人教版九年级下册数学投影(1)
数学人教版九年级下册29.1.1 平行投影与中心投影

3 物体在光线的照射下,会在地面或其他平面上留下
它的影子,这就是________现象.形成投影应具备 的条件有:__________、__________、 __________.
知2-导
归 纳
由平行光线形成的投影叫做平行投影.
知2-讲
有时光线是一组互相平行的射线,例如探照灯中的光线(图1). 太阳离我们非常远,射到地面的太阳光也可以看成一组互相平行 的射线.由平行光线形成的投影叫做平行投影(parallel projection). 例如,物体在太阳光的照 射下形成的影子(简称日影)就是平行投 影.日影的方向可以反 映当地时据日影来观测 时间的.
A.A→B→C→D
C.C→D→A→B
B.D→B→C→A
D.A→C→B→D
知2-讲
根据不同时刻太阳光照射的方向和照射的角度去判 导引:
断,最早时太阳在东方,则影子在物体的西方,随
着时间的变化,影子的方向由西向东转动,影子的 长度先由长变短,然后由短变长.
知2-讲
总 结
物体在太阳光下的不同时刻,不但影子的大小
知1-讲
总 结
因为投影是在光线照射下形成的影子,所以在光
线移动时,物体的影子的大小、方向也随着变化;在
同等条件下(相同的投影线与投影面),不同形状物体 的投影可能不同.
知1-练
1 下列现象属于投影的是(
A、眼影 C、轨迹
)
B、人影 D、素描画
知1-练
2 把下列物体与它们的投影用线连接起来.
知1-练
同.
2.中心投影的特点:(物体与其影子顶端连线所在直线
必过点光源)
(1)等高的物体垂直地面放置时,离点光源越近,影子越 短;离点光源越远,影子越长. (2)等长的物体平行于地面放置时,离点光源越近,影子 越长;离点光源越远,影子越短,但不会比物体本身
辽宁省庄河市第三初级中学九年级数学下册 29.1 投影教案(一) 新人教版【教案】

投影在投影面上画出平面图形的平行投影或中心投影。
教学准备设计意图(一)创设情境你看过皮影戏吗? 皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。
皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。
(有条件的)放映电影《小兵张嘎》部分片段 ---小胖墩和他爸在日军炮台内为日本鬼子表演皮影戏(二)你知道吗(有条件的)出示投影:北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。
一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子点光源(三)问题探究(在课前布置,以数学学习小组为单位)况吗?3、由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。
如图4-14,当线段AB与投影面平行时,AB的中心投影A‘B’把线段AB放大了,且AB∥A’B‘,△OAB~ OA‘B’.又如图4-15,当△C‘是我们熟悉的位似变换。
、请观察平行投影和中心投影,它们有什么相同点与不同点?(两幅图表示两根标杆在同一时刻的投影请在图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由。
必做。
人教版初中数学九年级数学下册第四单元《投影与视图》测试(有答案解析)(1)

一、选择题1.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.2.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如右图所示,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶3.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12B.13C.14D.154.下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A.1个B.2个C.3个D.4个5.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.6.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.8.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形9.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 10.下列几何体各自的三视图中,有且仅有....两个视图相同的是()A.①②B.②③C.①④D.②④11.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个12.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题13.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.14.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.15.一般把物体从正面看到的视图叫主视图,从左面看到的视图叫左视图,从上面看到的视图叫俯视图,一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为______.16.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)17.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.18.一个几何体由几个大小相同的小正方体搭成,这个几何体的俯视图和左视图如图所示,则这个几何体中小正方体的个数最少是________个.19.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆___g.20.如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.三、解答题21.如图所示为一个上、下底密封纸盒的三视图,请描述图中所表示的几何体.并根据图中数据,计算这个密封纸盒的表面积.22.如图,将一个大立方体挖去一个小立方体,请画出它的三种视图.23.根据要求完成下列题目(1)图中有______块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和主视图与你在上图方格中所画的图一致,a b的值为___________.若这样的几何体最少要个a小正方体,最多要b个小正方体,则24.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.25.已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形(1)判断该几何体形状;(2)求该几何体的侧面展开图的面积(结果保留π)26.如图是由几个小立方体所搭几何体的俯视图,小正方体的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的图形.(在所提供的方格内涂上相应的阴影即可)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.2.A解析:A【分析】根据三视图得到层数及每层的桶数,即可得到答案.【详解】由图可知:共2层,最底层有3桶,最顶层有2桶,共5桶,故选:A.【点睛】此题考查三视图的实际应用,会看三视图的组成特点及分析得到层数,每层的数量是解题的关键.3.B解析:B【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【详解】解:综合主视图与左视图分析可知,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个;所以最多有:2+1+2+1+1+1+2+1+2=13(个),故选B.【点睛】本题考查了几何体三视图,重点是考查学生的空间想象能力.掌握以下知识点:主视图反映长和高,左视图反映宽和高,俯视图反映长和宽.4.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正方体的三种视图都是正方形,所以三视图全等;球的三种视图都是圆,所以球的三视图也全等.其他那几个几何体的三视图都不全等.故选:B.【点睛】此题考查了简单几何体的三视图,解题关键在于要熟练掌握,解答此题的关键是分别判断出每个几何体的三视图.5.C解析:C【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.A解析:A【分析】根据画三视图的方法,得到各行构成几何体的小正方体的个数,相加即可.【详解】综合三视图,第一行:第1列没有,第2列没有,第3列有1个;第二行:第1列有2个,第2列有2个,第3列有1个;第三行:第1列3个,第2列有2个,第3列没有;一共有:1+2+2+1+3+2=11个,故选:A.【点睛】此题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征.7.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.8.A解析:A【分析】根据平行投影的性质进行分析即可得出答案.【详解】将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选A.【点睛】本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.9.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠PAB≠∠PCA,∠PBA≠∠PAC,∴无法判定△PAB与△PCA相似,故A错误;同理,无法判定△PAB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=PA,AC=PA,AD=PA,BD=2PA,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.10.D解析:D【分析】逐个分析几何体的三视图,作出解答.【详解】解:正方体的三个视图都是正方形,三棱台的三个视图都不同,所以①③都不满足题意;圆锥的正视图、左视图都是等腰三角形,俯视图是有圆心的圆,满足题意;正四棱锥正视图、侧视图都是等腰三角形,俯视图是正方形和两条对角线,满足题意.故选D【点睛】本题考查几何体的三视图,掌握各立体图形的特点以及三视图的概念是解题的关键.11.D解析:D【解析】【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【详解】综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.12.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题13.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.14.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得解析:39【分析】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;相加可得所求.【详解】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,最底层几何体最多正方体的个数为:4×4=16,由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;16+16+6+1=39(件).故这正方体快递件最多有39件.故答案为:39.【点睛】此题考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.15.【解析】【分析】易得此几何体为圆柱底面直径为2cm 高为圆柱侧面积底面周长高代入相应数值求解即可【详解】解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积故答案为【点睛】 解析:26πcm【解析】【分析】易得此几何体为圆柱,底面直径为2cm ,高为3cm.圆柱侧面积=底面周长⨯高,代入相应数值求解即可.【详解】解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱, 故侧面积2π236πcm =⨯⨯=.故答案为26πcm .【点睛】此题主要考查了由三视图判断几何体及几何体的展开图的知识;本题的易错点是得到相应几何体的底面直径和高.16.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影解析:中心投影【解析】【分析】找出光源即可得出结果.【详解】如图可知,该投影属于中心投影.故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点.主要从形成投影的光线来比较两者的区别.17.(90)【详解】根据位似图形的定义连接A′AB′B并延长交于(90)所以位似中心的坐标为(90)故答案为:(90)解析:(9,0)【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).18.5【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由左视图可得第二层所须小正方体最少的个数相加即可得答案【详解】由俯视图和左视图可知此几何体有2层第一层有4个小正方体第二层最少有1个小正解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层所须小正方体最少的个数,相加即可得答案.【详解】由俯视图和左视图可知此几何体有2层,第一层有4个小正方体,第二层最少有1个小正方体,∴这个几何体中小正方体的个数最少是5个,故答案为:5【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.66【分析】分别求出各层的总面积进而可得答案【详解】最上层侧面积为4上表面面积为1总面积为4+1=5中间一层侧面积为2×4=8上表面面积为4﹣1=3总面积为8+3=11最下层侧面积为3×4=12上表解析:66【分析】分别求出各层的总面积,进而可得答案【详解】最上层,侧面积为4,上表面面积为1,总面积为4+1=5,中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11,最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17,∴露出的表面总面积为5+11+17=33,∴33×2=66(g).答:共需用漆66g.故答案为:66【点睛】此题考查的知识点是几何体的表面积,关键是明确各个面上喷漆的小正方体的面的总个数.20.8【分析】如图∠CPD=90°QC=4mQD=9m利用等角的余角相等得到∠QPC=∠D则可判断Rt△PCQ∽Rt△DPQ然后利用相似比可计算出PQ【详解】解:如图∠CPD=90°QC=4mQD=16解析:8【分析】如图,∠CPD=90°,QC=4m,QD=9m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【详解】解:如图,∠CPD=90°,QC=4m,QD=16m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴PQ QCQD PQ=,即416PQPQ=,∴PQ=8,即旗杆的高度为8m.故答案为8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.三、解答题21.32【分析】根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.【详解】解:根据该几何体的三视图知道其是一个六棱柱,设正六边形的中心为O,连接OA、OB,作OD⊥AB于D,由图可知其高为12cm,底面半径为5cm,∴侧面积为6×5×12=360cm2,∵∠AOB=360°÷6=60°,∴△AOB是等边三角形,∴AB=5cm,OD=sin60°×OA=53cm,∴密封纸盒2个底面的面积为:153⨯⨯⨯⨯= cm2,26575322∴其全面积为:(753+360)cm2.【点睛】本题考查了由三视图判断几何体,等边三角形的判定与性质,正六边形的性质,以及解直角三角形的知识,解题的关键是正确的判定几何体.22.见解析【分析】直接利用三视图的观察角度分别得出视图即可.【详解】如图所示:.【点睛】此题考查几何体的三视图的画法,能会看几何体根据几何体得到各面的形状是解题的关键,注意不可见的棱线需要画成虚线.23.(1) 10; (2) 主视图、左视图和俯视图见解析; (3) 22.【分析】(1)有规律的根据组合几何体的层数来数即可;(2) 根据主视图、左视图、俯视图的定义画出图形即可(3)根据保持这个几何体的主视图和俯视图不变,利用俯视图计算搭这一几何体最少要个a小正方体,最多要b个小正方体,即可算出a+b的值.【详解】解:(1)这个组合几何体小正方体个数为:6+3+1=10(个)故答案为:10.(2) 主视图、左视图和俯视图如图所示:(3)这样的几何体最少如图:∴a=3+1+2+1+1+1=9(个)这样的几何体最多需要如图:∴b=3+1+2+3+1+3=13(个)∴a+b=9+13=22故答案为22.【点睛】本题主要考查了作图的三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.(1)见解析;(2)24;(3)1,4,1;1,1,4;4,1,1,见解析【分析】(1)从正面看到的图形是两列,第一列有两个正方形,第二列有三个正方形;从左面看有两列,第一列有三个正方形,第二列有一个正方形.(2)根据三视图可以求出表面积,(3)要使表面积最大,则需满足两正方体重合的最少,将其中的两个位置各放1个,其余都放在剩下的位置上即可.【详解】解:(1)这个几何体的主视图和左视图如图所示:(2)俯视图知:上面共有3个小正方形,下面共有3个小正方形;由左视图知:左面共有4个小正方形,右面共有4个正方形;由主视图知:前面共有5个小正方形,后面共有5个正方形,故可得表面积为:2×(3+4+5)=24;(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:【点睛】考查简单几何体的三视图,从三个方向看物体的形状实际就是从三个方向的正投影所得到的图形.25.(1)圆锥;(2)10π.【分析】(1)由三视图可知,该几何体是圆锥;(2)根据圆锥的侧面积公式计算即可.【详解】解:(1)由三视图可知,该几何体是圆锥;(2)侧面展开图的面积=π×2×5=10π.【点睛】本题考查三视图,圆锥等知识,解题的关键是掌握圆锥的侧面积公式.26.见解析【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为2,3,1;从左面看有4列,每列小正方形数目分别为3,1,3,1.据此可画出图形.【详解】解:【点睛】本题考查几何体的三视图画法.由几何体的从上面看得到的图形及小正方形内的数字,可知从正面看的列数与从上面看的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.从左面看的列数与从上面看的行数相同,且每列小正方形数目为从上面看中相应行中正方形数字中的最大数字.。
29.1投影(第1课时)课件人教版数学九年级下册

第29章 投影与视图 29.1 投影
第1课时 平行投影与中心投影
学习目标
1.了解投影、投影线、投影面、平行投影和中心投 影的概念。
2.了解平行投影和中心投影的含义、特征、区别与 联系。
3.能利用平行投影和中心投影的相关知识解决实际 问题。
回顾旧知
我们小学阶段已经学过观察物体,根据学习过的知识判 断下面这些图分别是谁看到的?
8.两个人的影子在两个相反的方向,这说明( C ) A.他们站在阳光下 B.他们站在路灯下 C.他们站在路灯的两侧 D.他们站在月光下 9.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( B )
A.越长 B.越短 C.一样长 D.随时间变化而变化
平行投影和1中0心投.影有如什么图区别是和联两系呢根? 标杆AC,BD及它们在灯光下的影子,请在图中画出光源的位置
F
求平行投影中相关线段的长的方法 解决与平行投影有关的作图与计算问题,往往根据 平行投影的性质画出投影线,得到相关的线段,从 而根据同一时刻,不同物体的物高与影长成正比, 求得线段的长.
4.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大 到屏幕上,若光源到幻灯片的距离为 30 cm,幻灯片到屏幕 的距离为 1.5 m,且幻灯片中图形的高度为 10 cm,则屏幕上 图形的高度为 60 cm.
例如,物体在灯泡发出的光照射下形成的影子就是中心投影.
解:连接A′C,B′D并延长,交点P即为光源的位置;
根据点光源、物体边缘上的点及它在影子上的对应点在同一条直线上,先找两个物体边缘上的点及其在影子上的对应点,再分别过两个物体边缘上的点及其在影子上的对应点画直
线,两条直线的交点即为点光源.
人教版九年级下册数学29投影(20张)

某公司的外墙壁贴的是反光玻璃,晚上两根木
棒的影子如图(短木棒的影子是玻璃反光形成的),
请确定图中路灯灯泡所在的位置.
"拉夫连季豪放的说,他那没工夫刮而胡须覆盖全下巴更是应景. 不过按照民国的规定,男孩女孩成年是在二十岁. ) ------------ 第二百三十九章 白土村的休整(五) 李桃小脸有些红,她在使劲出汗,整个人也有些昏昏沉沉的. "沃曼斯基晃悠着身子,又给自己满上一杯伏特加,"她们女人什么都不懂,不知道什么叫做男人. 有十几张牛皮和羊皮,还有二百多张野兔皮和土拨鼠皮,皮革可以做成衣物,那个需要在鲶鱼村集体农庄完成. 三人进了雅间,也就是食堂里面一间隔开的木屋. 我们有雪橇,就不必走路咯! 估计是德国人占领了法国,从哪个酒庄搜出来的,再随着德国人进入咱们那里,最后被你的部下,罗沙科夫等人缴获. "他拍拍手,后厨将新的美食送上. " 信使就那么走了?李小克再次扶扶脑袋,喝酒那件事怕是要被耶莲京娜知道了. 副师长的面相,也和他们差不多,那胃口应该也差不过吧. 平行投影与中心投影的区别与联系 (1)正方体的一个面ABCD平行于投影面P; 我是中国人,喝酒可以陪你们喝,甚至你们烂醉了我还能继续喝,但是那肉,必须要吃熟的. 李小克一愣,顿时怒拍脑门. 请画出图中双胞胎姐妹在路灯下的影子. " 那真是一个坏消息,李小克的头更疼了,他不禁伏在桌案,那吓到了卫兵. 一天晚饭后,姐姐小丽带着弟弟小刚出去散步,经过一盏路灯时,小刚突然高兴地对姐姐说:“我踩到你的‘脑袋’了”。 咱们183师兵力部队,结构复杂. " 女孩们也都是兵,那个晨号还不是集结号,不过它个很快也要吹的.
; 泡芙妹妹女性网 塑形瑜伽 ;
2021年最新人教版九年级数学下册第29章课题:29.1投影教案

教学过程4、想一想:下面的投影是什么光线照射形成的投影?它们分别是什么投影?老师提出问题,巡视,引导、点拨;学生观察、考虑、判断、交流、展示。
理论联络实际,通过对生活中的现象进展提取、分析、归纳、建模。
既表达了数学来源于生活,又表达了数学为生活效劳,指导生活。
〔三〕、合作交流,探究新知探究1、投影分类以下图表示一块三角尺在不同光线照射下形成的投影,观察图形,找出异同。
问:你知道投影如何分类吗?探究2、平行投影和中心投影的区别与联络①、以数学习小组为单位,观察在太阳光线下,木杆在地面的投影。
〔不断改变木杆的位置,〕你发现了什么?②以数学习小组为单位,观察在太阳光线下,三角板在地面的投影。
〔不断改变三角板的位置,〕你发现了什么?老师提醒学生结合前面生活实例进展投影分类。
老师组织学生按照探究要求进展活动,并逐步完善对概念的表达,明确平行投影与中心投影的区别与联络。
掌握投影分类方法。
让学生亲自进展观察、分析,探究、交流,得出结论,培养学生分析判断才能。
③、以数学习小组为单位,观察在灯照射下,木杆和三角形纸板在地面的投影.〔不断改变木杆和三角形纸板的位置,〕你发现了什么?〔四〕、点拨归纳,进步认识1、请考虑平行投影和中心投影,它们有什么一样点与不同点?完成下表。
学生先独立考虑,后小组合作,探究交流,明确平行投影与中心投影的区别与联络。
老师引导学生完成对平行投影与中心投影的比照与总结。
结合图片、表格,比照辨析,加深对物体投影的理解。
〔五〕、有效训练,稳固新知1、你能将以下物体与它们的投影用线连接起来吗?2、根据两根木桩投影,确定光源的位置和类型。
3、同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子。
4、下面两幅图表示两根标杆在同一时刻的投影。
请在图中画出形成投影的光线,它们是平行投影还是中心投影?说明理由。
5、三角尺在灯泡的照射下,在墙上形成的影子如以下图,现测得三角尺的周长与墙上影子的周长比应为:__:__学生先独立分析解决练习,各组指派代表上台展示,老师巡视指导,之后学生讨论,老师视情况点拨。
【人教版】九年级数学下册:第1课时 投影教案
第二十九章投影与视图29.1 投影第1课时投影1.通过观察、实验、探索、想象,了解投影、投影线、投影面、平行投影、中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.阅读教材P87-88页,自学“投影”、“平行投影”、“中心投影”的内容,区分清楚概念.自学反馈独立完成后小组内交流①光线照射物体,在某个平面(地面或墙壁等)上得到的,叫做物体的投影,照射光线叫做,投影所在的平面叫做.②由光线形成的投影叫做平行投影,由发出的光线形成的影子就是中心投影.③皮影戏是利用(填“平行投影”或“中心投影”)的一种表演艺术.④“平行投影”与“中心投影”的投影线有何区别?⑤教材P88页练习题.影子的形成需要“光线”、“物体”、“形成影子的面”三个条件;本章中所提的“投影面”是一个平面,生活中的影子不一定在同一个平面上;而光线的平行与否是区分“平行投影”和“中心投影”的条件.活动1 小组讨论例1 太阳光照射到日晷上形成的投影与灯光照射到三角尺在墙面上形成的投影有何不同?解:太阳光形成的投影是平行投影,灯光形成的投影是中心投影.太阳光是平行光线,由此形成的投影是平行投影;灯光是从一点发出的光线,它形成的投影叫做中心投影.例 2 如图中①②③④是木杆一天中四个不同时刻在地面上的影子,将它们按时间先后顺序排列为.解:④③②①.一天当中影子的变化情况是:正西—北偏西—正北—北偏东—正东.活动2 跟踪训练(独立完成后展示学习成果)1.请判断如图所示的两根电线杆的影子是灯光还是太阳光形成的.可画出光线,根据光线的方向来判断,若光线平行则是太阳光照射形成的平行投影;若交于一点则是灯光照射形成的中心投影.2.身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子 .活动1 小组讨论例3 如图,小强家后院有一根电线杆和一棵大树.①请根据树在阳光下的影子,画出电线杆的影子;(用线段表示)②若此时大树的影子长为6 m ,电线杆高8 m,其影长为10 m ,求大树的高度. 解:①如图,线段AB 即为所求;②设大树的高度为x m,则有6x =810.∴x=4.8.答:大树的高度为4.8 m.①小题首先要确定太阳光为光源,投影线是平行的,可以根据树和它的影子确定光线,从而画出电线杆的影子;②在同一时刻,物体的影长与实际长度的比值是定值.活动2 跟踪训练(独立完成后展示学习成果)如图,我国某大使馆内有一单杠支架,支架高2.8 m,在大使办公楼前竖立着高28 m的旗杆,旗杆底部离大使办公楼墙根的垂直距离为17 m,在一个阳光灿烂的某一时刻,单杠支架的影长为2.24 m,大使办公窗口离地面5 m,问此刻中华人民共和国国旗的影子是否能达到大使办公室的窗口?可先画出旗杆在办公楼上的投影,通过同一时刻,同一物体的影长与物长的比是一个定值这一规律计算出旗杆投影到墙上的影长,跟5 m进行比较就可得出结论.活动3 课堂小结学生试述:这节课你学到了什么?教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①影子投影线投影面②平行同一点(点光源)③平行投影④略⑤略【合作探究1】活动2 跟踪训练1.灯光2.短【合作探究2】活动2 跟踪训练旗杆的影长应为22.4 m,投在墙上的影长为6.75 m>5 m,所以影子能达到大使办公室的窗口。
人教版九年级下册数学第二十九章第1节《投影》训练题 (1)(含答案解析)
九年级下册数学第二十九章第1节《投影》训练题 (1)一、单选题1.下列各图中,物体的影子不正确的是()A.B.C.D.2.从早上太阳升起的某一时刻开始到傍晚,广场上旗杆在地面上形成的影子的变化规律是()A.先变短再变长B.先变长再变短C.方向改变,长短不变D.以上都不正确3.北半球的两个物体一天中四个不同时刻在阳光照射下落在地面上的影子如图所示,按照时间的先后顺序排列正确的是()A.③④①②B.③④②①C.②①③④D.②①④③4.一张矩形纸板(不考虑厚度,不折叠)的正投影可能是()①矩形;②平行四边形;③线段;④三角形;⑤任意四边形;⑥点A.②③④B.①③⑥C.①②⑤D.①②③5.在同一时刻的太阳光下,小刚的影子比小红的长,那么晚上在同一路灯下()A.小刚的影子比小红长B.小红的影子比小刚长C.小刚和小红的影子一样长D.无法确定6.由下列光源产生的投影,是平行投影的是()A.太阳B.台灯C.手电筒D.路灯7.下列结论正确的有()①物体在灯光照射下,影子的方向是相同的;②物体在路灯照射下,影子的方向与路灯的位置有关;③物体在光线照射下,影子的长短仅与物体的长短有关A.0个B.1个C.2个D.3个8.下列属于中心投影的有()①中午用来乘凉的树影;②灯光下小明读书的影子;③上午10点时,走在路上的人的影子;④升国旗时,地上旗杆的影子;⑤在空中低飞的燕子在地上的影子.A.1个B.2个C.3个D.4个9.给出以下光源:①探照灯;②车灯;③太阳;④月亮;⑤台灯.形成的投影是中心投影的是()A.②③B.①③C.①②③D.①②⑤10.下列现象是物体的投影的是()A.小明看到镜子里的自己B.灯光下猫咪映在墙上的影子C.自行车行驶过后车轮留下的痕迹D.掉在地上的树叶11.圆形的物体在太阳光照射下的投影是()A.圆B.椭圆C.线段D.以上都有可能12.如图,水杯的杯口与投影面平行,投影线的几方向如箭头所示,它的正投影是()A.B.C.D.二、填空题13.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.14.身高相同的小刚和小美站在一盏路灯下的不同位置,已知小刚的影子比小美长,我们可以判定小刚离灯较________.15.如图,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为_________平方米(不计墙的厚度).16.圆柱的轴截面平行于投影面,它的正投影是长为4、宽为3的矩形,则这个圆柱的表面积是__________.(结果保留 )17.如图,晚上小红由路灯A走向路灯B,当她走到点P时,发现她的影子顶部正好接触到路灯B 的底部,此时她距离路灯A20m,距离路灯B5m.如果小红的身高为1.2m,那么路灯A的高度是___________m.18.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_____________.(填“逐渐变大”“逐渐变小”)三、解答题19.如图,AB和MN是直立在地面上的两根立柱,AB=6m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时MN在阳光下的投影.(2)在测量AB的投影时,同时测量出MN在阳光下的投影长为6m,计算MN的长.20.如图,某光源下有三根杆子,甲杆GH的影子为GM,乙杆EF的影子一部分落在地面EA上,一部分落在斜坡AB上的AD处.(1)请在图中画出形成影子的光线,确定光源所在的位置R,并画出丙杆PQ在地面的影子. (2)在(1)的结论下,若过点F的光线FD⊥AB,斜坡与地面的夹角为60°,AD=1m,AE=2 m,请求出乙杆EF的高度:(结果保留根号).,,小明上午上学时发现路灯AB在太阳下的影21.如图,公路旁有两个高度相同的路灯AB CD子恰好落到E处,他自己的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一地方,发现在路灯CD的灯光下自己的影手恰好落在E处.(1)在图中画出小明的位置(用线段MN表示)并画出光线,标明太阳光、灯光.(2)若上午上学时高1m的木棒的影子为2m,小明身高为1.6m,他离E恰好4m,求路灯高.22.某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成60角,房屋向南的窗户AB高1.6m.现要在窗户外面的上方安装一个水平遮阳篷AC(如图所示).要使太阳光线不能直接射入室内,遮阳篷AC的宽度至少为多少?23.如图,已知木棒AB 在投影面p 上的正投影为''A B ,且20'120=∠=︒,AB cm BAA ,求''A B 的长.24.一木杆按如图所示的方式直立在地面上,请在图中画出它在阳光下的影子(用线段CD 表示).25.如图,晚上小明由路灯AD 走向路灯BC ,当他行至点P 处时,发现他在路灯BC 下的影长为2m ,且影子的顶端恰好在A 点,接着他又走了6.5m 至点Q 处,此时他在路灯AD 下的影子的顶端恰好在B 点,已知小明的身高为1.8m ,路灯BC 的高度为9m .(1)计算小明站在点Q 处时在路灯AD 下影子的长度;(2)计算路灯AD 的高度。
九年级数学下册投影与视图全章教案新人教版
新人教版九年级数学下册《投影与视图》全章教案第一章:投影的概念及分类教学目标:1. 了解投影的概念,掌握各种投影的分类。
2. 能够运用投影的知识解决实际问题。
教学内容:1. 投影的概念:平行投影、中心投影。
2. 投影的分类:正投影、斜投影。
教学步骤:1. 引入投影的概念,展示各种投影图片,让学生感受投影的特点。
2. 讲解平行投影和中心投影的定义,引导学生通过观察图片,理解两种投影的区别。
3. 介绍正投影和斜投影的概念,分析它们的优缺点。
4. 利用投影的知识解决实际问题,如建筑物立面图的绘制等。
巩固练习:1. 判断下列图片属于哪种投影方式?2. 请用投影的知识解释生活中遇到的投影现象。
第二章:视图的定义及分类教学目标:1. 理解视图的定义,掌握各种视图的分类。
2. 能够运用视图的知识解决实际问题。
教学内容:1. 视图的定义:主视图、左视图、俯视图。
2. 视图的分类:正视图、侧视图、俯视图。
教学步骤:1. 引入视图的概念,展示各种视图图片,让学生感受视图的特点。
2. 讲解主视图、左视图、俯视图的定义,引导学生通过观察图片,理解三种视图的关系。
3. 介绍正视图、侧视图、俯视图的概念,分析它们的优缺点。
4. 利用视图的知识解决实际问题,如根据三视图还原物体等。
巩固练习:1. 判断下列图片属于哪种视图?2. 请用视图的知识解释生活中遇到的视图现象。
第三章:投影与视图的变换教学目标:1. 理解投影与视图的变换规律。
2. 能够运用变换规律解决实际问题。
教学内容:1. 投影与视图的变换规律:旋转、平移、缩放。
教学步骤:1. 讲解投影与视图的变换规律,展示各种变换的图片,让学生感受变换的特点。
2. 引导学生通过观察图片,理解旋转、平移、缩放对投影与视图的影响。
3. 利用变换规律解决实际问题,如绘制物体的三视图等。
巩固练习:1. 请用变换规律解释下列图片的变换过程。
2. 请用变换规律绘制物体的三视图。
第四章:投影与视图的应用教学目标:1. 掌握投影与视图在实际中的应用。
人教版九年级数学下册《投影》教学课件
29.1
投影
1.通过观察、实验、探究、想象,了解投影、投影线、投影面、 平行投影、中心投影的概念.
教 学 分 析 2.能确定物体在平行光线和点光源发出的光线在某一平面上的投影.
3.弄清光线照射角度与影子的关系,同一照射角度下,两个物体的高度 与影长成比例,与相似三角形建立联系.
• 照射光线叫做投影线.
• 投影所在的平面叫做投影面.
投
投影线
影
投影面
皮 影: 皮影戏是利用灯光的照射, 把影子的形态反映在银幕(投影面)上的表演艺术.
平行投影:
有时光线是一组互相平行的射线,
例如太阳光或探照灯光的一束光中的光线, 由平行光线形成的投影叫做平行投影.
例如,物体在太阳光的照射下形成的影子(简称日影) 就是平行投影.日影的方向可以反映时间.
3.将一个三角形放在太阳光下,它所形成的投影是 三角形 , 也可能是 线段 ;
4.平行投影中的光线是( A )
A.平行的
B.聚成一点的
C.不平行的
D.向四面八方发散的
5.在一个晴朗的好天气里,小颖在向正北方向走路时,
发现自己的身影向左偏,你知道小颖当时所处的时间是( A )
A.上午
B.中午
C.下午
中心投影 从一点出发的投射线
全等 放大(位似变换)
都是物体在光线的照 射下,在某个平面内 形成的影子. (即都是投影)
例 画出如图摆放的正方体在投影面P上的正投影.
(1)正方体的一个面
A'
D'
ABCD平行于
B'
C'
投影面P;
A
D
B
C
P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29.1投影(1)
【学习目标】
1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;
2、了角平行投影和中心投影的区别;
3、学会关注生活中有关投影的数学问题,提高数学的应用意识.
【学习重点】
理解平行投影和中心投影的特征
【学习难点】
在投影面上画出平面图形的平行投影或中心投影
【导学过程】
一、合作学习,探究新知
自学提纲:
1、投影的定义:一般地,
叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.
2、投影的分类
(1)平行投影
①平行投影的定义:是平行投影.如物体在太阳光的照射下形成影子(简称日影)就是平行投影.
②太阳光与影子的关系:物体在太阳光照射的不同时刻,不但影子的大小在变化,而且影子的方向也在变化.
(2)中心投影
①中心投影的定义:叫做中心投影.如物体在灯泡发出的光线照射下形成影子就是中心投影.
②产生中心投影光源的确定:分别自两个物体的顶端及其影子的顶端作一条直线,这两条直线的交点即为光源的位置.
(3)如何判断平行投影与中心投影:
分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.
二、教师点拨:
例1:王丽和赵亮两个小朋友晚上在广场的一盏灯下玩,如图1,AB 的长表示王丽的身高,BM 表示她的影子,CD 的长表示赵亮的身高,DN 表示他的影子,请画出这盏灯的位置.
例2:某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是【 】
例3:如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度【 】
A .增大1.5米 B. 减小1.5米 C. 增大3.5米 D. 减小3.5米
三、针对练习:
1.探照灯、手电筒、路灯等的光线可以看成是从______个点发出的,像这样的光线所形成的投影称为________.
2.投影可分为_____和_____;一个立体图形,共有_______种视图. A C
D B
图1 N M
3.在太阳光的照射下,矩形窗框在地面上的影子常常是______形,在不同时刻,这些形状一般不一样.
4.下列物品①探照灯;②车灯;③太阳;④月亮;⑤台灯中所成的投影是中心投影的是()
A.①②
B.①③
C.①②③
D.①②⑤
5.太阳发出的光照在物体上是______,车灯发出的光照在物体上是_____()
A.中心投影,平行投影
B.平行投影,中心投影
C.平行投影,平行投影
D.中心投影,中心投影
6.下图是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()
A、③④②①
B、②④③①
C、③④①②
D、③①②④
图1
7.如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B 到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树的高度为()
A、4.8m
B、6.4m
C、8m
D、10m
8.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( )
A 、小明的影子比小强的影子长
B 、小明的影子比小强的影子短
C 、小明的影子和小强的影子一样长
D 、无法判断谁的影子长
9.某数学课外实验小组想利用树影测量树高.他们在同一时刻测得一身高为
1.5m 的同学影长为1.35m ,因为大树靠近一幢建筑物,影子不会在地面上(如下图),他们测得地面部分的影长BC =3.6m ,墙上影长CD =1.8m ,则树高AB 为 .
10.张明同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米.当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约 米.
11.如下图,晚上,小亮在广场上乘凉.图2中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.
(1)请你在图中画出小亮在照明灯(P )照射下的影子;
(2)如果灯杆高PO =12m ,小亮的身高AB =1.6m ,小亮与灯杆的距离BO =13m ,请求出小亮影子的长度.
P
A
B O
小亮 A
B C D
E
12.一位同学身高1.6米,晚上站在路灯下,他身体在地面上的影长是2米,若他沿着影长的方向移动2米站立时,影长增加了0.5米,求路灯的高度.
13.如图,现有m、n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不被则两个同学发现(画图用阴影表示).
14.路灯下站着小赵、小芳、小刚三人,小芳和小刚的影长如图,确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.。