二次函数知识点汇总(简而全)

二次函数知识点汇总(简而全)
二次函数知识点汇总(简而全)

★二次函数知识点汇总★

初三备课组

1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.

2.二次函数2ax y =的性质

(1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系.

①当0>a 时?抛物线开口向上?顶点为其最低点;②当0

3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.

4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中a

b a

c k a b h 4422-=-=,. 5.二次函数由特殊到一般,可分为以下几种形式:

①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2

;⑤c bx ax y ++=2.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 决定抛物线的开口方向: 当0>a 时,开口向上;当0

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.

8.求抛物线的顶点、对称轴的方法

(1)公式法:a b ac a b x a c bx ax y 442222-+??

? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.

(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是

抛物线的对称轴,对称轴与抛物线的交点是顶点.

★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★

9.抛物线c bx ax y ++=2中,c b a ,,的作用

(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.

(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a

b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

b (即a 、b 异号)时,对称轴在y 轴右侧.

(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0

b .

11.用待定系数法求二次函数的解析式

(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.

(2)顶点式:()k h x a y +-=2

.已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.

12.直线与抛物线的交点

(1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)

(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).

(3)抛物线与x 轴的交点

二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程

02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点?0>??抛物线与x 轴相交;

②有一个交点(顶点在x 轴上)?0=??抛物线与x 轴相切;

③没有交点?0

(4)平行于x 轴的直线与抛物线的交点

同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标

为k ,则横坐标是k c bx ax =++2的两个实数根.

(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组

???++=+=c

bx ax y n kx y 2的解的数目来确定: ①方程组有两组不同的解时?l 与G 有两个交点;

②方程组只有一组解时?l 与G 只有一个交点;③方程组无解时?l 与G 没有交点.

(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,

x B x A ,由于1x 、2x 是方程02

=++c bx ax 的两个根,故 a c x x a b x x =?-=+2121, ()()a a ac b a c a b x x x x x x x x AB ?=-=-??? ??-=--=-=-=44422

2122122121 13.二次函数与一元二次方程的关系:

(1)一元二次方程c bx ax y ++=2就是二次函数c bx ax y ++=2当函数y 的值为0时的情况.

(2)二次函数c bx ax y ++=2的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点;

当二次函数c bx ax y ++=2的图象与x 轴有交点时,交点的横坐标就是当0=y 时自变量x 的值,即一元二次方程02=++c bx ax 的根.

(3)当二次函数c bx ax y ++=2的图象与x 轴有两个交点时,则一元二次方程c bx ax y ++=2有两个不

相等的实数根;当二次函数c bx ax y ++=2的图象与

x 轴有一个交点时,则一元二次方程02=++c bx ax 有两个相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴没有交点时,则一元二次方程02=++c bx ax 没有实数根

14.二次函数的应用:

(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;

(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;

运用二次函数的知识解决实际问题中的最大(小)值.

15.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它

们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数知识点梳理

二次函数得基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数得概念:一般地,形如(就是常数,)得函数,叫做二次函数。这里需要强调:与一元二次 方程类似,二次项系数,而可以为零.二次函数得定义域就是全体实数. 2、二次函数得结构特征: ⑴等号左边就是函数,右边就是关于自变量得二次式,得最高次数就是2. ⑵就是常数,就是二次项系数,就是一次项系数,就是常数项. 二、二次函数得基本形式 1、二次函数基本形式:得性质: a 得绝对值越大,抛物线得开口越小。 2、得性质:上加下减。 3、得性质:左加右减。 4、得性质:

三、二次函数图象得平移 在原有函数得基础上“值正右移,负左移;值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴沿轴平移:向上(下)平移个单位,变成 (或) ⑵沿轴平移:向左(右)平移个单位,变成(或) 四、二次函数与得比较 从解析式上瞧,与就是两种不同得表达形式,后者通过配方可以得到前者,即,其中. 五、二次函数图象得画法 五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图、一般我们选取得五点为:顶点、与轴得交点、以及关于对称轴对称得点、与轴得交点,(若与轴没有交点,则取两组关于对称轴对称得点)、 画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴得交点,与轴得交点、 六、二次函数得性质 1、当时,抛物线开口向上,对称轴为,顶点坐标为. 当时,随得增大而减小;当时,随得增大而增大;当时,有最小值. 2、当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随得增大而增大;当时,随得增大而减小;当时,有最大值. 七、二次函数解析式得表示方法 1、一般式:(,,为常数,); 2、顶点式:(,,为常数,); 3、两根式:(,,就是抛物线与轴两交点得横坐标)、 注意:任何二次函数得解析式都可以化成一般式或顶点式,但并非所有得二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线得解析式才可以用交点式表示.二次函数解析式得这三种形式可以互化、 八、二次函数得图象与各项系数之间得关系 1、二次项系数 二次函数中,作为二次项系数,显然. ⑴当时,抛物线开口向上,得值越大,开口越小,反之得值越小,开口越大; ⑵当时,抛物线开口向下,得值越小,开口越小,反之得值越大,开口越大. 总结起来,决定了抛物线开口得大小与方向,得正负决定开口方向,得大小决定开口得大小. 2、一次项系数 在二次项系数确定得前提下,决定了抛物线得对称轴. ⑴在得前提下, 当时,,即抛物线得对称轴在轴左侧; 当时,,即抛物线得对称轴就就是轴; 当时,,即抛物线对称轴在轴得右侧. ⑵在得前提下,结论刚好与上述相反,即 当时,,即抛物线得对称轴在轴右侧; 当时,,即抛物线得对称轴就就是轴; 当时,,即抛物线对称轴在轴得左侧. 总结起来,在确定得前提下,决定了抛物线对称轴得位置. 得符号得判定:对称轴在轴左边则,在轴得右侧则,概括得说就就是“左同右异” 总结: 3、常数项 ⑴当时,抛物线与轴得交点在轴上方,即抛物线与轴交点得纵坐标为正;

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

第22章二次函数总复习

第22章 二次函数总复习 一、【复习目标】 1、掌握二次函数的概念、基本性质,二次函数解析式的求法; 2、熟练掌握二次函数的图象与性质,并会利用二次函数的图象与性质解决实际应用问题. 二、【复习导学】 (二)知识点梳理: 1、二次函数概念:一般地,形如 (a b c ,,是常数,0a ≠)的函数,叫做二次函数. 其中a 是二次项系数,b 是一次项系数,c 是常数项. 注:与一元二次方程类似,二次项系数0a ≠,而b c ,可以为零;等号左边是函数,右边是关于 自变量x 的二次式,x 的最高次数是2. 2、二次函数的基本形式 (1)形如:2y ax =的二次函数的图象和性质:a 的绝对值越大,抛物线的开口越小 (2)形如:k ax y +=的二次函数的图象和性质:上加下减. (3)形如:y a x h =-的二次函数的图象和性质:(h 前面是负号时:h>0向右平移,h<0时向左平移)

(4)形如:y a x h k =-+的二次函数的图象和性质: 左加右减(变的是x 的变量),上加下减(变的是函数值) ,即如: 由y=ax 2 向左平移2个为单位再向下平移3个单位得到:y=a (x+2)2-3 ; 由y=ax 2向右平移2个为单位再向上平移3个单位得到:y=a (x-2)2+3 . 3、二次函数()2 y a x h k =-+与c bx ax y ++=2 的比较: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,则对于c bx ax y ++=2 来说:2424b ac b h k a a -=-= ,, 即对称轴是:a b x 2-=对,顶点坐标是:)44,2(2a b ac a b --. 4、二次函数c bx ax y ++=2 图象的画法: 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 注:画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 5、二次函数c bx ax y ++=2 的性质: (1)当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时, y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. (2)当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ???,.当2b x a <- 时, y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 6、二次函数解析式的表示方法 (1)一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);知道三点的坐标用一般式. (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);知道顶点坐标或对称轴和最值时用顶点式. (3)交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标),当函数与x 轴有 两个交点时,用交点式. 注:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线 与x 轴有交点,即2 40b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 7、抛物线c bx ax y ++=2 中,c b a ,,的作用: (1)a 决定开口方向及开口大小:当a >0时,二次函数开口 ;当a 0时,二次函数开口向下. |a | 越大,开口越小,|a | 越小,开口越大. (2)b 和a 共同决定抛物线对称轴的位置:∵抛物线c bx ax y ++=2的对称轴是直线a b x 2- =

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

二次函数知识点汇总(全)

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。

3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿 y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者, 即2 2424b ac b y a x a a -??=++ ??? ,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

(完整版)九年级上册数学二次函数知识点汇总,推荐文档

新人教版九年级上二次函数知识点总结 知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如(是常数,)的函数,叫做二次函数.2y ax bx c =++a b c ,,0a ≠其中是二次项系数,是一次项系数,是常数项. a b c 知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶 ??点 2. 二次函数的图象与性质 ()2 y a x h k =-+(1)二次函数基本形式的图象与性质:a 的绝对值越大,抛物线的开口越小 2y ax = (2)的图象与性质:上加下减 2y ax c =+

(3)的图象与性质:左加右减 ()2 y a x h =-

(4)二次函数的图象与性质 ()2 y a x h k =-+ 3. 二次函数的图像与性质 c bx ax y ++=2 (1)当时,抛物线开口向上,对称轴为,顶点坐标为. 0a >2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而减小;当时,随的增大而增大;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最小值 .y 2 44ac b a - (2)当时,抛物线开口向下,对称轴为,顶点坐标为. 0a <2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而增大;当时,随的增大而减小;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最大值 .y 2 44ac b a -

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点.(2)二次函数图象的平移平移步骤: ①将抛物线解析式转化成顶点式,确定其顶点坐标;()2 y a x h k =-+()h k ,② 可以由抛物线经过适当的平移得到具体平移方法如下: 2 ax 【【【(h <0)【【【 【【(h >0)【【【(h 【【|k|【【【 平移规律:概括成八个字“左加右减,上加下减”.(3)用待定系数法求二次函数的解析式①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:,∴顶点是,对称轴a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=),(a b ac a b 4422--是直线.a b x 2- =②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(, ()k h x a y +-=2 h ),对称轴是直线. k h x =

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

二次函数知识点汇总

二次函数知识点汇总 一、二次函数概念: 1 .二次函数的概念 : 一般地,形如 ( 是常数, )的函数,叫做二次函数。 这里需要 强调 :和一元二次方程类似,二次项系数 ,而 可以为零.二次函数的定义域是全体实数. 2. 二次函数 的结构特征: ⑴ 等号左边是函数,右边是关于自变量 的二次式, 的最高次数是 2 . ⑵ 是常数, 是二次项系数, 是一次项系数, 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式: 的性质: a 的绝对值越大,抛物线的开口越小。 的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下 轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .

2. 的性质: (上加下减) 的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下 轴 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 3. 的性质: (左加右减) 的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .

向下 X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 4. 的性质: 的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 . 向下 X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 . 三、二次函数图象的平移 1. 平移步骤:

人教版九年级上册 第22章 二次函数复习知识点总结和题型讲解

二次函数复习知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a≠0,而 b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数y=ax2+bx+c的结构特征: ⑴等号左边是函数,右边是关于自变量x的二次多项式。(①含自变量的代数式是整式, ②自变量的最高次数是2,③二次项系数不为0.) ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二、二次函数的基本形式 1. y=ax2的性质: 2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减)

4. y =a (x -h)2 +k 的性质: 5. y =ax 2 +bx+c 的性质: 三、二次函数的图象与各项系数之间的关系 1. 二次项系数a. (a 决定了抛物线开口的大小和方向) 二次函数2y ax bx c =++中,a 作为二次项系数,显然a ≠0 ① 当0a >时,抛物线开口向上,当0a <时,抛物线开口向下; ②a 的绝对值越大,开口越小,反之a 的绝对值越小,开口越大。 总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b (a 和b 共同决定抛物线对称轴的位置) .抛物线c bx ax y ++=2 的对称轴是直线a b x 2- =,故:①0=b 时,对称轴为y 轴;② (即a 、b 同号)时,对称轴在y 轴左侧;③ (即a 、b 异号)时,对称轴在y 轴右侧.

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+的性质:上加下减。 y ax c

二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有

史上最全初三数学二次函数知识点归纳总结

史上最全初三数学二次函数知识点归纳总结 二次函数知识点归纳及相关典型题 第一部分基础知识 1.定义:一般地,如果y ax2bx c(a,b,c是常数,a0),那么y叫做x的二次函数. 2.二次函数y ax2的性质 (1)抛物线y ax2的顶点是坐标原点,对称轴是y轴. (2)函数y ax2的图像与a的符号关系. ①当a0时抛物线开口向上顶点为其最低点; ②当a0时抛物线开口向下顶点为其最高点. (3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y ax2(a0). 3.二次函数y ax2bx c的图像是对称轴平行于(包括重合)y轴的抛物线. b 2a4ac b4a 224.二次函数y ax bx c用配方法可化成:y a x h k的形式,其中h22,k. 25.二次函数由特殊到一般,可分为以下几种形式:①y ax2;②y ax2k;③y a x h; ④y a x h k; ⑤y ax2bx c. 6.抛物线的三要素:开口方向、对称轴、顶点. ①a的符号决定抛物线的开口方向:当a0时,开口向上;当a0时,开口向下; a相等,抛物线的开口大小、形状相同. ②平行于y轴(或重合)的直线记作x h.特别地,y轴记作直线x0. 7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:y ax2b4ac b bx c a x2a4a22b4ac b(),对称轴是直线x,∴顶点是. 2a2a4a 2b2 (2)配方法:运用配方的方法,将抛物线的解析式化为y a x h k的形式,得到顶点为(h,k),对称轴是直线 x h. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对 - 1 - 称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线y ax2bx c中,a,b,c的作用 (1)a决定开口方向及开口大小,这与y ax2中的a完全一样. (2)b和a共同决定抛物线对称轴的位置.由于抛物线y ax2bx c的对称轴是直线 x b2a

人教版九年级上册 第22章 二次函数图像与性质知识点题型总结

二次函数图像及性质 【二次函数的定义】 一般地,形如2y ax bx c =++(a b c ,, 为常数,0a ≠)的函数称为x 的二次函数,其中x 为自变量,y 为因变量,a 、b 、c 分别为二次函数的二次项、一次项和常数项系数. 注意:和一元二次方程类似,二次项系数0a ≠,而b 、c 可以为零.二次函数的自变量的取值范围是 全体实数. 【二次函数的图象】 1.二次函数图象与系数的关系 (1)a 决定抛物线的开口方向 当0a >时,抛物线开口向上;当0a <时,抛物线开口向下.反之亦然. a 决定抛物线的开口大小:a 越大,抛物线开口越小;a 越小,抛物线开口越大. 温馨提示:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反. (2)b 和a 共同决定抛物线对称轴的位置(抛物线的对称轴:2b x a =-) 当0b =时,抛物线的对称轴为y 轴; 当a 、b 同号时,对称轴在y 轴的左侧; 当a 、b 异号时,对称轴在y 轴的右侧. (3)c 的大小决定抛物线与y 轴交点的位置(抛物线与y 轴的交点坐标为()0c , ) 当0c =时,抛物线与y 轴的交点为原点; 当0c >时,交点在y 轴的正半轴; 当0c <时,交点在y 轴的负半轴. 2.二次函数图象的画法 五点绘图法: 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 3.点的坐标设法 ⑴ 一次函数y ax b =+(0a ≠)图像上的任意点可设为()11x ax b +, .其中10x =时,该点为直线与y 轴交点. ⑵ 二次函数2y ax bx c =++(0a ≠)图像上的任意一点可设为() 2111x ax bx c ++,.10x =时,该点为抛物线与y 轴交点,当12b x a =- 时,该点为抛物线顶点. ⑶ 点()11x y , 关于()22x x ,的对称点为()212122x x y y --,. 4.二次函数的图象信息 ⑴ 根据抛物线的开口方向判断a 的正负性. ⑵ 根据抛物线的对称轴判断2b a -的大小. ⑶ 根据抛物线与y 轴的交点,判断c 的大小. ⑷ 根据抛物线与x 轴有无交点,判断24b ac -的正负性. ⑸ 根据抛物线所经过的已知坐标的点,可得到关于a b c ,,的等式. ⑹ 根据抛物线的顶点,判断244ac b a -的大小.

二次函数知识点总结大全一

二次函数知识点总结大全一 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数(R )。 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 结论:在Y 轴上,上加下减。

3. ()2 y a x h =-的性质: 结论:在X 左加右减。 4. ()2 y a x h k =-+的性质: 总结:

二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较

请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2 424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴 的交点. 五、二次函数2y ax bx c =++的性质: 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ? ?? ,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -.

二次函数知识点梳理

初三年级数学—二次函数的基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同的表达形式,后者通过配方可以得 到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

相关文档
最新文档