人教版初三数学二次函数知识点及难点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学二次函数知识点总结二次项系数a决定二次函数图像的开口方向和大小.
当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口.
|a|越大,则二次函数图像的开口越小.
1、决定对称轴位置的因素
一次项系数b和二次项系数a共同决定对称轴的位置.
当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号?
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右.
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到.
2、决定二次函数图像与y轴交点的因素
常数项c决定二次函数图像与y轴交点.
二次函数图像与y轴交于(0,c)
一、二次函数概念:
1.二次函数的概念:一般地,形如2
=++(a b c
y ax bx c
,,是常数,0
a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数
a≠,而b c,可以为零.二次函数的定义域是全体实数.
2. 二次函数2
=++的结构特征:
y ax bx c
⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
⑵a b c
,,是常数,a是二次项系数,b是一次项系数,c是常数项.
二、二次函数的基本形式
1. 二次函数基本形式:2
=的性质:
y ax
a 的绝对Array值越大,
抛物线的
开口越
小。
2.
2
y ax c
=+
的性质:
上加下
减。
)2h-
4.
()2
y a x h k
=-+的性质:
三、二次函数图象的平移 1. 平移步骤:
方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标
()h k ,;
⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:
2. 平移规律
在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:
⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成
m c bx ax y +++=2(或m c bx ax y -++=2)
⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成
c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)
四、二次函数()2y a x h k =-+与2y ax bx c =++的比较
从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过
配方可以得到前者,即2
2424b ac b y a x a a -⎛
⎫=++
⎪⎝
⎭,其中2
424b ac b h k a a
-=-=
,.
五、二次函数2y ax bx c =++图象的画法
五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其
开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).
画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.
六、二次函数2y ax bx c =++的性质
1. 当0a >时,抛物线开口向上,对称轴为2b
x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭
,. 当2b
x a <-
时,y 随x 的增大而减小;当2b x a
>-时,y 随x 的增大而增大; 当2b
x a
=-时,y 有最小值
244ac b a -.
2. 当0a <时,抛物线开口向下,对称轴为2b
x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭
,. 当2b
x a <-
时,y 随x 的增大而增大;当2b x a
>-时,y 随x 的增大而减小; 当2b
x a
=-时,y 有最大值
244ac b a -.
七、二次函数解析式的表示方法
1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);
2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);
3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函
数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.