AD+BC )·h=12×30×12=180∴S △AMB + S △DMC =180-20-80=80(m 2) ∴160+160+80×12=1760(元)又:160+640+80×10=1600(元) ∴应种值茉莉花刚好用完所筹集的资金. (3)点P 在AD 、BC 的中垂线上(如图), 此时,PA=PD ,PB=PC .∵AB=DC ∴△APB ≌△DPC .设△APD 的高为x ,则△BPC 高为(12-x ), ∴S △APD =12×10x=5x , S △BPC =12×20(12-x )=10(12-x ). 当S △APD =S △BPC 即5x=10(12-x )=8.∴当点P 在AD 、BC 的中垂线上且与AD 的距离为8cm 时,S △APD =S △BPC . 3.解:(1)猜想得:EF=1a kbk++ 证明:过点E 作BC 的平行线交AB 于G ,交CD 的延长线于H . ∵AB ∥CD , ∴△AGE ∽△DHE , ∴DH DEAG AE=. 又EF ∥AB ∥CD ,∴CH=EF=GB ,∴DH=EF-a ,AG=b-EF , ∴EF a b EF --=k ,可得EF=1a kbk++.(2)在AD 上取一点EF ∥AB 交BC 于点F ,设DE AB =k ,则EF=1703101k k ++,DE=701kk+, 若S 梯形DCFE =S 梯形ABFE ,则S 梯形ABCD =2S 梯形DCFE ∵梯形ABCD 、DCEF 为直角梯形∴1702102+×70=2×12(170+1703101k k ++)×701kk+, 化简得12k 2-7k-12=0,解得k 1=43,k 2=-34(舍去)∴DP=701kk=40,所以只需在AD上取点E,使DE=40m,作EF∥AB(或EF⊥DA),即可将梯形分成两个直角梯形,且它们的面积相等.。

相似三角形应用举例

相似三角形应用举例

相似三角形应用举例在我们的日常生活和学习中,相似三角形的应用无处不在。

相似三角形是指对应角相等,对应边成比例的两个三角形。

通过利用相似三角形的性质,我们可以解决许多实际问题,下面就让我们一起来看看一些具体的例子。

一、测量物体的高度假设我们想要测量一棵大树的高度,但又无法直接测量。

这时候,相似三角形就派上用场了。

我们可以在同一时刻,在大树旁边立一根已知长度的杆子,然后分别测量杆子的影子长度和大树的影子长度。

因为在同一时刻,太阳光线的角度是相同的,所以杆子和它的影子以及大树和它的影子分别构成了两个相似三角形。

假设杆子的高度为h1,杆子影子的长度为 s1,大树影子的长度为 s2,大树的高度为 h2。

根据相似三角形的性质,我们可以得到:h1 / s1 = h2 / s2通过已知的 h1、s1 和 s2,就可以计算出大树的高度 h2。

例如,杆子高度为2 米,影子长度为15 米,大树影子长度为9 米。

那么:2 / 15 = h2 / 915h2 = 2 × 915h2 = 18h2 = 12 米所以,这棵大树的高度约为 12 米。

二、计算河的宽度当我们面对一条河流,想要知道它的宽度,但又无法直接跨越测量时,相似三角形同样能帮助我们解决问题。

我们可以在河的一侧选择一个点A,然后在河的对岸选择一个点B,使得 A、B 两点与河岸基本在同一直线上。

接着,在河的这一侧,沿着河岸选定一个点 C,使得 AC 垂直于河岸,并测量出 AC 的长度。

然后,我们再沿着 AC 的方向向前走一段距离,到达点 D,使得点 D、A、B 三点在同一直线上,并且测量出 CD 的长度。

由于三角形 ABC 和三角形 ADC 有一个共同的角∠A,并且∠ACB=∠ACD = 90°,所以这两个三角形相似。

假设河宽为AB =x,AC =a,CD =b。

根据相似三角形的性质,我们有:AC / AB = CD / AC即 a / x = b / a通过已知的 a 和 b,就可以计算出河的宽度 x。

史上最全!!!!相似三角形难题精选

史上最全!!!!相似三角形难题精选

相似三角形难题精选模块一:相似三角形中的动点问题如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A 点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB 以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q 同时出发,用t(s)表示移动的时间(0<t<6)。

《相似三角形的应用》 讲义

《相似三角形的应用》 讲义

《相似三角形的应用》讲义在我们的日常生活和学习中,相似三角形的应用无处不在。

相似三角形是指对应角相等,对应边成比例的两个三角形。

它们不仅是数学中的重要概念,还具有广泛的实际应用价值。

一、测量物体的高度测量物体的高度是相似三角形常见的应用之一。

比如,我们想要测量一棵大树的高度,但直接测量非常困难。

这时候,我们可以利用相似三角形的原理来解决。

首先,在大树旁边立一根已知长度的杆子,比如一根2 米长的杆子。

然后,分别测量出杆子的影子长度和大树的影子长度。

假设杆子的影子长度为 1 米,大树的影子长度为 10 米。

因为太阳光是平行光,所以在同一时刻,杆子和大树与地面形成的夹角是相等的,那么杆子和大树与其影子分别构成的两个直角三角形是相似的。

根据相似三角形的性质,对应边成比例。

设大树的高度为 h 米,则有:2/1 = h/10通过交叉相乘可得:h = 20(米)这样,我们就利用相似三角形求出了大树的高度。

二、测量河宽当我们面对一条无法直接测量宽度的河流时,相似三角形也能派上用场。

假设我们站在河的一岸,想要测量河的宽度。

我们可以在岸边选定一个点 A,然后沿着河岸向与河流垂直的方向走一段距离到达点 B。

接着,在点 B 处插上一根标杆。

然后,我们继续沿着与河岸垂直的方向走到点 C,使得点 A、标杆顶点和点 C 在同一条直线上。

测量出 AB 和 BC 的长度,以及从点 C 观测标杆顶点的仰角。

假设AB 为 50 米,BC 为 30 米,仰角为 60°。

我们可以构建两个相似的直角三角形,一个是由标杆、点 B 到标杆底部的垂线以及点 B 到观测点 C 的连线构成,另一个是由河宽、点 A 到河对岸的垂线以及点 A 到观测点 C 的连线构成。

因为这两个三角形的对应角相等,所以它们相似。

设河宽为 x 米,则有:( x /(50 + 30) )=(标杆长度/ BC )而标杆长度可以通过三角函数求出。

假设标杆长度为 h 米,因为仰角为 60°,所以 h = BC × tan60°=30√3 米。

相似三角形应用举例

相似三角形应用举例
回顾
相似三角形的判定
(1) 定义法
(2)通过平行线.(A型 X型)
(3)三边对应成比例.
(4)两边对应成比例且夹角相等 .
(5)两角相等.
(6)直角三角形
相似三角形的性质 (1)对应边的比相等,对应角相等. (2)对应高的比,对应中线的比、对应角平分 线的比都等于相似比. (3)周长的比等于相似比. (4)面积的比等于相似比的平方.
一题多解
还可以有其他方法测量吗?
B E
┐ F
△ABO∽△AEF
平面镜
A
OB
OA
=
EF
AF
┐ O
OA ·EF OB =
AF
利用三角形相似可以解决一些不能直接测 量的物体的长度的问题
例5. 如图,为了估算河的宽度,我们可以在河对岸选 定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直 线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适 当的点T,确定PT与点Q且垂直PS的直线b的交点R.如果测 得QS=45m,ST=90m,QR=60m,求河的宽度PQ.
分析:如图,设观察者眼睛的位置(视点)为点F(EF近似为人 的身高),画出观察者的水平视线FG ,它交AB、 CD于点H 、 K.视线FA、 FG的夹角∠ AFH是观察点A的仰角.能看到C 点.类似地, ∠ CFK是观察点C时的仰角,由于树的遮挡,区 域Ⅰ和Ⅱ都在观察者看不到的区域(盲区)之内.再往前走就 根本看不到C点了.
乐山大佛
世界上最高的树 —— 红杉
怎样测量这些非常高 大物体的高度?
台湾最高的楼 ——台北101大楼
怎样测量河宽?
世界上最宽的河 ——亚马孙河
利用三角形的相似,可以解决一些不能直接测量 的物体的长度问题,下面请看几个例子.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检测促学
1.在阳光下,身高为1.6m的小强在地面上的影长为2m.在同一时刻,测得旗杆在地面上的影长为16m.求旗杆的高度。
2.在阳光下,高为6m的旗杆在地面上的影长为4m.在同一时刻,测得附近一座建筑物的影长为36m.求这座建筑物的高度.
阅读பைடு நூலகம்题,构建数学模型,利用相似三角形的知识解决问题.
自主反思
课题
用相似三角形解决问题(1)
课型
新授
主备人
贾庆锋
审核人
班级
姓名
时间
周星期
总第课时
学习
目标
1.通过用相似三角形有关知识解决实际问题的过程,提高分析、解决实际问题的能力;
2.学会建构“用相似三角形解决问题”的基本数学模型;
学习重难点
根据实际问题,依据相似三角形的有关知识,构建数学模型,解决实际问题.
教学补记
活动二:思考操作
如图6-42中,甲木杆AB在阳光下的影长为BC.试在图中画出同一时刻乙、丙两根木杆在阳光下的影长.
思考:如何用相似三角形的知识说明在平行光线的照射下,不同物体的物高与影长成比例?
活动三 应用举例
背景故事:古埃及国王为了知道金字塔的高度,请一位学者来解决这个问题.在某一时刻,当这位学者确认在阳光下他的影长等于他的身高时,要求他的助手测出金字塔的影长,这样他就十分准确地知道了金字塔的高度.
问题:如图6-43,AC是金字塔的高,如果此时测得金字塔的影DB的长为32m,金字塔底部正方形的边长为230m,你能计算这座金字塔的高度吗?
拓展:你能用这种方法测量出学校附近某一物体的高度吗?
分小组讨论,发现生活中的数学,并能用本节课的知识加以阐述.运用转化思想,将立体图形转化为平面图形,利用相似三角形和平行投影的知识,计算得到答案.
学习方法
自主探索,合作交流
活动一:实验探究
1.阅读“平行投影”的概念,了解平行投影;
2.数学实验:测量阳光下物体的影长.
结论:1.在阳光下,在同一时刻,物体高度与物体的影长存在的关系是:物体的高度越高,物体的影长就越长.
2.在平行光线照射下,不同物体的物高与影长成比例.
阅读概念,认识平行投影.通过数学实验探究物体影长和物高之间的关系.
相关文档
最新文档