第一章线性规划

合集下载

第一章 线性规划

第一章 线性规划
(1-8)
例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3

第一章线性规划-模型和图解法

第一章线性规划-模型和图解法

a22 am2
a1n
a2n amn
(P1,
P2 ,
, Pn )
用向量表示时,上述模型可写为:
max(min)Z CX
s.t
n j 1
Pj x j
(, )b
X 0
线性规划问题可记为矩阵和向量的形式:
max(min)Z CX
s.t
AX
X
(, )b 0
max(min)Z CX
x21 x23
x14
x23
x32
x41
xij 0(i 1, ,4;
15
x22 x31 12
x23 x32
j 1, ,4)
10 20
二。线性规划问题的数学模型 下面从数学的角度来归纳上述三个例子的共同点。 ①每一个问题都有一组变量---称为决策变量,一般记为
x1, x2 , , xn. 对决策变量每一组值:(x1(0) , x2(0) , xn(0) )T 代表了
表1-3
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
表1-4
单位;元/100m2
1个月 2个月 3个月 4个月
2800 4500 6000 7300
表1-2
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
max(min) Z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (, )b1
s.t
a21x1
a22 x2
a2n xn
(, )b2
am1x1 am2 x2 amnxn (, )bm

第一章线性规划

第一章线性规划

一、线性规划问题及其数学模型 1、问题的提出
例1 某工厂用A,B,C,D四种设备生产I,II两种产品, 已知生产单位产品所需各种设备的数量、在计划期内 各种设备的拥有量以及每单位产品I,II的利润见下表 所示,问应如何安排生产才能使总利润最大?
设 备
A 2 2 12
B 1 2 8
C 4 0 16
D 0 4 12
线性规划介绍
历史悠久,理论成熟,应用广泛 运筹学的最基本的方法之一,网络规划、整 数规划、目标规划和多目标规划都是以线性规 划为基础的。 解决稀缺资源最优分配的有效方法,使付出
的费用最小或获得的收益最大。
线性规划理论的发展: 1939年前苏联康托洛维奇(KOHTOPOBUZ) 《生产组织与计划中的 数学方法》提出 “解乘数法”。
产 品
单件利润 (元)
Ⅰ Ⅱ
有效台数
2 3
建立该问题的数学模型 解(1)决策变量:设生产产品I x1个单位,产品II x2个 单位; (2)目标:总利润最大,于是记成max z=2x1+3x2, z 称为目标函数; (3)限制条件 (约束条件) a:各种设备的数量有限,无论如何安排生产,x1,x2 均应满足如下条件:2 x 2 x 1 2
设司乘人员在各时间段一开始时上班,并连续 工作8小时,问该公司线路至少应配备多少司乘人 员。列出该问题的数学模型
设x1,x2,…,x6为各班新上班人数,考虑到在每个时间 段工作的人数既包括该时间段新上班的人又包括上一 个时间段上班的人员,按所需人员最少的要求可列出 本例的数学模型:
目标函数:
m in z x 1 x 2 x 3 x 4 x 5 x 6
min z 1000 x 1 800 x 2

第一章线性规划

第一章线性规划
所以运输问题的模型可记为 Min Z = 21x11 + 25x12 + 7x13 + 15x14 + 51x21 + 51x22 + 37x23 + 15x24 s.t.
x11 + x12 + x13 + x14 = 2000 x21 + x22 + x23 + x24 = 1100 x11 + x21 = 1700 x12 + x22 = 1100 x13 + x23 = 200 x14 + x24 = 100 xij ≥ 0(i = 1,2;j = 1,2,3,4).
其中c =(c1,c2,…,cn)为行向量,称为价值向量,
a11 a A = 21 a m1 a12 a22 am 2
C
单500
75
解:(1) 确定决策变量:设x1,x2为下一个 生产周期产品甲和乙的产量;
(2) 所满足的约束条件:
对资源A的限制:3x1 + 2x2 ≤ 65 对资源B的限制:2x1 + x2 ≤ 40
对资源C的限制: 3x2 ≤ 75
基本要求:x1,x2 ≥ 0 ; (3) 明确目标函数: 获利最大,即求Z= 1500x1 + 2500x2的最大值,用 max表示最大值,s.t.(subject to的简写)表示约束条件,则该模型 可记为: max Z = 1500 x1 + 2500 x2 s.t. 3 x1 + 2 x2 ≤ 65 2 x1 + x2 ≤ 40 3 x2 ≤ 75
标准形式
max z = c1 x1 + c2 x2 + … + cn xn (1.2a)

第一章线性规划的基本概念

第一章线性规划的基本概念
n ∑ P j x j ≤ ( =≥ ) b s .t . j = 1 X ≥ 0 其中: 其中:
Pj = (a1 j , a2 j ,⋯, amj ) , j = 1,2,⋯, n
T
三线性规划的标准形式
• LP的标准型: LP的标准型 的标准型: • 1、LP标准型的概念 LP标准型的概念 • (1)什麽是LP的标准型? 什麽是LP的标准型 的标准型? • (2)LP标准型的特点 LP标准型的特点 • 目标函数约定是极大化Max(或极小化Min) 目标函数约定是极大化Max(或极小化Min); 约束条件均用等式表示; • 约束条件均用等式表示; • 决策变量限于取非负值; 决策变量限于取非负值; • 右端常数均为非负值 ;
(3)数学表达式: 数学表达式:
有几种形式? 有几种形式? 如何书写? 如何书写?
2、LP问题的标准化 LP问题的标准化 (1)目标函数的标准化 Z’=Z’=-Z
MinZ=CX
MaxZ’=MaxZ’=-CX
目 标 函 数 标 准 化 示 意 图
y’ = -f (x) -3 1 0 -1 2 5 x y 3 y=f (x)
第一步- 建立平面直角坐标系; 第一步--建立平面直角坐标系; 第二步-- --根据约束条件和非负条件画出 第二步 -- 根据约束条件和非负条件画出 可行域。 可行域。 第三步-- 作出目标函数等值线( --作出目标函数等值线 第三步 -- 作出目标函数等值线 ( 至少两 结合目标函数优化要求, 条), 结合目标函数优化要求,平移目 标函数等值线求出最优解。 标函数等值线求出最优解。
x2
无可行解
⑵ ⑴
x1
做这个题目
• 一个生产家具的公司计划生产两种产品- 椅子和桌子,其可用资源包括400板英尺的 红木板和450个工时。已知生产每把椅子需 用红木板5板英尺,10个工时,其利润为45 美元,而生产每张桌子需要红木板20板英 尺和15个工时,其利润为80美元,问题是 要确定,在资源约束范围内,公司生产多 少把椅子和多少张桌子,其总利润最大?

第一章 线性规划

第一章 线性规划

第1章线性规划Chapter 1 Linear Programming本章内容提要线性规划是运筹学的重要内容。

本章介绍线性规划数学模型、线性规划的基本概念以及求解线性规划数学模型的基本算法——单纯形法。

学习本章要求掌握以下内容:⏹线性规划模型的结构⏹线性规划的标准形式,非标准形式转化为标准形式⏹线性规划的图解以及相应的概念。

包括:约束直线,可行半空间,可行解,可行域,凸集,极点,目标函数等值线,最优解⏹线性规划的基本概念。

包括:基,基础解,基础可行解,基变量,非基变量,进基变量,离基变量,基变换⏹单纯形法原理。

包括:基变量和目标函数用非基变量表出,检验数,选择进基变量的原则,确定离基变量的方法,主元,旋转运算⏹单纯形表。

包括初始单纯形表的构成,单纯形表运算方法⏹初始基础可行解,两阶段法⏹退化的基础可行解§1.1 运筹学和线性规划1.1.1 运筹学运筹学(Operations Research)是二十世纪三十年代二次大战期间由于战争的需要发展起来的一门学科。

当时,英国组织了一批自然科学和工程科学的学者,和军队指挥员一起,研究大规模战争提出的一些问题。

如轰炸战术的评价和改进、反潜艇作战研究等,研究结果在战争实践中取得了明显得效果。

这些研究当时在英国称为Operational Research,直译为作战研究。

战争结束以后,这些研究方法不断发展完善,并逐步形成学科理论体系,其中一些主要的理论和方法包括:线性规划,网络流,整数规划,动态规划,非线性规划,排队论,决策分析,对策论,计算机模拟等。

这些理论和方法在经济管理领域也得到了广泛应用,Operations Research也转义成为“作业研究”。

我国将Operations Research译成“运筹学”,非常贴切地将Operations Research这一英文术语所包含的作战研究和作业研究两方面的涵义都体现了出来。

现在,运筹学已经成为管理科学重要的基础理论和应用方法,是管理科学专业基本的必修课程之一。

第一章 线性规划

第一章 线性规划
第四节 线性规划的典型案例
线性规划
【开篇案例】
一、人力资源分配的问题
某旅行社为了迎接旅 游黄金周的到来,对一日 游导游人员的需求经过统 计分析如表所示。为了保 证导游充分休息,导游每 周工作 5天,休息两天, 并要求休息的两天是连续 的。问应该如何安排导游 人员的作息,既满足工作 需要,又使配备的导游人
下午5时14分
什么是规划?
• 以上问题无一例外都属于规划问题,涉及到求解最大值 和最小值
• 人们经常谈规划,比如国家有5年规划、10年规划、城市 有城市规划,个人有自己的人生规划.
• 规划是在现有的人力、物力水平下,使得目标达到最优 的全面、理性的计划
下午5时14分
线性规划
• 线性规划简介: • 运筹学中最成熟的一个分支 • 静态规划:单周期决策
第一节 下午5时14分 线性规划的一般模型
三、线性规划模型的特征
1. 模型隐含假定
作为严密的数学模型,线性规划蕴含着以下假定: (1)线性化假定
函数关系式f(x)= c1x1+c2x2+… +cnxn,称线性函数。 经济学中大多数函数都是非线性,通过偏导求最优。但在企业
运营决策中,经常考虑比较短时间内的计划安排,通过线性化 更便于应用。
乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?



资源限制
铸造工时(小时/件)
5
10
7
8000
机加工工时(小时/件)
6
4
8
12000
装配工时(小时/件)
3
2
2
10000
自产铸件成本(元/件)
3
5
4
外协铸件成本(元/件)

线性规划(完整版本)

线性规划(完整版本)

2 线性规划基本概念
生产计划问题
➢如何合理使用有限的人力,物力 和资金,使得收到最好的经济效益。 ➢如何合理使用有限的人力,物力 和资金,以达到最经济的方式,完 成生产计划的要求。
例1 生产计划问题(资源利用问题) 某家具厂生产桌子和椅子两种家具。
桌子售价50元/个,椅子销售价格30元/
个,生产桌子和椅子要求需要木工和油 漆工两种工种。生产一个桌子需要木工4 小时,油漆工2小时。生产一个椅子需要 木工3小时,油漆工1小时。该厂每个月 可用木工工时为120小时,油漆工工时为 50小时。问该厂如何组织生产才能使每 月的销售收入最大?
决策变量、约束条件、目标函数
3 线性规划问题的数学模型
一、问题的提出
解:
例2 某厂生产两种产品,下表给 出了单位产品所需资源及单位产品 利润
产品 资源
I
设备
1
材料 A
4
材料 B
0
单位利润
(元)
2
可利用
II
资源
2
8
0
16
4
12
3
问:应如何安排生产计划,才能使 总利润最大?
1.决策变量:设产品I、II的产量分
别为 1、x2
2.目标函数:设总运费为z,则有: max z = 2 x1 + 3 x2
3.约束条件:
x1 + 2x2 ≤ 8
4x1
≤ 16
4x2 ≤ 12
x1, x2≥0
例3 营养配餐问题 假定一个成年人每天需要从食物中
获得3000千卡的热量、55克蛋白质和 800毫克的钙。如果市场上只有四种食 品可供选择,它们每千克所含的热量 和营养成分和市场价格见下表。问如 何选择才能在满足营养的前提下使购 买食品的费用最小?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-1-第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。

此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。

自从1947年G . B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。

特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。

生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。

若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134max x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。

总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。

在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。

而选适当的决策变量,是我们建立有效模型的关键之一。

1.2 线性规划的Matlab 标准形式线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。

为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为x c xT min s.t. ⎪⎩⎪⎨⎧≤≤=⋅≤ub x lb beq x Aeq b Ax其中c 和x 为n 维列向量,A 、Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向量。

-2-例如线性规划b Ax xc xT ≥ s.t. max 的Matlab 标准型为b Ax xc xT−≤−− s.t. min1.3 线性规划问题的解的概念一般线性规划问题的(数学)标准型为∑==nj j j x c z 1max(3)s.t. ⎪⎩⎪⎨⎧=≥==∑=n j x m i b x a jnj i j ij ,,2,10,,2,11L L (4)可行解 满足约束条件(4)的解),,,(21n x x x x L =,称为线性规划问题的可行解,而使目标函数(3)达到最大值的可行解叫最优解。

可行域 所有可行解构成的集合称为问题的可行域,记为R 。

图解法简单直观,有助于了解线性规划问题求解的基本原理。

我们先应用图解法来求解例1。

对于每一固定的值z ,使目标函数值等于z 的点构成的直线称为目标函数等位线,当z 变动时,我们得到一族平行直线。

对于例1,显然等位线越趋于右上方,其上的点具有越大的目标函数值。

不难看出,本例的最优解为Tx )6,2(*=,最优目标值26*=z 。

从上面的图解过程可以看出并不难证明以下断言:(1)可行域R 可能会出现多种情况。

R 可能是空集也可能是非空集合,当R 非空时,它必定是若干个半平面的交集(除非遇到空间维数的退化)。

R 既可能是有界区域,也可能是无界区域。

(2)在R 非空时,线性规划既可以存在有限最优解,也可以不存在有限最优解(其目标函数值无界)。

-3-(3)若线性规划存在有限最优解,则必可找到具有最优目标函数值的可行域R 的“顶点”。

上述论断可以推广到一般的线性规划问题,区别只在于空间的维数。

在一般的n 维空间中,满足一线性等式∑==ni ii b xa 1的点集被称为一个超平面,而满足一线性不等式∑=≤ni ii b xa 1(或∑=≥ni i i b x a 1)的点集被称为一个半空间(其中),,(1n a a L 为一n 维行向量,b 为一实数)。

若干个半空间的交集被称为多胞形,有界的多胞形又被称为多面体。

易见,线性规划的可行域必为多胞形(为统一起见,空集Φ也被视为多胞形)。

在一般n 维空间中,要直接得出多胞形“顶点”概念还有一些困难。

二维空间中的顶点可以看成为边界直线的交点,但这一几何概念的推广在一般n 维空间中的几何意义并不十分直观。

为此,我们将采用另一途径来定义它。

定义 1 称n 维空间中的区域R 为一凸集,若R x x ∈∀21,及)1,0(∈∀λ,有R x x ∈−+21)1(λλ。

定义2 设R 为n 维空间中的一个凸集,R 中的点x 被称为R 的一个极点,若不存在R x x ∈21、及)1,0(∈λ,使得21)1(x x x λλ−+=。

定义1 说明凸集中任意两点的连线必在此凸集中;而定义2 说明,若x 是凸集R 的一个极点,则x 不能位于R 中任意两点的连线上。

不难证明,多胞形必为凸集。

同样也不难证明,二维空间中可行域R 的顶点均为R 的极点(R 也没有其它的极点)。

1.5 求解线性规划的Matlab 解法单纯形法是求解线性规划问题的最常用、最有效的算法之一。

这里我们就不介绍单纯形法,有兴趣的读者可以参看其它线性规划书籍。

下面我们介绍线性规划的Matlab 解法。

Matlab 中线性规划的标准型为x c x T min s.t. ⎪⎩⎪⎨⎧≤≤=⋅≤ub x lb beq x Aeq b Ax基本函数形式为linprog(c,A,b),它的返回值是向量x 的值。

还有其它的一些函数调用形式(在 Matlab 指令窗运行 help linprog 可以看到所有的函数调用形式),如:[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X 0,OPTIONS)这里fval 返回目标函数的值,LB 和UB 分别是变量x 的下界和上界,0x 是x 的初始值,OPTIONS 是控制参数。

例2 求解下列线性规划问题 321532max x x x z −+=s.t. 7321=++x x x 1052321≥+−x x x 123321≤++x x x0,,321≥x x x-4-解 (i )编写M 文件 c=[2;3;-5];a=[-2,5,-1;1,3,1]; b=[-10;12]; aeq=[1,1,1]; beq=7;x=linprog(-c,a,b,aeq,beq,zeros(3,1)) value=c'*x(ii )将M 文件存盘,并命名为example1.m 。

(iii )在Matlab 指令窗运行example1即可得所求结果。

例3 求解线性规划问题 32132 min x x x z ++=⎪⎩⎪⎨⎧≥≥+≥++0,,62382432121321x x x x x x x x 解 编写Matlab 程序如下: c=[2;3;1];a=[1,4,2;3,2,0]; b=[8;6];[x,y]=linprog(c,-a,-b,[],[],zeros(3,1))1.6 可以转化为线性规划的问题很多看起来不是线性规划的问题也可以通过变换变成线性规划的问题来解决。

如: 例4 规划问题为bAx x x x n ≤+++ t.s.||||||min 21L其中Tn x x x ][1L =,A 和b 为相应维数的矩阵和向量。

要把上面的问题变换成线性规划问题,只要注意到事实:对任意的i x ,存在0,>i i v u 满足i i i v u x −=,i i i v u x +=||事实上,我们只要取2||i i i x x u +=,2||i i i x x v −=就可以满足上面的条件。

这样,记T n u u u ][1L =,Tn v v v ][1L =,从而我们可以把上面的问题变成∑=+ni i iv u1)(min⎩⎨⎧≥≤−0,)( t.s.v u bv u A例5 |}|max {min i y x iiε其中i i i y x −=ε。

对于这个问题,如果我们取||max 0i y ix ε=,这样,上面的问题就变换成-5-0minx0011,, t.s.x y x x y x n n ≤−≤−L此即我们通常的线性规划问题。

§2 运输问题(产销平衡)例6 某商品有m 个产地、n 个销地,各产地的产量分别为m a a ,,1L ,各销地的需求量分别为n b b ,,1L 。

若该商品由i 产地运到j 销地的单位运价为ij c ,问应该如何调运才能使总运费最省?解:引入变量ij x ,其取值为由i 产地运往j 销地的该商品数量,数学模型为∑∑==m i nj ijij xc 11mins.t. ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥====∑∑==0,,2,1,,,1,11ij mi j ij nj i ij x n j b x m i a x L L显然是一个线性规划问题,当然可以用单纯形法求解。

对产销平衡的运输问题,由于有以下关系式存在:∑∑∑∑∑∑=======⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=mi i nj n j m i ij mi n j ij j a x x b 111111其约束条件的系数矩阵相当特殊,可用比较简单的计算方法,习惯上称为表上作业法(由康托洛维奇和希奇柯克两人独立地提出,简称康—希表上作业法)。

§3 指派问题3.1 指派问题的数学模型例7 拟分配n 人去干n 项工作,每人干且仅干一项工作,若分配第i 人去干第j 项工作,需花费ij c 单位时间,问应如何分配工作才能使工人花费的总时间最少?容易看出,要给出一个指派问题的实例,只需给出矩阵)(ij c C =,C 被称为指派问题的系数矩阵。

引入变量ij x ,若分配i 干j 工作,则取1=ij x ,否则取0=ij x 。

上述指派问题的数学模型为∑∑==n i nj ijij xc 11mins.t. ∑==nj ij x 11-6-∑==ni ijx111 0或=ij x上述指派问题的可行解可以用一个矩阵表示,其每行每列均有且只有一个元素为1,其余元素均为0;可以用n ,,1L 中的一个置换表示。

问题中的变量只能取0或1,从而是一个0-1规划问题。

一般的0-1规划问题求解极为困难。

相关文档
最新文档