第1章_线性规划

合集下载

第一章 线性规划

第一章 线性规划
(1-8)
例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3

第一章线性规划

第一章线性规划
所以运输问题的模型可记为 Min Z = 21x11 + 25x12 + 7x13 + 15x14 + 51x21 + 51x22 + 37x23 + 15x24 s.t.
x11 + x12 + x13 + x14 = 2000 x21 + x22 + x23 + x24 = 1100 x11 + x21 = 1700 x12 + x22 = 1100 x13 + x23 = 200 x14 + x24 = 100 xij ≥ 0(i = 1,2;j = 1,2,3,4).
其中c =(c1,c2,…,cn)为行向量,称为价值向量,
a11 a A = 21 a m1 a12 a22 am 2
C
单500
75
解:(1) 确定决策变量:设x1,x2为下一个 生产周期产品甲和乙的产量;
(2) 所满足的约束条件:
对资源A的限制:3x1 + 2x2 ≤ 65 对资源B的限制:2x1 + x2 ≤ 40
对资源C的限制: 3x2 ≤ 75
基本要求:x1,x2 ≥ 0 ; (3) 明确目标函数: 获利最大,即求Z= 1500x1 + 2500x2的最大值,用 max表示最大值,s.t.(subject to的简写)表示约束条件,则该模型 可记为: max Z = 1500 x1 + 2500 x2 s.t. 3 x1 + 2 x2 ≤ 65 2 x1 + x2 ≤ 40 3 x2 ≤ 75
标准形式
max z = c1 x1 + c2 x2 + … + cn xn (1.2a)

第1章 线性规划

第1章 线性规划
投资项目 1 2 3 4 5 6 风险(%) 18 6 10 4 12 8 红利(%) 4 5 9 7 6 8 增长(%) 22 7 12 8 15 8 信用度 4 10 2 10 4 6
1.1 线性规划问题及其数学模型
线性规划
该公司想达到的目标为:投资 风险最小,每年红利至少为6.5万 元,最低平均增长率为12%,最低 平均信用度为7。请用线性规划方 法求解该问题。
1.1 线性规划问题及其数学模型
解:
(1)决策变量
线性规划
本问题的决策变量是在每种投资项目上的投 资 额 。 设 xi 为 项 目 i 的 投 资 额 ( 万 元 ) ( i=1,2,,6)
(2)目标函数
本问题的目标为总投资风险最小,即
Min z 0.18x1 0.06x2 0.10x3 0.04x4 0.12x5 0.08x6
线性规划
运筹学
线性规划
线性规划
本章内容要点
线性规划问题及其数学模型;
线性规划的电子表格建模; 线性规划的多解分析。
线性规划
本章内容
1.1 线性规划问题及其数学模型
1.2 线性规划问题的图解法
1.3 用Excel“规划求解”功能求解线性规划问题
1.4 线性规划问题求解的几种可能结果
本章主要内容框架图
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解 无穷多解 无解 可行域无界(目标值不收敛)
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解
线性规划问题具有 唯一解是指该规划 问题有且仅有一个 既在可行域内、又 使目标值达到最优 的解。例1.1就是一 个具有唯一解的规 划问题
(1-1)

第一章 线性规划

第一章 线性规划

第1章线性规划Chapter 1 Linear Programming本章内容提要线性规划是运筹学的重要内容。

本章介绍线性规划数学模型、线性规划的基本概念以及求解线性规划数学模型的基本算法——单纯形法。

学习本章要求掌握以下内容:⏹线性规划模型的结构⏹线性规划的标准形式,非标准形式转化为标准形式⏹线性规划的图解以及相应的概念。

包括:约束直线,可行半空间,可行解,可行域,凸集,极点,目标函数等值线,最优解⏹线性规划的基本概念。

包括:基,基础解,基础可行解,基变量,非基变量,进基变量,离基变量,基变换⏹单纯形法原理。

包括:基变量和目标函数用非基变量表出,检验数,选择进基变量的原则,确定离基变量的方法,主元,旋转运算⏹单纯形表。

包括初始单纯形表的构成,单纯形表运算方法⏹初始基础可行解,两阶段法⏹退化的基础可行解§1.1 运筹学和线性规划1.1.1 运筹学运筹学(Operations Research)是二十世纪三十年代二次大战期间由于战争的需要发展起来的一门学科。

当时,英国组织了一批自然科学和工程科学的学者,和军队指挥员一起,研究大规模战争提出的一些问题。

如轰炸战术的评价和改进、反潜艇作战研究等,研究结果在战争实践中取得了明显得效果。

这些研究当时在英国称为Operational Research,直译为作战研究。

战争结束以后,这些研究方法不断发展完善,并逐步形成学科理论体系,其中一些主要的理论和方法包括:线性规划,网络流,整数规划,动态规划,非线性规划,排队论,决策分析,对策论,计算机模拟等。

这些理论和方法在经济管理领域也得到了广泛应用,Operations Research也转义成为“作业研究”。

我国将Operations Research译成“运筹学”,非常贴切地将Operations Research这一英文术语所包含的作战研究和作业研究两方面的涵义都体现了出来。

现在,运筹学已经成为管理科学重要的基础理论和应用方法,是管理科学专业基本的必修课程之一。

第一章_线性规划

第一章_线性规划

第 一 节 线性规划问题及其数学模型
一、线性规划问题的数学模型
线性规划问题主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
在生产管理和经济活动中,经常会遇到线性规划问 题,如何利用线性规划的方法来进行分析,下面举例 来加以说明。
表1-2
成分
产品来源
分析:很明显,该厂可以有多种不同的方案从A,B 两处采购原油,但最优方案应是使购买成本最小的一 个,即在满足供应合同单位的前提下,使成本最小的 一个采购方案。
解:设分别表示从A,B两处采购的原油量(单位:万 吨),建立的数学模型为:
m in S 200 x1 290 x2
3. 若存在无非负要求的变量。即有某一个变 量 xj 取正值或负值都可以。这时为了满足标准型 对变量的非负要求,可令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0 ,由于xjˊ可能大于也可能小于xj〞,故 xj 可以为正也可以为负。
上述的标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7
x13x1x2
x4 x2
x5 2x4
x7 2 2x5 5
x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
例1-1:(计划安排问题)某工厂在计划期内安排 生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的 设备A、B的台时、原材料的消耗及两种产品每件 可获利润见表所示:

运筹学第1章-线性规划

运筹学第1章-线性规划
凸集的数学定义:设K为n维欧氏空间的一个点集,若K中任意两个 点X1和X2连线上的所有点都属于K,即“X =αX1+(1-α) X2 ∈ K(0≤a ≤ 1)”,则称K为凸集。设X(x1,x2,…,xn),X1(u1, u2,...,un),X2(v1,v2,…,vn),如图1一5所示,“X =αX1+(1α) X2 ∈ K(0≤a ≤ 1)”的证明思路如下:
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。

《运筹学》(第二版)课后习题参考答案

《运筹学》(第二版)课后习题参考答案
表1—17 家具生产工艺耗时和利润表
生产工序
所需时间(小时)
每道工序可用时间(小时)
1
2
3
4
5
成型
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4
3
2800
利润(百元)
2.7
3
4.5
2.5
3
解:设 表示第i种规格的家具的生产量(i=1,2,…,5),则
s.t.
通过LINGO软件计算得: .
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—10所示。
-10/3
-2/3
0
故最优解为 ,又由于 取整数,故四舍五入可得最优解为 , .
(2)产品丙的利润 变化的单纯形法迭代表如下:
10
6
0
0
0
b
6
200/3
0
1
5/6
5/3
-1/6
0
10
100/3
1
0
1/6
-2/3
1/6
0
0
100
0
0
4
-2
0
1
0
0
-20/3
-10/3
-2/3
0
要使原最优计划保持不变,只要 ,即 .故当产品丙每件的利润增加到大于6.67时,才值得安排生产。
答:(1)唯一最优解:只有一个最优点;
(2)多重最优解:无穷多个最优解;
(3)无界解:可行域无界,目标值无限增大;

第1章-线性规划及单纯形法-课件(1)

第1章-线性规划及单纯形法-课件(1)

✓ x1、 x2 0
IБайду номын сангаас
设备
1
原材料 A 4
原材料 B 0
利润
2
II 资源限量
2 8 台时
0
16kg
4
12kg
3
第一章 线性规划及单纯形法 运筹学
该计划的数学模型
✓ 目标函数 ✓ 约束条件
Max Z = 2x1 + 3x2
x1 + 2x2 8 4x1 16 4x2 12 x1、 x2 0
x1
✓ 美国航空公司关于哪架飞机用于哪一航班和哪些 机组人员被安排于哪架飞机的决策。
✓ 美国国防部关于如何从现有的一些基地向海湾运 送海湾战争所需要的人员和物资的决策。
✓ ……
第一章 线性规划及单纯形法 运筹学
二、线性规划问题的数学模型
✓ 1、一般形式 ✓ 2、简写形式 ✓ 3、表格形式 ✓ 4、向量形式 ✓ 5、矩阵形式
1、唯一最优解
max Z 2 x 1 3 x 2
2 x 1 2 x 2 12 ⑴
x1 4 x1
2 x2
8 16
⑵ ⑶
4 x 2 12 ⑷
x 1 0 , x 2 0
1 234 56
x2
⑶ ⑷
(4,2)
0 1 234 5678
x1


✓最优解:x1 = 4,x2 = 2,有唯一最优解Z=14。
第一章 线性规划及单纯形法 运筹学
三、线性规划模型的标准形式
✓ 1、标准形式 ✓ 2、转换方式
第一章 线性规划及单纯形法 运筹学
1、标准形式
maZx cjxj
xj
aijxj 0
bi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Basic Concepts Simplex Method
本章框架
基本概念
线



求解方法
线性规划问题的数学模型和标准型
线性规划问题的解
可行解 基本解 基本可行解 最优解
线性规划问题的几何意义
图解法
基本单纯形法
单纯形法
大M法
人工变量法
修正单纯形法
两阶段法
经济管理中的几类问题的线性规划模型
【例1.2】某商场决定:营业员每周连续工作5天后连续休息2 天,轮流休息。根据统计,商场每天需要的营业员如表1.2所 示。
表1.2 营业员需要量统计表
星期 一 二 三 四
需要人数 300 300 350 400
星期 五 六 日
需要人数 480 600 550
商场人力资源部应如何安排每天的上班人数,使商场总的营业 员最少。
x1 0,x2 0,x3 0
产品 甲 乙 丙 资源
设备 A 3 1 2 设备 B 2 2 4 材料 C 4 5 1 材料 D 2 3 5 利润(元/件)40 30 50
现有 资源
200 200 360 300
最优解X=(50,30,10);Z=3400
2020-07-10
第1章 线性规划
7
§1.1 线性规划的数学模型 Mathematical Model of LP
Z=617(人)
2020-07-10
第1章 线性规划
10
§1.1 线性规划的数学模型 Mathematical Model of LP
小结
1、定义?所谓线性规划就是求一个线性函数在一组线性约 束条件下极值的问题。
2、构成?线性规划的数学模型由决策变量 (Decision variables)、目标函数(Objective function)及约束条 件(Constraints)构成。称为三个要素。
线性规划通常研究资源的最优利用、设备最佳运行等问 题。例如,当任务或目标确定后,如何统筹兼顾,合理安排, 用最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标;企业在一定的资源条件限制下, 如何组织安排生产获得最好的经济效益(如产品量最多 、利 润最大)。
2020-07-10
2020-07-10
第1章 线性规划
2
Chapter1 线性规划
§1.1 数学模型
Mathematical Model 一、线性规划应用举例 二、线性规划的一般模型 三、线性规划模型的特征
§1. 1 线性规划的数学模型 Mathematical Model of LP
线性规划(Linear Programming,缩写为LP)是运筹学的重要 分支之一,在实际中应用得较广泛,其方法也较成熟,借助 计算机,使得计算更方便,应用领域更广泛和深入。
运筹学
Operations Research
Chapter 1 线性规划
Linear Programming
§1.1 LP的数学模型 §1.2 图解法 §1.3 标准型 §1.4 基本概念 §1.5 单纯形法
Mathematical Model of LP
Graphical Method
Standard form of LP
6
§1.1 线性规划的数学模型 Mathematical Model of LP
【解】设x1、x2、x3 分别为甲、乙、丙三种产品的产量数学模 型为:
max Z 40x1 30x2 50x3
3x1 x2 2x3 200
42
x1 x1
2 x2 5x2
4x3 200 x3 360
2x1 3x2 5x3 300
2020-07-10
第1章 线性规划
8
§1.1 线性规划的数学模型 Mathematical Model of LP
【解】 设xj(j=1,2,…,7)为休息2天后星期一到星期日开始上 班的营业员,则这个问题的线性规划模型为
min Z x1 x2 x3 x4 x5 x6 x7
x1 x4 x5 x6 x7 300
第1章 线性规划
4
ห้องสมุดไป่ตู้
§1.1 线性规划的数学模型 Mathematical Model of LP
§1.1.1 应用模型举例
【例1.1】最优生产计划问题。某企业在计划期内计划生产甲、 乙、丙三种产品。这些产品分别需要要在设备A、B上加工, 需要消耗材料C、D,按工艺资料规定,单件产品在不同设备 上加工及所需要的资源如表1.1所示。已知在计划期内设备的 加工能力各为200台时,可供材料分别为360、300公斤;每生 产一件甲、乙、丙三种产品,企业可获得利润分别为40、30、 50元,假定市场需求无限制。企业决策者应如何安排生产计 划,使企业在计划期内总的利润收入最大?
x1
x2
x5
x6
x7
300
x1
x2
x3
x6
x7
350
x1 x2 x3 x4 x7 400
x1
x2
x3
x4
x5
480
x2
x3
x4
x5
x6
600
x3 x4 x5 x6 x7 550
x
j
0,
j
1,2,,7
星 需要 星 需要 期 人数 期 人数 一 300 五 480 二 300 六 600 三 350 日 550 四 400
2020-07-10
第1章 线性规划
5
§1.1 线性规划的数学模型 Mathematical Model of LP
产品 资源
设备A 设备B 材料C 材料D 利润(元/件)
表1.1 产品资源消耗



3
1
2
2
2
4
4
5
1
2
3
5
40
30
50
现有资源
200 200 360 300
2020-07-10
第1章 线性规划
3、特征? (1)一组决策变量;(2)一个线性目标函数;(3)一组 线性约束条件
2020-07-10
第1章 线性规划
11
§1.1 线性规划的数学模型 Mathematical Model of LP
§1.1.2 线性规划的一般模型 一般地,假设线性规划数学模型中,有m个约束,有n个
决策变量xj, j=1,2…,n,目标函数的变量系数用cj表示, cj称为价 值系数。约束条件的变量系数用aij表示,aij称为工艺系数。约 束条件右端的常数用bi表示,bi称为资源限量。则线性规划数 学模型的一般表达式可写成
2020-07-10
第1章 线性规划
9
最优解:
1
X1
0
C1
404
>=
300 104
2
X2
67
C2
301
>=
300
1
3
X3
146
C3
350 >= 350
0
4
X4
170
C4
400 >= 400
0
5
X5
97
C5
480
>=
480
0
6
X6
120
C6
600 >= 600
0
7
X7
17
C7 550 >= 550
0
相关文档
最新文档